id
stringclasses
1 value
instruction
stringclasses
206 values
trajectory
listlengths
2
297
length
int64
2
297
public_tests
listlengths
1
6
generated_tests
listlengths
4
100
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "visited = [False]*n\n\n\ndfs(0)\n", "visited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "from bisect import bisect, \n\n\nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "import sys\n\nfrom bisect import bisect, \n\n\nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "import sys\n\nfrom bisect import bisect, \n\n\na = list(map(int, input().split()))\n\n\nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "import sys\n\nfrom bisect import bisect, \n\nn = int(input())\na = list(map(int, input().split()))\n\n\nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "import sys\n\nfrom bisect import bisect, \n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n", "import sys\n\nfrom bisect import bisect, \n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\n\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\n\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\n\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\n\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\n\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n j = bisect(dp, value)\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n j = bisect(dp, value)\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n \n \n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n \n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n \n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n node2 -= 1\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n node2 -= 1\n \n \nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n node2 -= 1\n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n \n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n \n if : # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in :\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in adjacent[vertex]:\n \n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if dp[j-1] != value: # strict increasing\n \n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(dp, value)\n previous = dp[j]\n if dp[j-1] != value: # strict increasing\n dp[j] = value\n ans[vertex] = bisect_left(dp, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n dp[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "del u, v\n", "del u, v\n\n\ndfs(0, [])\n", "del u, v\n\n\ndfs(0, [])\n\n\nfor an in ans:\n", "del u, v\n\nans = [-1] * N\n\n\ndfs(0, [])\n\n\nfor an in ans:\n", "to = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nto = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nto = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nto = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nN = int(input())\n\nto = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\n\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in :\n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in :\n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n \n ans[v] = len(dp)\n\n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n \nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n \n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n \n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n \n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n \n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if :\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n \n else:\n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if or :\n \n back = -1\n else:\n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or :\n \n back = -1\n else:\n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or :\n dp.append(a[v])\n back = -1\n else:\n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n \n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n \n \n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n dp[pos] = back\n\n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n \n \n dp[pos] = a[v]\n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n dp[pos] = back\n\n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n \n back = dp[pos]\n dp[pos] = a[v]\n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n dp[pos] = back\n\n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n", "import bisect\nimport sys\n\n\nN = int(input())\na = list(map(int, input().split()))\nto = [[] for _ in range(N)]\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\ndel u, v\n\nans = [-1] * N\n\n\ndef dfs(v, dp):\n # dp は参照渡し\n if len(dp) == 0 or a[v] > dp[-1]:\n dp.append(a[v])\n back = -1\n else:\n pos = bisect.bisect_left(dp, a[v])\n back = dp[pos]\n dp[pos] = a[v]\n ans[v] = len(dp)\n\n for u in to[v]:\n if ans[u] == -1:\n dfs(u, dp)\n if back == -1:\n dp.pop()\n else:\n dp[pos] = back\n\n\nsys.setrecursionlimit(10 ** 6)\ndfs(0, [])\n\n\nfor an in ans:\n print(an)\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "print(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\n\n\nprint(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\n\n\nw=[[]for _ in range(N)]\n\n\nprint(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\n\n\nw=[[]for _ in range(N)]\n\n\nans=[0]*N\n\n\nprint(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\nN=int(input())\n\nw=[[]for _ in range(N)]\n\n\nans=[0]*N\n\n\nprint(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\nN=int(input())\n\nw=[[]for _ in range(N)]\n\n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "input=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\n\n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "sys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\n\n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "sys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\n\nfor _ in :\n \n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "import sys\n\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\n\nfor _ in :\n \n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "import sys\n\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in :\n \n\nans=[0]*N\n\ndef dfs:\n \n\nprint(*ans,sep='\\n')\n", "import sys\n\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in :\n \n\nans=[0]*N\n\ndef dfs:\n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in :\n \n\nans=[0]*N\n\ndef dfs:\n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in :\n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs:\n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs:\n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs:\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs:\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs:\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n \n dp[idx]=min(before,a[now])\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n w[u-1].append(v-1)\n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n \n dp[idx]=min(before,a[now])\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n w[u-1].append(v-1)\n \ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n \n \ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n \n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n \n \n dp[idx]=before\ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n u,v=map(int,input().split())\n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n \n \n dp[idx]=before\ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n u,v=map(int,input().split())\n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n \n for nxt in w[now]:\n \n dp[idx]=before\ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n u,v=map(int,input().split())\n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n ans[now]=bisect_left(dp,INF)\n for nxt in w[now]:\n \n dp[idx]=before\ndfs(0,-1)\nprint(*ans,sep='\\n')\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ninput=sys.stdin.buffer.readline\nN=int(input())\n*a,=map(int,input().split())\nw=[[]for _ in range(N)]\nINF=10**18\nfor _ in range(N-1):\n u,v=map(int,input().split())\n w[u-1].append(v-1)\n w[v-1].append(u-1)\ndp=[INF]*N\nans=[0]*N\n\ndef dfs(now,pre):\n idx=bisect_left(dp,a[now])\n before=dp[idx]\n dp[idx]=min(before,a[now])\n ans[now]=bisect_left(dp,INF)\n for nxt in w[now]:\n if pre!=nxt:\n dfs(nxt,now)\n dp[idx]=before\ndfs(0,-1)\nprint(*ans,sep='\\n')\n" ]
30
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dp = []\npos = 0\n", "for i in :\n \n\ndp = []\npos = 0\n", "for i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "from bisect import \n\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "from bisect import \n\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nAs = list(map(int, input().split()))\n\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "import sys\n\n\nfrom bisect import \n\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nAs = list(map(int, input().split()))\n\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "import sys\n\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nAs = list(map(int, input().split()))\n\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "import sys\n\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\n\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "import sys\n\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n", "import sys\n\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\n\n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\n\n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\n\n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in :\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import \nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n \n \nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n \n \nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n # 行き\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n \n \nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n # 行き\n \n \n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n \n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n # 行き\n \n \n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n # 行き\n \n \n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n \n # 行き\n a = As[v]\n \n \n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n \n \n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n \n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n \n\n ans[v] = len(dp)\n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n \n\n ans[v] = len(dp)\n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if :\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if :\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if :\n \n # 引数の1つ目はappendしたか\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if :\n \n # 引数の1つ目はappendしたか\n \n else:\n # 更新\n \n\n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n \n # 引数の1つ目はappendしたか\n \n else:\n # 更新\n \n\n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n \n # 引数の1つ目はappendしたか\n \n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n \ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n \n # 引数の1つ目はappendしたか\n \n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n \n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n \n dfs(u,v)\n # 帰り\n \n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n \n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n \n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n dp[ind] = a\n \n\n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n \n dp[ind] = a\n q.append((False,ind,tmp))\n\n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n tmp = dp[ind]\n dp[ind] = a\n q.append((False,ind,tmp))\n\n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n tmp = dp[ind]\n dp[ind] = a\n q.append((False,ind,tmp))\n\n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n else:\n \n\ndfs(0,-1)\n\nprint(*ans)\n", "import sys\nsys.setrecursionlimit(10**6)\n\nfrom bisect import bisect_left\nfrom collections import deque\n\"\"\"\n行き ⇨ dp LIS計算とstack登録\n帰り ⇨ stackをpop dp巻き戻し\n\"\"\"\n\nn = int(input())\nAs = list(map(int, input().split()))\nedges = [[] for i in range(n)]\nfor i in range(n-1):\n u,v = map(int, input().split())\n u -= 1\n v -= 1\n edges[u].append(v)\n edges[v].append(u)\n\n\nINF = 10**10\ndp = []\npos = 0\nans = [0] * n\nq = deque([])\ndef dfs(v,p):\n global pos\n # 行き\n a = As[v]\n ind = bisect_left(dp, a)\n if ind == len(dp):\n dp.append(a)\n # 引数の1つ目はappendしたか\n q.append((True, -1, -1))\n else:\n # 更新\n tmp = dp[ind]\n dp[ind] = a\n q.append((False,ind,tmp))\n\n ans[v] = len(dp)\n for u in edges[v]:\n if u == p:continue\n dfs(u,v)\n # 帰り\n isappend, ind, tmp = q.pop()\n if isappend:\n dp.pop()\n else:\n dp[ind] = tmp\n\n\ndfs(0,-1)\n\nprint(*ans)\n" ]
46
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "from bisect import \n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "from bisect import \n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "from bisect import \n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n \n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n \n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
42
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dp[0]=-1\n", "dp[0]=-1\nans=[-1]*N\n", "dp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\n", "G=[[] for i in range(N)]\n\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\n", "N=int(input())\n\nG=[[] for i in range(N)]\n\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\n", "N=int(input())\n\nG=[[] for i in range(N)]\n\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\n", "N=int(input())\n\nG=[[] for i in range(N)]\n\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "INF=10**18\n\n\nN=int(input())\n\nG=[[] for i in range(N)]\n\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "INF=10**18\n\n\nN=int(input())\n\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "sys.setrecursionlimit(10**7)\n\nINF=10**18\n\n\nN=int(input())\n\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "sys.setrecursionlimit(10**7)\n\nINF=10**18\ndef dfs:\n \n\nN=int(input())\n\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\n\nINF=10**18\ndef dfs:\n \n\nN=int(input())\n\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\n\nINF=10**18\ndef dfs:\n \n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \nINF=10**18\ndef dfs:\n \n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in :\n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \nINF=10**18\ndef dfs:\n \n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in :\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs:\n \n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in :\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs:\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in :\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs:\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n \n \n if b>max_:\n max_=b\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n \n \n if b>max_:\n max_=b\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n \n \n if b>max_:\n max_=b\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n \n dp[b]=a[v]\n if b>max_:\n max_=b\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n \n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n \n dp[b]=a[v]\n if b>max_:\n max_=b\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n \n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n \n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n \n \nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n \n dp[memo[0]]=memo[1]\n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n for nv in G[v]:\n \n dp[memo[0]]=memo[1]\n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n for nv in G[v]:\n \n \n dp[memo[0]]=memo[1]\n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n for nv in G[v]:\n \n dfs(nv,v,max_)\n dp[memo[0]]=memo[1]\n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left\nINF=10**18\ndef dfs(v,p,max_):\n b=bisect_left(dp,a[v])\n memo=(b,dp[b])\n dp[b]=a[v]\n if b>max_:\n max_=b\n ans[v]=max_\n for nv in G[v]:\n if nv==p:\n continue\n dfs(nv,v,max_)\n dp[memo[0]]=memo[1]\n\nN=int(input())\na=list(map(int,input().split()))\nG=[[] for i in range(N)]\nfor i in range(N-1):\n u,v=map(lambda x:int(x)-1,input().split())\n G[u].append(v)\n G[v].append(u)\ndp=[INF]*(N+1)\ndp[0]=-1\nans=[-1]*N\ndfs(0,-1,0)\nprint(*ans,sep='\\n')\n" ]
33
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "sys.setrecursionlimit(10**7)\n", "sys.setrecursionlimit(10**7)\n\n\ndef main():\n", "from bisect import \nsys.setrecursionlimit(10**7)\n\n\ndef main():\n", "from bisect import \nsys.setrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "from bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n \n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n \n dp = [INF] * N\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n \n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n u -= 1\n v -= 1\n \n \n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n u -= 1\n v -= 1\n \n \n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs:\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n \n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n \n ans[now] = ans_idx\n\n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n \n ans[now] = ans_idx\n\n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n \n dp[idx] = a\n\n \n ans[now] = ans_idx\n\n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n old = dp[idx]\n dp[idx] = a\n\n \n ans[now] = ans_idx\n\n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n old = dp[idx]\n dp[idx] = a\n\n \n ans[now] = ans_idx\n\n\n for nv in to[now]:\n \n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n old = dp[idx]\n dp[idx] = a\n\n ans_idx = bisect_left(dp, INF)\n ans[now] = ans_idx\n\n\n for nv in to[now]:\n \n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n old = dp[idx]\n dp[idx] = a\n\n ans_idx = bisect_left(dp, INF)\n ans[now] = ans_idx\n\n\n for nv in to[now]:\n \n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n INF = 10 ** 18\n ans = [0] * N\n dp = [INF] * N\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n old = dp[idx]\n dp[idx] = a\n\n ans_idx = bisect_left(dp, INF)\n ans[now] = ans_idx\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n dp[idx] = old\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n" ]
37
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#!/usr/bin/python3\n\n\ndp = []\n", "#!/usr/bin/python3\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nn = int(input())\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom import \n\n\nn = int(input())\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom import \n\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom bisect import \nfrom import \n\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\nmlen = defaultdict(int)\n\n\ndp = []\n\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\nmlen = defaultdict(int)\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n", "#!/usr/bin/python3\n\n\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\nmlen = defaultdict(int)\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\n\nmlen = defaultdict(int)\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\n\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \n nbs[v - 1].append(u - 1)\n\n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n \n nbs[v - 1].append(u - 1)\n\n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\nfrom collections import defaultdict\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n nbs[v - 1].append(u - 1)\n\n\nmlen = defaultdict(int)\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n" ]
26
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "inf = 10**10\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n\n\nQ = [(0, -1)]\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n\n\nQ = [(0, -1)]\n\nprint(*L, sep='\\n')\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n\nL = [0 for i in range(n)]\n\nQ = [(0, -1)]\n\nprint(*L, sep='\\n')\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\n\nprint(*L, sep='\\n')\n", "*A, = map(int, input().split())\n\n\ninf = 10**10\n\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\n\n*A, = map(int, input().split())\n\n\ninf = 10**10\n\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\n\n*A, = map(int, input().split())\n\n\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\n\n\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\n\nfor i in :\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in :\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in :\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in :\n \n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n \n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n \n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n \n G[x - 1].append(y - 1)\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n \n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n \ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \n DP[i] = A[x]\n \n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \n Q.append((i, DP[i]))\n DP[i] = A[x]\n \n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n \n \n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n V[x] = True\n \n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n V[x] = True\n \n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n for y in G[x]:\n \n else:\n \nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n V[x] = True\n \n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n for y in G[x]:\n \n else:\n DP[x] = a\nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n V[x] = True\n i = bisect.bisect_left(DP, A[x])\n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n for y in G[x]:\n \n else:\n DP[x] = a\nprint(*L, sep='\\n')\n", "import bisect\nn = int(input())\n*A, = map(int, input().split())\nG = [[] for i in range(n)]\nfor i in range(n - 1):\n x, y = map(int, input().split())\n G[x - 1].append(y - 1)\n G[y - 1].append(x - 1)\ninf = 10**10\nDP = [inf for i in range(n)]\nL = [0 for i in range(n)]\nV = [False for i in range(n)]\nQ = [(0, -1)]\nwhile Q:\n x, a = Q.pop()\n if a == -1:\n V[x] = True\n i = bisect.bisect_left(DP, A[x])\n Q.append((i, DP[i]))\n DP[i] = A[x]\n L[x] = bisect.bisect_left(DP, inf)\n for y in G[x]:\n if not V[y]:\n Q.append((y, -1))\n else:\n DP[x] = a\nprint(*L, sep='\\n')\n" ]
31
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "E = []\n", "E = []\n\nfor i in :\n", "E = []\nfor i in range(N):\n \nfor i in :\n", "A = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n", "INF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n", "INF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nfor i in range(N):\n", "INF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\ndp = [INF] * N\n\n\nfor i in range(N):\n", "import sys\n\n\nINF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\ndp = [INF] * N\n\n\nfor i in range(N):\n", "import sys\n\n\nINF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\n\nfor i in range(N):\n", "import sys\n\nsys.setrecursionlimit(10**9)\nINF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\n\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n\ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n \nfor i in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n\ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n\ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs:\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n \n dp[ok] = A[now]\n\n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n \n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n \n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n \n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n \ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n \n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n \n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n \n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n if :\n continue\n \n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n if :\n continue\n dfs(to, now, len+1)\n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n", "import sys\nimport bisect\nsys.setrecursionlimit(10**9)\nINF = 2**30\nN = int(input())\nA = list(map(int, input().split()))\nE = []\nfor i in range(N):\n E.append([])\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n u -= 1\n v -= 1\n E[u].append(v)\n E[v].append(u)\n\nans = [0] * N\ndp = [INF] * N\n\ndef dfs(now, par, len):\n ok = bisect.bisect_left(dp, A[now])\n memo = dp[ok]\n dp[ok] = A[now]\n\n ok1 = bisect.bisect_left(dp, INF)\n ans[now] = ok1\n\n for to in E[now]:\n if to == par:\n continue\n dfs(to, now, len+1)\n dp[ok] = memo\n\ndfs(0, -1, 0)\n\nfor i in range(N):\n print(ans[i])\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "from bisect import\n", "input=sys.stdin.readline\nfrom bisect import\n", "input=sys.stdin.readline\nfrom bisect import \n\ndef main():\n", "input=sys.stdin.readline\nfrom bisect import \n\ndef main():\n \n\nif :\n main()\n", "sys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import \n\ndef main():\n \n\nif :\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import \n\ndef main():\n \n\nif :\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import \n\ndef main():\n \n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n \nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n \n def dfs(v,par):\n \n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n A=list(map(int, input().split()))\n \n \n def dfs(v,par):\n \n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n A=list(map(int, input().split()))\n \n \n Ans=[0]*n\n\n def dfs(v,par):\n \n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n A=list(map(int, input().split()))\n \n \n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n \n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n A=list(map(int, input().split()))\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n \n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n \n A=list(map(int, input().split()))\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n \n for _ in :\n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in :\n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n \n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n \n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n \n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n \n Ans[v]=bisect_left(LIS,10**10)\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n \n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n \n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n \n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n tmp=LIS[idx]\n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n tmp=LIS[idx]\n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n tmp=LIS[idx]\n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n \n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n tmp=LIS[idx]\n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n if chi==par:\n continue\n \n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n", "import sys\nsys.setrecursionlimit(10**6)\ninput=sys.stdin.readline\nfrom bisect import bisect_left\n\ndef main():\n n=int(input())\n A=list(map(int, input().split()))\n Edges=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u-=1; v-=1\n Edges[u].append(v)\n Edges[v].append(u)\n LIS=[10**11]*n\n Ans=[0]*n\n\n def dfs(v,par):\n idx=bisect_left(LIS,A[v])\n tmp=LIS[idx]\n LIS[idx]=A[v]\n Ans[v]=bisect_left(LIS,10**10)\n for chi in Edges[v]:\n if chi==par:\n continue\n dfs(chi,v)\n LIS[idx]=tmp\n\n dfs(0,-1)\n print(*Ans,sep='\\n')\n\nif __name__=='__main__':\n main()\n" ]
34
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "for i in ans:\n print(i)\n", "ans[0] = 1\n\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\n\n\nans[0] = 1\n\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\n\n\nans[0] = 1\n\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\n\n\nans[0] = 1\n\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\n\n\nans[0] = 1\n\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\n\n\nans[0] = 1\n\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\n\n\nans[0] = 1\n\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\n\n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "sys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "input = sys.stdin.readline\n\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\n\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs:\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in :\n \n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n \n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n \n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n \n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n \n \nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n \n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if :\n \n \n ans[now] = len(dp)\n\n for nex in e[now]:\n \n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if :\n \n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if :\n dp.append(l[now])\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n \n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n \n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n \n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n \n \n s = dp[index]\n \n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n \n \n s = dp[index]\n dp[index] = l[now]\n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n index = bisect.bisect_left(dp,l[now])\n \n s = dp[index]\n dp[index] = l[now]\n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n index = bisect.bisect_left(dp,l[now])\n change = False\n s = dp[index]\n dp[index] = l[now]\n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n", "\nimport sys\ninput = sys.stdin.readline\nimport bisect\n\nsys.setrecursionlimit(10**7)\nn = int(input())\nl = list(map(int,input().split()))\ne = [[] for i in range(n)]\nfor i in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n e[a].append(b)\n e[b].append(a)\n\n\nans = [0]*n\nans[0] = 1\ndp = [l[0]]\n\ndef dfs(now,bef):\n\n change = True\n if l[now] > dp[-1]:\n dp.append(l[now])\n else:\n index = bisect.bisect_left(dp,l[now])\n change = False\n s = dp[index]\n dp[index] = l[now]\n ans[now] = len(dp)\n\n for nex in e[now]:\n if nex != bef:\n dfs(nex,now)\n if change:\n dp.pop()\n else:\n dp[index] = s\n\nfor i in e[0]:\n dfs(i,0)\n\nfor i in ans:\n print(i)\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# DFS\n # (current, parent)\n", "dp[0] = -INF\n\n\n# DFS\n # (current, parent)\n", "dp[0] = -INF\n\n\n# DFS\n # (current, parent)\n\n\nprint(*ans)\n", "dp[0] = -INF\n\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "dp[0] = -INF\nrb = [[] for _ in range(N)]\n\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "dp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "graph = [[] for _ in range(N)]\n\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\ngraph = [[] for _ in range(N)]\n\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from bisect import \nfrom import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\n\n\nprint(*ans)\n", "from bisect import \nfrom import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import \nfrom import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import \nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n \n \n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n \n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n \n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n \n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n q.append((v, u))\n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\nINF=float('inf')\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i,ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n if v == p:\n continue\n q.append((v, u))\n\nprint(*ans)\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "m = 10**18\n", "m = 10**18\n\n\nchecked[1] = True\n", "n = int(input())\n\n\nm = 10**18\n\n\nchecked[1] = True\n", "n = int(input())\n\n\nfor _ in :\n \n\nm = 10**18\n\n\nchecked[1] = True\n", "n = int(input())\na = [0]+list(map(int,input().split()))\n\nfor _ in :\n \n\nm = 10**18\n\n\nchecked[1] = True\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\n\n\nchecked[1] = True\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\n\n\nchecked[1] = True\n\n\nfor i in ans[1:]:\n print(i)\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\n\nans = [1]*(n+1)\n\nchecked[1] = True\n\n\nfor i in ans[1:]:\n print(i)\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\n\nans = [1]*(n+1)\n\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\n\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "n = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "import bisect\n\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\n\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\n\n\ndef search(x):\n \n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\n\n\ndef search(x):\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in :\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n \nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n \n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n \n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n \nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n \n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n dp[b] = c\n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n t[u].append(v)\n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n \n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n dp[b] = c\n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n t[u].append(v)\n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n changes.append((ind,dp[ind]))\n \n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n dp[b] = c\n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n t[u].append(v)\n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n changes.append((ind,dp[ind]))\n dp[ind] = a[x]\n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n \n\n b,c = changes.pop()\n dp[b] = c\n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = [0]+list(map(int,input().split()))\nt = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n t[u].append(v)\n t[v].append(u)\n\nm = 10**18\ndp = [m]*(n+1)\nans = [1]*(n+1)\nchecked = [False]*(n+1)\nchecked[1] = True\nchanges = []\n\ndef search(x):\n ind = bisect.bisect_left(dp,a[x])\n changes.append((ind,dp[ind]))\n dp[ind] = a[x]\n ans[x] = bisect.bisect_left(dp,m)\n\n for i in t[x]:\n if not checked[i]:\n checked[i] = True\n search(i)\n\n b,c = changes.pop()\n dp[b] = c\n\nsearch(1)\nfor i in ans[1:]:\n print(i)\n" ]
31
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "def dfs(u):\n \n\ndfs(0)\n", "ans = [None] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "from bisect import \n\n\nans = [None] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\n\nans = [None] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\n\nans = [None] * n\nans[0] = 1\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\nn = int(input())\n\n\nans = [None] * n\nans[0] = 1\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nans = [None] * n\nans[0] = 1\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nadj = [[] for _ in range(n)]\n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nadj = [[] for _ in range(n)]\n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\n\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\n\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n for v in adj[u]:\n if not arrived[v]:\n arrived[v] = True\n idx = bisect_left(dp, a[v])\n tmp = dp[idx]\n dp[idx] = a[v]\n ans[v] = bisect_left(dp, INF)\n dfs(v)\n dp[idx] = tmp\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n adj[v].append(u)\n\narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n for v in adj[u]:\n if not arrived[v]:\n arrived[v] = True\n idx = bisect_left(dp, a[v])\n tmp = dp[idx]\n dp[idx] = a[v]\n ans[v] = bisect_left(dp, INF)\n dfs(v)\n dp[idx] = tmp\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n adj[u].append(v)\n adj[v].append(u)\n\narrived = [False] * n\narrived[0] = True\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\ndp[0] = a[0]\n\n\ndef dfs(u):\n for v in adj[u]:\n if not arrived[v]:\n arrived[v] = True\n idx = bisect_left(dp, a[v])\n tmp = dp[idx]\n dp[idx] = a[v]\n ans[v] = bisect_left(dp, INF)\n dfs(v)\n dp[idx] = tmp\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n" ]
24
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#F\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\n\nN = int(input())\na = list(map(int, input().split()))\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\n\nN = int(input())\na = list(map(int, input().split()))\n\n\nans = [0]*N\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\n\n\nans = [0]*N\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\n\n\nans = [0]*N\n\n\nans[0]=1\n", "#F\n\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\n\n\nans[0]=1\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\n\n\nans[0]=1\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\n\n\nans[0]=1\n\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\ncheck = [False]*N\n\n\nans[0]=1\n\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\ncheck = [False]*N\n\n\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\n\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\n\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in :\n \n\ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , \nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n\ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n\ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import , bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndef search(v,LIS):\n \n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndef search(v,LIS):\n \n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n \n \ndef search(v,LIS):\n if :\n return\n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n \n \ndef search(v,LIS):\n if :\n return\n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n \n \ndef search(v,LIS):\n if :\n return\n for u in lists[v]:\n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n lists[u-1].append(v-1)\n \n\ndef search(v,LIS):\n if :\n return\n for u in lists[v]:\n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n lists[u-1].append(v-1)\n lists[v-1].append(u-1)\n\ndef search(v,LIS):\n if :\n return\n for u in lists[v]:\n \n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n lists[u-1].append(v-1)\n lists[v-1].append(u-1)\n\ndef search(v,LIS):\n if :\n return\n for u in lists[v]:\n if check[u] == False:\n check[u] = True\n if a[u] > LIS[-1]:\n LIS.append(a[u])\n ans[u] = len(LIS)\n search(u,LIS)\n LIS.pop()\n else:\n ind = bisect_left(LIS,a[u])\n stack = LIS[ind]\n LIS[ind]=a[u]\n ans[u] = len(LIS)\n search(u,LIS)\n LIS[ind]=stack\n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n", "#F\nimport sys\nsys.setrecursionlimit(10**8)\nfrom bisect import bisect_left, bisect_right\nN = int(input())\na = list(map(int, input().split()))\nlists=[[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n lists[u-1].append(v-1)\n lists[v-1].append(u-1)\n\ndef search(v,LIS):\n if len(lists[v])==0:\n return\n for u in lists[v]:\n if check[u] == False:\n check[u] = True\n if a[u] > LIS[-1]:\n LIS.append(a[u])\n ans[u] = len(LIS)\n search(u,LIS)\n LIS.pop()\n else:\n ind = bisect_left(LIS,a[u])\n stack = LIS[ind]\n LIS[ind]=a[u]\n ans[u] = len(LIS)\n search(u,LIS)\n LIS[ind]=stack\n return\n\nans = [0]*N\ncheck = [False]*N\ncheck[0]=True\nLIS = [a[0]]\nans[0]=1\nsearch(0,LIS)\nprint(*ans, sep=\"\\n\")\n" ]
28
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "n=int(input())\n", "def main(n,a):\n \n\nn=int(input())\n", "from bisect import \ndef main(n,a):\n \n\nn=int(input())\n", "import sys\n\nfrom bisect import \ndef main(n,a):\n \n\nn=int(input())\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \ndef main(n,a):\n \n\nn=int(input())\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \ndef main(n,a):\n \n\nn=int(input())\n\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \ndef main(n,a):\n \n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import \ndef main(n,a):\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n \n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n \n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n \nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n \n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n \n \n for _ in :\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n \n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n \n for _ in :\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n \n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n \n for _ in :\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n \n for _ in :\n \n \n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n \n for _ in :\n \n inf=float('inf')\n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in :\n \n inf=float('inf')\n p={}\n \n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in :\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in :\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n \n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n ki[u].append(v)\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n \n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n ki[u].append(v)\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n \n ki[u].append(v)\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n tmp=dp[idx]\n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u,v=u-1,v-1\n ki[u].append(v)\n \n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n tmp=dp[idx]\n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n \n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n tmp=dp[idx]\n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n tmp=dp[idx]\n \n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n \n tmp=dp[idx]\n dp[idx]=x\n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n idx=bl(dp,x)\n tmp=dp[idx]\n dp[idx]=x\n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n idx=bl(dp,x)\n tmp=dp[idx]\n dp[idx]=x\n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n \n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n idx=bl(dp,x)\n tmp=dp[idx]\n dp[idx]=x\n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n if nv==p:continue\n \n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n", "import sys\nsys.setrecursionlimit(10**7)\nfrom bisect import bisect_left as bl\ndef main(n,a):\n ans=[0]*n\n ki=[[] for _ in range(n)]\n for _ in range(n-1):\n u,v=map(int,input().split())\n u,v=u-1,v-1\n ki[u].append(v)\n ki[v].append(u)\n inf=float('inf')\n p={}\n dp=[inf]*(n+1)\n dp[0]=0\n # dp[i]:長さiのLISの末尾の数値の最小値\n maxa=max(a)+1\n\n def dfs(v,p,dp):\n x=a[v]\n idx=bl(dp,x)\n tmp=dp[idx]\n dp[idx]=x\n # ans[v]=idx こっちだと頂点vで終わるLISの長さになる。下が正しい\n ans[v]=bl(dp,maxa)-1\n for nv in ki[v]:\n if nv==p:continue\n dfs(nv,v,dp)\n dp[idx]=tmp\n dfs(0,-1,dp)\n print(*ans,sep='\\n')\n\nn=int(input())\na=list(map(int,input().split()))\nmain(n,a)\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "n=int(input())\n\n\n #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "def dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\n #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "def dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nchecked=[0]*(n+1)\n\n #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nchecked=[0]*(n+1)\n\n #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nchecked=[0]*(n+1)\n\n #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nfor _ in :\n \n\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\n\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\n\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\n\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\n\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\n\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in :\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n \n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n g[a].append(b)\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n g[a].append(b)\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n g[a].append(b)\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n g[a].append(b)\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n \nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n g[b].append(a)\nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n ans[v]=bisect.bisect_left(dp,10**18) #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n \n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n g[b].append(a)\nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n ans[v]=bisect.bisect_left(dp,10**18) #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n \n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n dp[pos]=val\n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n g[b].append(a)\nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef dfs(v):\n #DFSの行き(子ノードに下っていくとき)の処理\n pos=bisect.bisect_left(dp,arr[v]) #最長増加部分列で更新する場所を2分探索により求める\n changes.append((pos,dp[pos])) #更新した要素とその値を記録しておく\n dp[pos]=arr[v]\n ans[v]=bisect.bisect_left(dp,10**18) #1からvまでの最長増加部分列の長さは、最長増加部分列の10**18以外の値の個数に等しい\n for u in g[v]:\n if checked[u]==0:\n checked[u]=1\n dfs(u)\n #DFSの戻り(親ノードに上っていくとき)の処理\n pos,val=changes.pop() #頂点vで更新した最長増加部分列の値を元に戻す\n dp[pos]=val\n\nn=int(input())\narr=[0]+list(map(int,input().split()))\ng=[[] for _ in range(n+1)]\nfor _ in range(n-1):\n a,b=map(int,input().split())\n g[a].append(b)\n g[b].append(a)\nans=[0]*(n+1)\nchecked=[0]*(n+1)\nchecked[1]=1\ndp=[10**18 for _ in range(n+1)] #最長増加部分列を求めるのに、十分大きな値で初期化しておく\nchanges=[]\ndfs(1)\nfor i in range(1,n+1):\n print(ans[i])\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "sys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "sys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "sys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "import sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n \n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n \n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input().strip()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
42
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "sys.setrecursionlimit(10 ** 7)\n", "import sys\n\n\nsys.setrecursionlimit(10 ** 7)\n", "import sys\n\n\nsys.setrecursionlimit(10 ** 7)\n\n\nif :\n main()\n", "import sys\n\n\nfrom bisect import \n\nsys.setrecursionlimit(10 ** 7)\n\n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import \n\nsys.setrecursionlimit(10 ** 7)\n\n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import \n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import \n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n dp = [inf] * (N+1)\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n inf = 10 ** 12\n dp = [inf] * (N+1)\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n inf = 10 ** 12\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n \n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs:\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs:\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs:\n \n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n \n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n \n \n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dp[lb] = v\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n old = dp[lb]\n dp[lb] = v\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n \n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n \n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in :\n \n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in tree[node]:\n \n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in tree[node]:\n if :\n continue\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in tree[node]:\n if :\n continue\n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(10 ** 7)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n edges = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in edges:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 12\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = bisect_left(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = bisect_left(dp, inf)\n for child in tree[node]:\n if child == parent:\n continue\n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\nif __name__ == \"__main__\":\n main()\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for g in :\n", "dp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\n\n\nfor g in :\n", "INF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\n\n\nfor g in :\n", "A = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\n\n\nfor g in :\n", "from import \n\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\n\n\nfor g in :\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\n\n\nfor g in :\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n \n\nfor g in :\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n \n\nfor g in :\n \n\nprint(dp[0][N][1])\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n \n\nfor g in :\n for l in range(N-g+1):\n r = l + g\n for i in range(l+1, r):\n lv, lc = dp[l][i]\n rv, rc = dp[i][r]\n nc = lv + rv + lc + rc\n if dp[l][r][1] > nc:\n dp[l][r][0] = lv + rv\n dp[l][r][1] = nc\n\nprint(dp[0][N][1])\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n \n\nfor g in range(2, N+1):\n for l in range(N-g+1):\n r = l + g\n for i in range(l+1, r):\n lv, lc = dp[l][i]\n rv, rc = dp[i][r]\n nc = lv + rv + lc + rc\n if dp[l][r][1] > nc:\n dp[l][r][0] = lv + rv\n dp[l][r][1] = nc\n\nprint(dp[0][N][1])\n", "from functools import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n \n\nfor g in range(2, N+1):\n for l in range(N-g+1):\n r = l + g\n for i in range(l+1, r):\n lv, lc = dp[l][i]\n rv, rc = dp[i][r]\n nc = lv + rv + lc + rc\n if dp[l][r][1] > nc:\n dp[l][r][0] = lv + rv\n dp[l][r][1] = nc\n\nprint(dp[0][N][1])\n", "from functools import \nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = [A[i], 0]\n\nfor g in range(2, N+1):\n for l in range(N-g+1):\n r = l + g\n for i in range(l+1, r):\n lv, lc = dp[l][i]\n rv, rc = dp[i][r]\n nc = lv + rv + lc + rc\n if dp[l][r][1] > nc:\n dp[l][r][0] = lv + rv\n dp[l][r][1] = nc\n\nprint(dp[0][N][1])\n", "from functools import lru_cache\nN = int(input())\nA = list(map(int, input().split()))\n\nINF = 1.0e+100\n\n\ndp = [[[None, INF] for _ in range(N+1)] for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = [A[i], 0]\n\nfor g in range(2, N+1):\n for l in range(N-g+1):\n r = l + g\n for i in range(l+1, r):\n lv, lc = dp[l][i]\n rv, rc = dp[i][r]\n nc = lv + rv + lc + rc\n if dp[l][r][1] > nc:\n dp[l][r][0] = lv + rv\n dp[l][r][1] = nc\n\nprint(dp[0][N][1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "B = [0 for _ in range(N+2)]\n", "B = [0 for _ in range(N+2)]\nfor i in :\n", "B = [0 for _ in range(N+2)]\nfor i in :\n \n\nfor k in :\n", "A.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \n\nfor k in :\n", "A.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\n\nfor k in :\n", "A = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\n\nfor k in :\n", "A = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n \nfor k in :\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n \nfor k in :\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n \nfor k in :\n \nprint(dp[1][N+1])\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n dp[i][i+2] = A[i]+A[i+1]\nfor k in :\n \nprint(dp[1][N+1])\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n dp[i][i+2] = A[i]+A[i+1]\nfor k in range(3,N+1):\n \nprint(dp[1][N+1])\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in :\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n dp[i][i+2] = A[i]+A[i+1]\nfor k in range(3,N+1):\n for i in range(1,N-k+2):\n dp[i][i+k] = dp[i][i+1]+dp[i+1][i+k]\n for j in range(i+2,i+k):\n dp[i][i+k] = min(dp[i][i+k],dp[i][j]+dp[j][i+k])\n dp[i][i+k] += B[i+k]-B[i]\nprint(dp[1][N+1])\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in range(N+1):\n \ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n dp[i][i+2] = A[i]+A[i+1]\nfor k in range(3,N+1):\n for i in range(1,N-k+2):\n dp[i][i+k] = dp[i][i+1]+dp[i+1][i+k]\n for j in range(i+2,i+k):\n dp[i][i+k] = min(dp[i][i+k],dp[i][j]+dp[j][i+k])\n dp[i][i+k] += B[i+k]-B[i]\nprint(dp[1][N+1])\n", "N = int(input())\nA = list(map(int,input().split()))\nA.insert(0,0)\nB = [0 for _ in range(N+2)]\nfor i in range(N+1):\n B[i+1] = B[i]+A[i]\ndp = [[0 for _ in range(N+2)] for _ in range(N+2)]\nfor i in range(N):\n dp[i][i+2] = A[i]+A[i+1]\nfor k in range(3,N+1):\n for i in range(1,N-k+2):\n dp[i][i+k] = dp[i][i+1]+dp[i+1][i+k]\n for j in range(i+2,i+k):\n dp[i][i+k] = min(dp[i][i+k],dp[i][j]+dp[j][i+k])\n dp[i][i+k] += B[i+k]-B[i]\nprint(dp[1][N+1])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def inpl():\n", "def inpl():\n \n\nif :\n main()\n", "sys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n \n\nif :\n main()\n", "import sys\n\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n \n\nif :\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n \n\nif :\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n \n\ndef main():\n \n\nif :\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n \n\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n \nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n \n cumA = [0] * (N + 1)\n \n \nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n \n cumA = [0] * (N + 1)\n \n dp = [[float('inf')] * N for _ in range(N)]\n \n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n \n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n \n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n \n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n \n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n \n\n for L in :\n \n \nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n \n\n for L in :\n \n \nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n \n\n for L in :\n \n \nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n \n\n for L in :\n \n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n \n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n \n\n for L in :\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n \n\n for L in :\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n \n\n for L in range(1, N):\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in :\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in range(1, N):\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in enumerate(A):\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in range(1, N):\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in enumerate(A):\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in range(1, N):\n for i in :\n \n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in enumerate(A):\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in range(1, N):\n for i in :\n dp[i][i + L] = cumA[i + L + 1] - cumA[i] + min(dp[i][i + k] + dp[i + k + 1][i + L] for k in range(L))\n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(2 * 10**6)\n\n\ndef inpl():\n return tuple(map(int, input().split()))\n\n\ndef main():\n N = int(input())\n A = inpl()\n cumA = [0] * (N + 1)\n for i, a in enumerate(A):\n cumA[i + 1] = cumA[i] + a\n dp = [[float('inf')] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in range(1, N):\n for i in range(N - L):\n dp[i][i + L] = cumA[i + L + 1] - cumA[i] + min(dp[i][i + k] + dp[i + k + 1][i + L] for k in range(L))\n # print(dp)\n print(dp[0][N - 1])\n\n\nif __name__ == '__main__':\n main()\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#b[q+1]-b[p] = a[p]+...a[q]\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n", "#b[q+1]-b[p] = a[p]+...a[q]\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n\nfor j in :\n", "#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n\nfor j in :\n", "import sys\n\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n\nfor j in :\n", "import sys\n\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\n\n\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\n\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\n\n\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\n\n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\n\n\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n \n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\ninput = sys.stdin.readline\n\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n \n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\ninput = sys.stdin.readline\nn = int(input())\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n \n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\ninput = sys.stdin.readline\nn = int(input())\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n b[i+1] = b[i]+a[i]\n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n \n\nprint(dp[0][n-1])\n", "import sys\ninput = sys.stdin.readline\nn = int(input())\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n b[i+1] = b[i]+a[i]\n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in :\n for i in range(n-j):\n\n mi = float(\"inf\")\n for k in range(i,i+j):\n mi = min(mi,dp[i][k]+dp[k+1][i+j])\n dp[i][i+j] = mi+b[i+j+1]-b[i]\n\nprint(dp[0][n-1])\n", "import sys\ninput = sys.stdin.readline\nn = int(input())\na = tuple(map(int,input().split()))\n\n#b[q+1]-b[p] = a[p]+...a[q]\nb = [0]*(n+1)\nfor i in range(n):\n b[i+1] = b[i]+a[i]\n\n#dp[i][j] : i~j までをまとめるコストの最小値\ndp = [[0]*n for i in range(n)]\nfor j in range(1,n):\n for i in range(n-j):\n\n mi = float(\"inf\")\n for k in range(i,i+j):\n mi = min(mi,dp[i][k]+dp[k+1][i+j])\n dp[i][i+j] = mi+b[i+j+1]-b[i]\n\nprint(dp[0][n-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#k:いくつのスライムを合体しているか\n", "B=[0]*(N+1)\n\n\n#k:いくつのスライムを合体しているか\n", "B=[0]*(N+1)\n\n\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n", "B=[0]*(N+1)\nfor i in range(N):\n \n\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n", "N=int(input())\n\nB=[0]*(N+1)\nfor i in range(N):\n \n\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n", "N=int(input())\n\nB=[0]*(N+1)\nfor i in range(N):\n \n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n", "N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nfor i in range(N):\n \n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n", "N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nfor i in range(N):\n \n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in :\n #i:どこのスライムを起点に合体しているか\n \nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nfor i in range(N):\n \n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in range(2,N+1):\n #i:どこのスライムを起点に合体しているか\n \nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nfor i in range(N):\n \n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in range(2,N+1):\n #i:どこのスライムを起点に合体しているか\n for i in range(N-k+1):\n dp[i][k]=min(dp[i][j]+dp[i+j][k-j] for j in range(1,k))+B[i+k]-B[i]\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nfor i in range(N):\n B[i+1]=B[i]+A[i]\n\ndp=[[0]*(N+1) for i in range(N)]\n#k:いくつのスライムを合体しているか\nfor k in range(2,N+1):\n #i:どこのスライムを起点に合体しているか\n for i in range(N-k+1):\n dp[i][k]=min(dp[i][j]+dp[i+j][k-j] for j in range(1,k))+B[i+k]-B[i]\nprint(dp[0][N])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "res = 0\n", "res = 0\n\ndef f(l, r):\n", "A = list(map(int, input().split()))\n\n\nres = 0\n\ndef f(l, r):\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nres = 0\n\ndef f(l, r):\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n \n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n \n \nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n \n \n dp[l][r] = fans + sum(A[l:r+1])\n \n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n \n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n \n \n fans = float('inf')\n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n \n \n fans = float('inf')\n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n \n if l == r:\n return 0\n fans = float('inf')\n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n \n if l == r:\n return 0\n fans = float('inf')\n for m in :\n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n \n if l == r:\n return 0\n fans = float('inf')\n for m in range(r)[l:]:\n \n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n \n if l == r:\n return 0\n fans = float('inf')\n for m in range(r)[l:]:\n fans = min(fans, f(l, m)+f(m+1, r))\n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if :\n return dp[l][r]\n if l == r:\n return 0\n fans = float('inf')\n for m in range(r)[l:]:\n fans = min(fans, f(l, m)+f(m+1, r))\n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for i in range(N)] for i in range(N)]\nres = 0\n\ndef f(l, r):\n if 0 < dp[l][r]:\n return dp[l][r]\n if l == r:\n return 0\n fans = float('inf')\n for m in range(r)[l:]:\n fans = min(fans, f(l, m)+f(m+1, r))\n dp[l][r] = fans + sum(A[l:r+1])\n return dp[l][r]\n\nprint(f(0,N-1))\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 累積和は0を含んだ半開区間(1-indexed)でかく\n\n\n# 初期化\n\n\n# 区間dp\n", "dp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\n\n\n# 初期化\n\n\n# 区間dp\n", "n = int(input())\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\n\n\n# 初期化\n\n\n# 区間dp\n", "n = int(input())\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\n\nfor i, ai in :\n \n\n# 初期化\n\n\n# 区間dp\n", "n = int(input())\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\n\nfor i, ai in :\n \n\n# 初期化\n\n\n# 区間dp\nfor l in :\n", "n = int(input())\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in :\n \n\n# 初期化\n\n\n# 区間dp\nfor l in :\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in :\n \n\n# 初期化\n\n\n# 区間dp\nfor l in :\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in :\n \n\n# 初期化\n\n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in :\n \n\n# 初期化\nfor i in :\n \n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in :\n \n\n# 初期化\nfor i in :\n \n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n \n\n# 初期化\nfor i in :\n \n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in :\n \n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n \n\n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n \n \n# 区間dp\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n \n \n# 区間dp\nfor l in range(2, n+1):\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n \n \n# 区間dp\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n \n if i+1 <= n:\n \n\n# 区間dp\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n dp[i][i] = 0\n if i+1 <= n:\n \n\n# 区間dp\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n# 累積和は0を含んだ半開区間(1-indexed)でかく\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\n# 初期化\nfor i in range(n+1):\n dp[i][i] = 0\n if i+1 <= n:\n dp[i][i+1] = 0\n\n# 区間dp\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n" ]
20
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "SUM=[0]\n", "SUM=[0]\n\n\nfor i in :\n", "SUM=[0]\nfor i in range(N):\n \n\nfor i in :\n", "DPLIST=[[None]*N for i in range(N)]\n\n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n", "DPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n", "N=int(input())\n\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(DPLIST[0][N-1])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=0\n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(DPLIST[0][N-1])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=0\n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in range(1,N):\n \n\nprint(DPLIST[0][N-1])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=0\n\nSUM=[0]\nfor i in range(N):\n \n\nfor i in range(1,N):\n for j in range(i,N):\n\n ANS=float(\"inf\")\n\n for k in range(j-i,j):\n\n if ANS>DPLIST[j-i][k]+DPLIST[k+1][j]+SUM[j+1]-SUM[j-i]:\n ANS=DPLIST[j-i][k]+DPLIST[k+1][j]+SUM[j+1]-SUM[j-i]\n\n DPLIST[j-i][j]=ANS\n\nprint(DPLIST[0][N-1])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=0\n\nSUM=[0]\nfor i in range(N):\n SUM.append(SUM[-1]+A[i])\n\nfor i in range(1,N):\n for j in range(i,N):\n\n ANS=float(\"inf\")\n\n for k in range(j-i,j):\n\n if ANS>DPLIST[j-i][k]+DPLIST[k+1][j]+SUM[j+1]-SUM[j-i]:\n ANS=DPLIST[j-i][k]+DPLIST[k+1][j]+SUM[j+1]-SUM[j-i]\n\n DPLIST[j-i][j]=ANS\n\nprint(DPLIST[0][N-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "c = [0]\n\n\n# print(d)\n# print(c)\n", "n = int(input())\n\n\nc = [0]\n\n\n# print(d)\n# print(c)\n", "inf = 10 ** 16\n\nn = int(input())\n\n\nc = [0]\n\n\n# print(d)\n# print(c)\n", "inf = 10 ** 16\n\nn = int(input())\n\n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\n", "inf = 10 ** 16\n\nn = int(input())\n\n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\n\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in :\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in range(n - 1, -1, -1):\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in range(n - 1, -1, -1):\n for j in range(i + 1, n):\n for k in range(i, j):\n # [i, k], (k, j]\n d[i][j] = min(d[i][j], d[i][k] + d[k + 1][j])\n d[i][j] += c[j + 1] - c[i]\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\n\nc = [0]\nfor aa in a:\n \n\nfor i in range(n - 1, -1, -1):\n for j in range(i + 1, n):\n for k in range(i, j):\n # [i, k], (k, j]\n d[i][j] = min(d[i][j], d[i][k] + d[k + 1][j])\n d[i][j] += c[j + 1] - c[i]\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = 10 ** 16\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\n\nc = [0]\nfor aa in a:\n c.append(c[-1] + aa)\n\nfor i in range(n - 1, -1, -1):\n for j in range(i + 1, n):\n for k in range(i, j):\n # [i, k], (k, j]\n d[i][j] = min(d[i][j], d[i][k] + d[k + 1][j])\n d[i][j] += c[j + 1] - c[i]\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\n# 合成するときの必要経費を構成\n\n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\n\n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\na=list(map(int,input().split()))\n\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(n-1):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\n# 合成するときの必要経費を構成\nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(n-1):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\n# 合成するときの必要経費を構成\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(n-1):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\n# 合成するときの必要経費を構成\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(n-1):\n for j in range(i+1,n):\n ans=INF\n x=j-i-1\n for k in range(x,j):\n ans=min(ans,dp[x][k]+dp[k+1][j])\n dp[x][j]+=ans\nprint(dp[0][-1])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def slimes(a):\n", "def slimes(a):\n \n\nprint(main())\n", "def slimes(a):\n \n\ndef main():\n \n\nprint(main())\n", "def slimes(a):\n \n\ndef main():\n input() # n\n \n \nprint(main())\n", "def slimes(a):\n \n \ndef main():\n input() # n\n \n \nprint(main())\n", "def slimes(a):\n \n \n for l in :\n \n\ndef main():\n input() # n\n \n \nprint(main())\n", "def slimes(a):\n \n d = [[0] * (n + 1) for _ in range(n + 1)]\n \n \n for l in :\n \n\ndef main():\n input() # n\n \n \nprint(main())\n", "def slimes(a):\n \n d = [[0] * (n + 1) for _ in range(n + 1)]\n \n \n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n \n \nprint(main())\n", "def slimes(a):\n \n d = [[0] * (n + 1) for _ in range(n + 1)]\n \n \n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n \n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n \n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n \n\n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n \n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n \n\n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n \n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n \n\n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n for i in :\n \n\n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n for i in range(1, n + 1):\n \n\n for l in :\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n for i in range(1, n + 1):\n \n\n for l in range(2, n + 1):\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n for i in range(1, n + 1):\n prefix[i] = prefix[i - 1] + a[i - 1]\n\n for l in range(2, n + 1):\n \n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n", "def slimes(a):\n n = len(a)\n d = [[0] * (n + 1) for _ in range(n + 1)]\n prefix = [0] * (n + 1)\n for i in range(1, n + 1):\n prefix[i] = prefix[i - 1] + a[i - 1]\n\n for l in range(2, n + 1):\n for x in range(n - l + 1):\n z = x + l\n d[x][z] = min(d[x][y] + d[y][z] for y in range(x + 1, z)) + (prefix[z] - prefix[x])\n\n return d[0][n]\n\n\ndef main():\n input() # n\n a = [int(x) for x in input().split()]\n return slimes(a)\n\n\nprint(main())\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n", "def resolve():\n \n\nif :\n", "def resolve():\n \n\nif __name__ == \"__main__\":\n", "def resolve():\n \n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n \n \nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n \n \n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n \n \n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n \n \n cum_A = [0]*(N+1)\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n \n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n \n\n for i in :\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n \n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in :\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n \n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in :\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n \n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n \n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in :\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n for left in range(N-l+1):\n right = left + l-1\n #if right>= N: continue\n cost = cum_A[right+1] - cum_A[left]\n for k in range(left, right):\n tmp = dp[left][k] + dp[k+1][right] + cost\n dp[left][right] = min(dp[left][right], tmp)\n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n cum_A[i+1] = cum_A[i] + A[i]\n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in :\n \n\n for l in :\n # right = left + len - 1でrightが[0, N - 1]のように\n for left in range(N-l+1):\n right = left + l-1\n #if right>= N: continue\n cost = cum_A[right+1] - cum_A[left]\n for k in range(left, right):\n tmp = dp[left][k] + dp[k+1][right] + cost\n dp[left][right] = min(dp[left][right], tmp)\n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n cum_A[i+1] = cum_A[i] + A[i]\n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in :\n \n\n for l in range(2, N+1):\n # right = left + len - 1でrightが[0, N - 1]のように\n for left in range(N-l+1):\n right = left + l-1\n #if right>= N: continue\n cost = cum_A[right+1] - cum_A[left]\n for k in range(left, right):\n tmp = dp[left][k] + dp[k+1][right] + cost\n dp[left][right] = min(dp[left][right], tmp)\n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n cum_A[i+1] = cum_A[i] + A[i]\n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in range(N+1):\n \n\n for l in range(2, N+1):\n # right = left + len - 1でrightが[0, N - 1]のように\n for left in range(N-l+1):\n right = left + l-1\n #if right>= N: continue\n cost = cum_A[right+1] - cum_A[left]\n for k in range(left, right):\n tmp = dp[left][k] + dp[k+1][right] + cost\n dp[left][right] = min(dp[left][right], tmp)\n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n", "def resolve():\n N = int(input())\n A = list(map(int, input().split()))\n cum_A = [0]*(N+1)\n for i in range(N):\n cum_A[i+1] = cum_A[i] + A[i]\n\n dp = [[1<<60]*(N+1) for _ in range(N+1)]\n for i in range(N+1):\n dp[i][i] = 0\n\n for l in range(2, N+1):\n # right = left + len - 1でrightが[0, N - 1]のように\n for left in range(N-l+1):\n right = left + l-1\n #if right>= N: continue\n cost = cum_A[right+1] - cum_A[left]\n for k in range(left, right):\n tmp = dp[left][k] + dp[k+1][right] + cost\n dp[left][right] = min(dp[left][right], tmp)\n\n return print(dp[0][N-1])\n\nif __name__ == \"__main__\":\n resolve()\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n p_n()\n", "def p_n():\n \n\nif :\n p_n()\n", "def p_n():\n \n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n \n \nif __name__ == '__main__':\n p_n()\n", "def p_n():\n \n \n ac = list(accumulate(a)) + [0]\n \n \nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n \n \n ac = list(accumulate(a)) + [0]\n \n \nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n \n \n ac = list(accumulate(a)) + [0]\n \n \n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n \n \n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n \n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n \n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n \n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n \n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n for i in :\n \n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from import \n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n for i in :\n for j in range(n - i + 1):\n dp[i][j] = ac[j + i - 1] - ac[j - 1] + min(dp[k][j] + dp[i - k][j + k] for k in range(1, i))\n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from itertools import \n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n for i in :\n for j in range(n - i + 1):\n dp[i][j] = ac[j + i - 1] - ac[j - 1] + min(dp[k][j] + dp[i - k][j + k] for k in range(1, i))\n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from itertools import accumulate\n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n for i in :\n for j in range(n - i + 1):\n dp[i][j] = ac[j + i - 1] - ac[j - 1] + min(dp[k][j] + dp[i - k][j + k] for k in range(1, i))\n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n", "def p_n():\n from itertools import accumulate\n n = int(input())\n *a, = map(int, input().split())\n ac = list(accumulate(a)) + [0]\n dp = [[0] * (n + 1) for _ in range(n + 1)]\n for i in range(2, n + 1):\n for j in range(n - i + 1):\n dp[i][j] = ac[j + i - 1] - ac[j - 1] + min(dp[k][j] + dp[i - k][j + k] for k in range(1, i))\n print(dp[-1][0])\n\n\nif __name__ == '__main__':\n p_n()\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "s = [0] * (n + 1)\n", "n = int(input())\n\n\ns = [0] * (n + 1)\n", "n = int(input())\n\n\ns = [0] * (n + 1)\n\n\nfor i in range(n):\n", "n = int(input())\n\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\n\nfor i in range(n):\n", "n = int(input())\n\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\n\nfor i in range(n):\n \n\nfor w in :\n", "n = int(input())\n\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n \nfor i in range(n):\n \n\nfor w in :\n", "n = int(input())\n\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n \nfor i in range(n):\n \n\nfor w in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n \nfor i in range(n):\n \n\nfor w in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n s[i] = s[i - 1] + a[i - 1]\nfor i in range(n):\n \n\nfor w in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n s[i] = s[i - 1] + a[i - 1]\nfor i in range(n):\n \n\nfor w in range(1, n):\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in :\n s[i] = s[i - 1] + a[i - 1]\nfor i in range(n):\n dp[i][i] = 0\n\nfor w in range(1, n):\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in range(1, n + 1):\n s[i] = s[i - 1] + a[i - 1]\nfor i in range(n):\n dp[i][i] = 0\n\nfor w in range(1, n):\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * n for _ in range(n)]\ns = [0] * (n + 1)\n\nfor i in range(1, n + 1):\n s[i] = s[i - 1] + a[i - 1]\nfor i in range(n):\n dp[i][i] = 0\n\nfor w in range(1, n):\n for i in range(n - w):\n for j in range(i, i + w):\n dp[i][i + w] = min(dp[i][i + w], dp[i][j] + dp[j + 1][i + w] + s[i + w + 1] - s[i])\nprint(dp[0][n - 1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in :\n", "dp = [[0 for _ in range(n)] for _ in range(n)]\n\n\nfor i in :\n", "a = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\n\nfor i in :\n", "a = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\n\nfor i in :\n \nfor i in :\n", "a = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\n\nfor i in :\n \nfor i in :\n \nprint(dp[0][n-1])\n", "a = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\nfor i in range(n):\n \nfor i in :\n \nfor i in :\n \nprint(dp[0][n-1])\n", "a = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in :\n \nfor i in :\n \nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in :\n \nfor i in :\n \nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in :\n \nfor i in range(1,n):\n \nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n size[i][i] = a[i]\nfor i in :\n \nfor i in range(1,n):\n \nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n size[i][i] = a[i]\nfor i in range(n-1):\n \nfor i in range(1,n):\n \nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n size[i][i] = a[i]\nfor i in range(n-1):\n \nfor i in range(1,n):\n for j in range(0,n-i):\n mn = float(\"inf\")\n for k in range(i):\n if mn > dp[j][j+k] + dp[j+k+1][j+i]:\n mn = dp[j][j+k] + dp[j+k+1][j+i]\n dp[j][j+i] = mn+ size[j][j+i]\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\nsize = [[0 for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n size[i][i] = a[i]\nfor i in range(n-1):\n for j in range(1,n-i):\n size[i][i+j] = size[i][i+j-1]+a[i+j]\nfor i in range(1,n):\n for j in range(0,n-i):\n mn = float(\"inf\")\n for k in range(i):\n if mn > dp[j][j+k] + dp[j+k+1][j+i]:\n mn = dp[j][j+k] + dp[j+k+1][j+i]\n dp[j][j+i] = mn+ size[j][j+i]\nprint(dp[0][n-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = [[0] * (n + 1) for _ in range(n)]\n", "dp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n", "aaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n", "n = int(input())\naaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n dp[l][l + 2] = sum(aa)\nfor w in :\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n \nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n \nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n for l in range(n - w + 1):\n r = l + w\n dp[l][r] = min(dp[l][m] + dp[m][r] for m in range(l + 1, r)) + acc[r] - acc[l]\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate(zip(aaa, aaa[1:])):\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n for l in range(n - w + 1):\n r = l + w\n dp[l][r] = min(dp[l][m] + dp[m][r] for m in range(l + 1, r)) + acc[r] - acc[l]\nprint(dp[0][n])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n \ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n \ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n \ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n \n \ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n return dp[l][r]\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n return dp[l][r]\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif :\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n \n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n res = float(\"inf\")\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n \n else:\n res = float(\"inf\")\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n \n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in range(l + 1, r):\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[-1]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in range(l + 1, r):\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n res = min(res, dfs(l, k) + dfs(k, r) + (cost[r] - cost[l]))\n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n" ]
30
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n", "# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\n\nprint(dp[0][N])\n", "# s[i] = sum(a[:i])\n\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\n\nprint(dp[0][N])\n", "# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\n\nprint(dp[0][N])\n", "# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\n\n\nprint(dp[0][N])\n", "N = int(input())\n\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\n\n\nprint(dp[0][N])\n", "N = int(input())\n\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\n\nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\n\nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \nfor l in :\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n s[i+1] = s[i]+a[i]\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def dfs(l,r):\n", "inf = float(\"inf\")\n\n\ndef dfs(l,r):\n", "inf = float(\"inf\")\n\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "inf = float(\"inf\")\n\nfrom import \n\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "inf = float(\"inf\")\n\nfrom import \nAccum = list(accumulate([0] + A))\n\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\n\ninf = float(\"inf\")\n\nfrom import \nAccum = list(accumulate([0] + A))\n\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom import \nAccum = list(accumulate([0] + A))\n\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom import \nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n \nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n \n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n if l == r:\n return 0\n \n\n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n if l == r:\n return 0\n \n\n local_ans = inf\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n if l == r:\n return 0\n if l+1 == r:\n \n\n local_ans = inf\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n if l == r:\n return 0\n if l+1 == r:\n \n\n local_ans = inf\n for i in : # 0 to 4, 0-1, 1-4\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if :\n \n if l == r:\n return 0\n if l+1 == r:\n \n \n local_ans = inf\n for i in : # 0 to 4, 0-1, 1-4\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n \n if l == r:\n return 0\n if l+1 == r:\n \n \n local_ans = inf\n for i in : # 0 to 4, 0-1, 1-4\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n return dp[l][r]\n if l == r:\n return 0\n if l+1 == r:\n \n \n local_ans = inf\n for i in : # 0 to 4, 0-1, 1-4\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n return dp[l][r]\n if l == r:\n return 0\n if l+1 == r:\n \n \n local_ans = inf\n for i in range(l+1, r): # 0 to 4, 0-1, 1-4\n \n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n return dp[l][r]\n if l == r:\n return 0\n if l+1 == r:\n \n \n local_ans = inf\n for i in range(l+1, r): # 0 to 4, 0-1, 1-4\n local_ans = min(local_ans, dfs(l,i) + dfs(i,r))\n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n return dp[l][r]\n if l == r:\n return 0\n if l+1 == r:\n \n return A[l]\n\n local_ans = inf\n for i in range(l+1, r): # 0 to 4, 0-1, 1-4\n local_ans = min(local_ans, dfs(l,i) + dfs(i,r))\n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n", "N = int(input())\nA = list(map(int, input().split()))\ninf = float(\"inf\")\n\nfrom itertools import accumulate\nAccum = list(accumulate([0] + A))\n\ndp = [ [inf]*(N+1) for _ in range(N+1)]\n\ndef dfs(l,r):\n if dp[l][r] != inf:\n return dp[l][r]\n if l == r:\n return 0\n if l+1 == r:\n dp[l][r] = A[l]\n return A[l]\n\n local_ans = inf\n for i in range(l+1, r): # 0 to 4, 0-1, 1-4\n local_ans = min(local_ans, dfs(l,i) + dfs(i,r))\n dp[l][r] = local_ans + Accum[r] - Accum[l]\n return dp[l][r]\nprint (dfs(0,N)- sum(A))\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\nfor i in range(N):\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\nfor i in range(N):\n \n\nprint(dp[0][N])\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\nfor i in range(N):\n \n\nprint(dp[0][N])\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\n\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\nfor i in range(N):\n \nfor l in :\n \n\nprint(dp[0][N])\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\n\nfor i in range(N):\n \nfor l in :\n \n\nprint(dp[0][N])\n", "a = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in :\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n \n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\n# s[i] = sum(a[:i])\ns = [0]*(N+1)\nfor i in range(N):\n s[i+1] = s[i]+a[i]\n\n# [i:j) のスライムを合体させるのに必要な最小のコスト\ndp = [[10**(18)]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j] + s[j]-s[i])\n\nprint(dp[0][N])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\n# 区間の長さが小さい順にループする(1~N)\n", "# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\nA = list(map(int,readline().split()))\n\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\nA = list(map(int,readline().split()))\n\nA = [0] + A\n\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\n\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n", "readline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n\n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\n\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n\n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\n\n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \n\n# 区間の長さが小さい順にループする(1~N)\nfor i in range(N): # 区間の長さ\n \n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in :\n \n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n# 区間の長さが小さい順にループする(1~N)\nfor i in range(N): # 区間の長さ\n \n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in range(1,len(A)):\n \n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n# 区間の長さが小さい順にループする(1~N)\nfor i in range(N): # 区間の長さ\n \n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in range(1,len(A)):\n A[i] += A[i - 1]\n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n# 区間の長さが小さい順にループする(1~N)\nfor i in range(N): # 区間の長さ\n \n\nprint(dp[0][-1])\n", "import sys\nreadline = sys.stdin.readline\n\n# 区間DP\n# dp[l][r] = 区間[l,r]のスライムを合体するときの最小コスト\n# dp[l][r] = min(dp[l][m] + dp[m + 1][r]) + sum(l,r)\n\nN = int(readline())\nA = list(map(int,readline().split()))\n\nA = [0] + A\nfor i in range(1,len(A)):\n A[i] += A[i - 1]\n\nINF = 10 ** 18\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n# 区間の長さが小さい順にループする(1~N)\nfor i in range(N): # 区間の長さ\n for l in range(N - i):\n r = l + i\n # lからrまでの区間で最小となるdp[l][m] + dp[m][r]の組み合わせを探す\n # lからrまでのAの累積和\n cums = A[r + 1] - A[l]\n for m in range(l,r):\n if dp[l][m] + dp[m + 1][r] + cums < dp[l][r]:\n dp[l][r] = dp[l][m] + dp[m + 1][r] + cums\n\nprint(dp[0][-1])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "submit()\n", "def rec:\n \n\nsubmit()\n", "def rec:\n \n\ndef submit():\n \n\nsubmit()\n", "def rec:\n \n\ndef submit():\n \n \nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\ndef submit():\n \n \nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \ndef submit():\n \n \nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \ndef submit():\n \n \n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \ndef submit():\n \n \n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \ndef submit():\n \n \n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n \n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \ndef submit():\n n = int(input())\n \n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n \n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n \n\n for i in :\n \n \n return cur_min\n\n\ndef submit():\n n = int(input())\n \n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n \n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n for i in :\n \n \n return cur_min\n\n\ndef submit():\n n = int(input())\n \n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n \n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n for i in :\n \n \n return cur_min\n\n\ndef submit():\n n = int(input())\n \n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n for i in :\n \n \n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if :\n \n\n for i in :\n \n \n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if :\n \n\n for i in :\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if :\n \n\n cur_min = float('inf')\n for i in :\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if :\n \n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if :\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in :\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n \n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if :\n return dp[s][e]\n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n \n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n \n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n \n test = lc + rc + ss[s][e]\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n \n test = lc + rc + ss[s][e]\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n \n test = lc + rc + ss[s][e]\n if :\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n \n rc = rec(a, i, e, dp, ss)\n test = lc + rc + ss[s][e]\n if :\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n lc = rec(a, s, i, dp, ss)\n rc = rec(a, i, e, dp, ss)\n test = lc + rc + ss[s][e]\n if :\n \n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n lc = rec(a, s, i, dp, ss)\n rc = rec(a, i, e, dp, ss)\n test = lc + rc + ss[s][e]\n if :\n cur_min = test\n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "def rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n lc = rec(a, s, i, dp, ss)\n rc = rec(a, i, e, dp, ss)\n test = lc + rc + ss[s][e]\n if test < cur_min:\n cur_min = test\n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n", "\n\ndef rec(a, s, e, dp, ss):\n if dp[s][e] > 0:\n return dp[s][e]\n\n if e - s == 1:\n dp[s][e] = 0\n return 0\n\n cur_min = float('inf')\n for i in range(s + 1, e):\n lc = rec(a, s, i, dp, ss)\n rc = rec(a, i, e, dp, ss)\n test = lc + rc + ss[s][e]\n if test < cur_min:\n cur_min = test\n dp[s][e] = cur_min\n return cur_min\n\n\ndef submit():\n n = int(input())\n a = list(map(int, input().split()))\n dp = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n ss = [[0 for _ in range(n + 1)] for _ in range(n + 1)]\n\n for i in range(n + 1):\n for j in range(i, n + 1):\n ss[i][j] = sum(a[i:j])\n\n print(rec(a, 0, n, dp, ss))\n\n\nsubmit()\n" ]
34
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = I()\na = IL()\n\n\n # data[i][j] = sum(a[i:j])\n\n\n#print(data)\n#print(dp)\n", "def SL(): \n\n\nN = I()\na = IL()\n\n\n # data[i][j] = sum(a[i:j])\n\n\n#print(data)\n#print(dp)\n", "def SL(): \n\n\nN = I()\na = IL()\n\n\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\n", "import sys\n\n\ndef SL(): \n\n\nN = I()\na = IL()\n\n\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\n", "import sys\n\n\ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\n", "import sys\n\n\nmod = 1000000007\n\n\ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\n", "import sys\n\n\nmod = 1000000007\n\n\ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\n\n\ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\n\ndef IL(): \ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\n # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\n\ndef IL(): \ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\n\n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\n\ndef IL(): \ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\n\nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\n\ndef IL(): \ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): \ndef SL(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\n\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): \ndef SL(): \ndef I(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): \ndef SL(): \ndef I(): \n\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): \ndef SL(): \ndef I(): \ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): \ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in :\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in range(N+1):\n \n\nfor i in :\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n \nfor i in range(N+1):\n \n\nfor i in range(2,N+1):\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n data[i][i+1] = a[i]\nfor i in range(N+1):\n \n\nfor i in range(2,N+1):\n \n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): \ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n data[i][i+1] = a[i]\nfor i in range(N+1):\n \n\nfor i in range(2,N+1):\n for j in range(N+1):\n if i+j <= N:\n tmp = MAX_INT\n for k in range(1,i):\n tmp = min(tmp,dp[j][k+j] + dp[k+j][i+j])\n dp[j][i+j] = tmp + data[j][i+j]\n else:\n break\n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): return input().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): \n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n data[i][i+1] = a[i]\nfor i in range(N+1):\n \n\nfor i in range(2,N+1):\n for j in range(N+1):\n if i+j <= N:\n tmp = MAX_INT\n for k in range(1,i):\n tmp = min(tmp,dp[j][k+j] + dp[k+j][i+j])\n dp[j][i+j] = tmp + data[j][i+j]\n else:\n break\n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): return input().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n data[i][i+1] = a[i]\nfor i in range(N+1):\n \n\nfor i in range(2,N+1):\n for j in range(N+1):\n if i+j <= N:\n tmp = MAX_INT\n for k in range(1,i):\n tmp = min(tmp,dp[j][k+j] + dp[k+j][i+j])\n dp[j][i+j] = tmp + data[j][i+j]\n else:\n break\n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n", "import sys\nMAX_INT = int(10e12)\nMIN_INT = -MAX_INT\nmod = 1000000007\nsys.setrecursionlimit(1000000)\ndef IL(): return list(map(int,input().split()))\ndef SL(): return input().split()\ndef I(): return int(sys.stdin.readline())\ndef S(): return input()\n\nN = I()\na = IL()\n\ndp = [[0]*(N+1) for i in range(N+1)]\ndata = [[0]*(N+1) for i in range(N+1)] # data[i][j] = sum(a[i:j])\nfor i in range(N):\n data[i][i+1] = a[i]\nfor i in range(N+1):\n for j in range(N+1):\n if i+j <= N:\n data[j][i+j] = sum(a[j:i+j])\n else:\n break\n\nfor i in range(2,N+1):\n for j in range(N+1):\n if i+j <= N:\n tmp = MAX_INT\n for k in range(1,i):\n tmp = min(tmp,dp[j][k+j] + dp[k+j][i+j])\n dp[j][i+j] = tmp + data[j][i+j]\n else:\n break\n\n#print(data)\n#print(dp)\nprint(dp[0][N])\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#print(prefixsum)\n", "#print(prefixsum)\n\nfor i in :\n", "#print(prefixsum)\n\nfor i in :\n \nprint(dp[0][-1])\n", "prefixsum=[0 for i in range(n+1)]\n\n#print(prefixsum)\n\nfor i in :\n \nprint(dp[0][-1])\n", "prefixsum=[0 for i in range(n+1)]\nfor i in :\n \n#print(prefixsum)\n\nfor i in :\n \nprint(dp[0][-1])\n", "A=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in :\n \n#print(prefixsum)\n\nfor i in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in :\n \n#print(prefixsum)\n\nfor i in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in :\n \n#print(prefixsum)\ndp=[[0 for i in range(n)] for j in range(n)]\nfor i in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in range(1,n+1):\n \n#print(prefixsum)\ndp=[[0 for i in range(n)] for j in range(n)]\nfor i in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in range(1,n+1):\n prefixsum[i]=A[i-1]+prefixsum[i-1]\n#print(prefixsum)\ndp=[[0 for i in range(n)] for j in range(n)]\nfor i in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in range(1,n+1):\n prefixsum[i]=A[i-1]+prefixsum[i-1]\n#print(prefixsum)\ndp=[[0 for i in range(n)] for j in range(n)]\nfor i in range(n-1,-1,-1):\n \nprint(dp[0][-1])\n", "n=int(input())\nA=list(int(i) for i in input().split())\nprefixsum=[0 for i in range(n+1)]\nfor i in range(1,n+1):\n prefixsum[i]=A[i-1]+prefixsum[i-1]\n#print(prefixsum)\ndp=[[0 for i in range(n)] for j in range(n)]\nfor i in range(n-1,-1,-1):\n for j in range(i,n):\n #starting index i and ending j\n #finally we need to print first row last column\n #which represent the cost of all the elements\n if i==j:\n dp[i][j]=0\n else:\n dp[i][j]=10**18\n for k in range(i,j):\n dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+prefixsum[j+1]-prefixsum[i])\nprint(dp[0][-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# n = 4\n# A = [10, 20, 30, 40]\n\nS = [0]\n", "n = int(input())\n\n# n = 4\n# A = [10, 20, 30, 40]\n\nS = [0]\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\n\nS = [0]\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\n\nS = [0]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n \n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n \n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n \n # S[r]-S[l]=sum(A[l:r])\n \n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n \n # S[r]-S[l]=sum(A[l:r])\n \n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n \n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n \n if :\n \n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n if r <= l+1:\n \n if :\n \n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n if r <= l+1:\n DP[l][r] = 0\n if :\n \n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n if r <= l+1:\n DP[l][r] = 0\n if :\n return DP[l][r]\n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef dp(l, r):\n # 区間[l,r)での最小コスト\n if r <= l+1:\n DP[l][r] = 0\n if DP[l][r] != None:\n return DP[l][r]\n # S[r]-S[l]=sum(A[l:r])\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(dp(0, n))\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = [[-1] * MAXN for _ in range(MAXN)]\n", "import sys\n\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\n", "import sys\ninput=sys.stdin.readline\n\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\n\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\n\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\n\n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\n\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\n\n\nMAXN = 405\n\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\n\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\n\nINF = 10 ** 20\nfrom import \n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\nMOD = 10**9+7\nINF = 10 ** 20\nfrom import \n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\nif :\n main()\n", "import sys\ninput=sys.stdin.readline\n\nMOD = 10**9+7\nINF = 10 ** 20\nfrom import \n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \nif :\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom import \n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \nif :\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \nif :\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \nif :\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n\ndef main():\n \n \nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \ndef main():\n \n \nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \ndef main():\n \n \n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n \n \ndef main():\n \n \n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n \n \ndef main():\n \n \n a[:n] = b\n\n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n \n \n dp[l][r] = ans\n \n\ndef main():\n \n \n a[:n] = b\n\n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n \n if l == 0:\n \n \n dp[l][r] = ans\n \n\ndef main():\n \n \n a[:n] = b\n\n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n \n\ndef main():\n \n \n a[:n] = b\n\n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n \n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n \n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if :\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if :\n \n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if :\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n \n a[:n] = b\n\n for i in :\n \n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if :\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in :\n \n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in :\n \n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n \n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n \n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n ans = INF\n for i in :\n \n if l == 0:\n ans += a[r - 1]\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n return 0\n ans = INF\n for i in :\n \n if l == 0:\n ans += a[r - 1]\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n \n if :\n \n return 0\n ans = INF\n for i in :\n \n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n return 0\n ans = INF\n for i in :\n \n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n return 0\n ans = INF\n for i in :\n ans = min(ans,dfs(l,i) + dfs(i,r))\n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n return 0\n ans = INF\n for i in range(l + 1,r):\n ans = min(ans,dfs(l,i) + dfs(i,r))\n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n \n return 0\n ans = INF\n for i in range(l + 1,r):\n ans = min(ans,dfs(l,i) + dfs(i,r))\n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n dp[l][r] = 0\n return 0\n ans = INF\n for i in range(l + 1,r):\n ans = min(ans,dfs(l,i) + dfs(i,r))\n if l == 0:\n ans += a[r - 1]\n else:\n \n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\nMOD = 10**9+7\nINF = 10 ** 20\nfrom functools import lru_cache\n\nMAXN = 405\na = [0] * MAXN\ndp = [[-1] * MAXN for _ in range(MAXN)]\ndef dfs(l,r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n dp[l][r] = 0\n return 0\n ans = INF\n for i in range(l + 1,r):\n ans = min(ans,dfs(l,i) + dfs(i,r))\n if l == 0:\n ans += a[r - 1]\n else:\n ans += a[r - 1] - a[l - 1]\n dp[l][r] = ans\n return ans\n\ndef main():\n n = int(input())\n b = list(map(int,input().split()))\n a[:n] = b\n\n for i in range(1,n):\n a[i] += a[i - 1]\n\n ans = dfs(0,n)\n print(ans)\nif __name__=='__main__':\n main()\n" ]
43
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# coding: utf-8\n\n\n # 2 <= n <= 400\n", "# coding: utf-8\n\n\nn = int(input()) # 2 <= n <= 400\n", "# coding: utf-8\n\n\nimport sys\n\n\nn = int(input()) # 2 <= n <= 400\n", "# coding: utf-8\n\n\nimport sys\ninput = sys.stdin.readline\n\n\nn = int(input()) # 2 <= n <= 400\n", "# coding: utf-8\n\nfrom import \nimport sys\ninput = sys.stdin.readline\n\n\nn = int(input()) # 2 <= n <= 400\n", "# coding: utf-8\n\nfrom import \nimport sys\ninput = sys.stdin.readline\n\n\nn = int(input()) # 2 <= n <= 400\n\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom import \nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n\nn = int(input()) # 2 <= n <= 400\n\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom import \nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n \nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n \n dp = [[float('inf')] * n for _ in range(n)]\n \n \nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n \n \nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n \n \n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n \n \n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n \n \n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n \n for i in :\n \n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n \n for i in :\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n \n \n for i in :\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n \n \n for i in range(n - 3, -1, -1):\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n dp[i][i] = 0\n \n for i in range(n - 3, -1, -1):\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n dp[i][i] = 0\n if :\n \n for i in range(n - 3, -1, -1):\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n dp[i][i] = 0\n if :\n dp[i][i + 1] = a[i] + a[i + 1]\n for i in range(n - 3, -1, -1):\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n", "# coding: utf-8\n\nfrom itertools import accumulate as accum\nimport sys\ninput = sys.stdin.readline\n\ndef f2(n, a):\n acsum = list(accum(a)) + [0]\n dp = [[float('inf')] * n for _ in range(n)]\n for i in range(n):\n dp[i][i] = 0\n if i + 1 != n:\n dp[i][i + 1] = a[i] + a[i + 1]\n for i in range(n - 3, -1, -1):\n for j in range(i + 2, n):\n c = float('inf')\n dpi = dp[i]\n for x in range(i, j):\n c_ = dpi[x] + dp[x + 1][j]\n if c_ < c:\n c = c_\n dpi[j] = c + acsum[j] - acsum[i - 1]\n return(dp[0][n - 1])\n\nn = int(input()) # 2 <= n <= 400\na = list(map(int, input().split()))\nprint(f2(n, a))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "A = list(map(int,input().split()))\n", "A = list(map(int,input().split()))\n\n\nfor d in :\n", "A = list(map(int,input().split()))\nfrom import \n\n\nfor d in :\n", "A = list(map(int,input().split()))\nfrom import \nS = [0] + list(accumulate(A))\n\nfor d in :\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import \nS = [0] + list(accumulate(A))\n\nfor d in :\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import \nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in :\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import \nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import accumulate\nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in :\n \nprint(dp[0][-1])\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import accumulate\nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in range(2,n+1):\n \nprint(dp[0][-1])\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom import accumulate\nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in range(2,n+1):\n for i in range(n-d+1):\n j = i+d\n# for i in range(n+1):\n# for j in range(i+1,n+1):\n val = float('inf')\n for k in range(i+1,j):\n val = min(val,dp[i][k]+dp[k][j])\n dp[i][j] += S[j]-S[i] + val\nprint(dp[0][-1])\n", "n=int(input())\nA = list(map(int,input().split()))\nfrom itertools import accumulate\nS = [0] + list(accumulate(A))\ndp = [[0]*(n+1) for _ in range(n+1)]\nfor d in range(2,n+1):\n for i in range(n-d+1):\n j = i+d\n# for i in range(n+1):\n# for j in range(i+1,n+1):\n val = float('inf')\n for k in range(i+1,j):\n val = min(val,dp[i][k]+dp[k][j])\n dp[i][j] += S[j]-S[i] + val\nprint(dp[0][-1])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "sys.setrecursionlimit(10**7)\n", "sys.setrecursionlimit(10**7)\n\n\nprint(ans)\n", "sys.setrecursionlimit(10**7)\n\n\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\n\nprint(ans)\n", "sys.setrecursionlimit(10**7)\n\n\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\n\nprint(ans)\n", "import sys\n\nsys.setrecursionlimit(10**7)\n\n\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\n\nprint(ans)\n", "import sys\n\nsys.setrecursionlimit(10**7)\n\n\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\n\nprint(ans)\n", "import sys\n\nsys.setrecursionlimit(10**7)\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\n\nprint(ans)\n", "import sys\n\nsys.setrecursionlimit(10**7)\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom import \nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\n\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom import \nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom import \nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import \nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \n res = float(\"inf\")\n \n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \n res = float(\"inf\")\n \n dp[i][j] = res\n \nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n \n \n res = float(\"inf\")\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n \n \n res = float(\"inf\")\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if :\n \n \n res = float(\"inf\")\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if :\n \n \n res = float(\"inf\")\n for m in :\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if :\n \n if j-i == 1:\n \n res = float(\"inf\")\n for m in :\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if :\n \n if j-i == 1:\n \n res = float(\"inf\")\n for m in range(i, j):\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n \n if j-i == 1:\n \n res = float(\"inf\")\n for m in range(i, j):\n \n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n \n if j-i == 1:\n \n res = float(\"inf\")\n for m in range(i, j):\n res = min(res, f(i,m)+f(m+1,j)+(B[j]-B[i-1]))\n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n \n if j-i == 1:\n \n \n res = float(\"inf\")\n for m in range(i, j):\n res = min(res, f(i,m)+f(m+1,j)+(B[j]-B[i-1]))\n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n return dp[i][j]\n if j-i == 1:\n \n \n res = float(\"inf\")\n for m in range(i, j):\n res = min(res, f(i,m)+f(m+1,j)+(B[j]-B[i-1]))\n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n return dp[i][j]\n if j-i == 1:\n \n return dp[i][j]\n res = float(\"inf\")\n for m in range(i, j):\n res = min(res, f(i,m)+f(m+1,j)+(B[j]-B[i-1]))\n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n", "import sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\nn = int(input())\nA = [0] + list(map(int, input().split()))\nB = tuple(accumulate(A))\ndp = [[-1]*(n+1) for _ in range(n+1)]\ndef f(i, j):\n if i == j:\n return 0\n if dp[i][j] != -1:\n return dp[i][j]\n if j-i == 1:\n dp[i][j] = A[i]+A[j]\n return dp[i][j]\n res = float(\"inf\")\n for m in range(i, j):\n res = min(res, f(i,m)+f(m+1,j)+(B[j]-B[i-1]))\n dp[i][j] = res\n return res\nans = f(1, n)\nprint(ans)\n" ]
29
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "sm = 0\n", "sm = 0\n\n\nfor length in :\n", "dp = [[0 for _ in range(n)] for _ in range(n)]\n\nsm = 0\n\n\nfor length in :\n", "dp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\n\n\nfor length in :\n", "s = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\n\n\nfor length in :\n", "s = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n\nfor length in :\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n\nfor length in :\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n\nfor length in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \ndef findMin:\n \nfor length in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \ndef findMin:\n \n \nfor length in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \ndef findMin:\n \n \nfor length in :\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n \ndef findMin:\n \n \nfor length in :\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n \ndef findMin:\n \n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n \n \ndef findMin(left,right):\n \n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n \ndef findMin(left,right):\n \n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n \ndef findMin(left,right):\n dp[left][right]=dp[left][left]+dp[left+1][right]+psum[right+1]-psum[left]\n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n psum[i+1]=sm\ndef findMin(left,right):\n dp[left][right]=dp[left][left]+dp[left+1][right]+psum[right+1]-psum[left]\n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n psum[i+1]=sm\ndef findMin(left,right):\n dp[left][right]=dp[left][left]+dp[left+1][right]+psum[right+1]-psum[left]\n for i in :\n \nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n psum[i+1]=sm\ndef findMin(left,right):\n dp[left][right]=dp[left][left]+dp[left+1][right]+psum[right+1]-psum[left]\n for i in :\n dp[left][right] = min(dp[left][right],dp[left][i]+dp[i+1][right]+psum[right+1]-psum[left])\nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n", "n = int(input())\ns = list(map(int,input().split()))\ndp = [[0 for _ in range(n)] for _ in range(n)]\npsum = [0 for _ in range(n+1)]\nsm = 0\nfor i in range(n):\n sm +=s[i]\n psum[i+1]=sm\ndef findMin(left,right):\n dp[left][right]=dp[left][left]+dp[left+1][right]+psum[right+1]-psum[left]\n for i in range(left+1,right):\n dp[left][right] = min(dp[left][right],dp[left][i]+dp[i+1][right]+psum[right+1]-psum[left])\nfor length in range(2,n+1):\n for l in range(n-length+1):\n r = l+length-1\n findMin(l,r)\n\nprint(dp[0][n-1])\n" ]
21
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0]*(N+1)\n for i, x in enumerate(a):\n s[i+1] = s[i]+a[i]\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in range(i, j):\n cost = DP[k]+dp[k+1][j]\n if D > cost:\n D = cost\n DP[j] = D + tmp\n print(dp[0][N-1])\nmain()\n" ]
2
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(solve(N,A))\n", "N = int(input())\n\n\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, , product, , \n\n\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, , product, , \n\ndef solve(N,A):\n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, , product, , combinations\n\ndef solve(N,A):\n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, , product, , combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, accumulate, product, , combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n for k in :\n \n \nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n \n for k in :\n \n \n return ans\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n cum = [0]+list(accumulate(A))\n for k in :\n \n \n return ans\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n #dp[i][j] i人目まででj個を分ける場合の数\n cum = [0]+list(accumulate(A))\n for k in :\n \n ans = dp[0][N-1]\n return ans\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n dp = [[0]*N for _ in range(N)] #dp[i][j] i人目まででj個を分ける場合の数\n cum = [0]+list(accumulate(A))\n for k in :\n \n ans = dp[0][N-1]\n return ans\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n dp = [[0]*N for _ in range(N)] #dp[i][j] i人目まででj個を分ける場合の数\n cum = [0]+list(accumulate(A))\n for k in :\n for i in range(N-k):\n j = i + k\n dp[i][j] = cum[j+1]-cum[i] + min([dp[i][i+l]+dp[i+l+1][j] for l in range(k)])\n ans = dp[0][N-1]\n return ans\nprint(solve(N,A))\n", "N = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import groupby, accumulate, product, permutations, combinations\n\ndef solve(N,A):\n dp = [[0]*N for _ in range(N)] #dp[i][j] i人目まででj個を分ける場合の数\n cum = [0]+list(accumulate(A))\n for k in range(1,N):\n for i in range(N-k):\n j = i + k\n dp[i][j] = cum[j+1]-cum[i] + min([dp[i][i+l]+dp[i+l+1][j] for l in range(k)])\n ans = dp[0][N-1]\n return ans\nprint(solve(N,A))\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "s = [0] * (n+1)\n", "s = [0] * (n+1)\n\nfor l in :\n", "a = list(map(int, input().split()))\n\ns = [0] * (n+1)\n\nfor l in :\n", "a = list(map(int, input().split()))\n\ns = [0] * (n+1)\nfor i in range(n):\n \nfor l in :\n", "a = list(map(int, input().split()))\n\ns = [0] * (n+1)\nfor i in range(n):\n \nfor l in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\ns = [0] * (n+1)\nfor i in range(n):\n \nfor l in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (n+1) for _ in range(n+1)]\ns = [0] * (n+1)\nfor i in range(n):\n \nfor l in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (n+1) for _ in range(n+1)]\ns = [0] * (n+1)\nfor i in range(n):\n \nfor l in range(2, n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (n+1) for _ in range(n+1)]\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\nfor l in range(2, n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (n+1) for _ in range(n+1)]\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n dp[i][j] = s[j] - s[i] + min(dp[i][k] + dp[k][j] for k in range(i+1, j))\nprint(dp[0][n])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# coding: utf-8\n", "# coding: utf-8\n\n\nd=[0]+list(itertools.accumulate(map(int,input().split())))\n", "# coding: utf-8\n\n\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n", "# coding: utf-8\n\n\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\n\n\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\n\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\n\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\n\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\n\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \n \nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \n if :\n \n \nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \n if :\n \n \n memo[l][r]=mn\n \nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \n if :\n \n mn=10**18\n \n memo[l][r]=mn\n \nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n \n if :\n \n mn=10**18\n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if :\n \n mn=10**18\n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if :\n \n mn=10**18\n for i in :\n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n \n mn=10**18\n for i in :\n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n \n mn=10**18\n for i in :\n \n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n return memo[l][r]\n mn=10**18\n for i in :\n \n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n return memo[l][r]\n mn=10**18\n for i in range(l+1,r):\n \n \n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n return memo[l][r]\n mn=10**18\n for i in range(l+1,r):\n \n if mn>cost:\n mn=cost\n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n", "# coding: utf-8\nimport itertools\nimport sys\nsys.setrecursionlimit(100000)\ninput=lambda : sys.stdin.readline().rstrip('\\n')\n\nn=int(input())\nd=[0]+list(itertools.accumulate(map(int,input().split())))\nmemo=[[-1 for i in range(401)]for i in range(401)]\ndef split_slime(l,r):\n if l+1==r:\n return 0\n if memo[l][r]!=-1:\n return memo[l][r]\n mn=10**18\n for i in range(l+1,r):\n cost=(d[i]-d[l])+(d[r]-d[i])+split_slime(l,i)+split_slime(i,r)\n if mn>cost:\n mn=cost\n memo[l][r]=mn\n return memo[l][r]\nprint(split_slime(0,n))\n" ]
24
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# memo[frm][to] = メモ化\n", "cum_sum = [0] * (n + 1)\n\n\n# memo[frm][to] = メモ化\n", "inf = float('inf')\n\n\ncum_sum = [0] * (n + 1)\n\n\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\n\ncum_sum = [0] * (n + 1)\n\n\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\n\ncum_sum = [0] * (n + 1)\n\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\n\ncum_sum = [0] * (n + 1)\nfor i, aa in :\n \n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\nn = int(input())\n\n\ncum_sum = [0] * (n + 1)\nfor i, aa in :\n \n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in :\n \n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n", "def rec:\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in :\n \n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec:\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in :\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec:\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec:\n \n \ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \n \ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \n \n memo[frm][to] = res\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n \n\n memo[frm][to] = res\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n \n\n if :\n \n\n memo[frm][to] = res\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n \n\n if :\n \n\n for mid in :\n \n \n memo[frm][to] = res\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n \n\n if :\n \n\n for mid in :\n \n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n \n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n \n\n if :\n \n\n for mid in :\n \n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if :\n return 0\n\n if :\n \n\n for mid in :\n \n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if :\n return 0\n\n if :\n \n\n res = inf\n for mid in :\n \n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if :\n return 0\n\n if :\n \n\n res = inf\n for mid in :\n res = min(res, rec(frm, mid) + rec(mid, to))\n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if to - frm == 1:\n return 0\n\n if :\n \n\n res = inf\n for mid in :\n res = min(res, rec(frm, mid) + rec(mid, to))\n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if to - frm == 1:\n return 0\n\n if :\n return memo[frm][to]\n\n res = inf\n for mid in :\n res = min(res, rec(frm, mid) + rec(mid, to))\n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if to - frm == 1:\n return 0\n\n if :\n return memo[frm][to]\n\n res = inf\n for mid in range(frm + 1, to):\n res = min(res, rec(frm, mid) + rec(mid, to))\n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n", "def rec(frm, to):\n \"\"\"return: [frm,to)の合体コスト最小値\"\"\"\n if to - frm == 1:\n return 0\n\n if memo[frm][to]:\n return memo[frm][to]\n\n res = inf\n for mid in range(frm + 1, to):\n res = min(res, rec(frm, mid) + rec(mid, to))\n res += cum_sum[to] - cum_sum[frm]\n\n memo[frm][to] = res\n return res\n\n\ninf = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ncum_sum = [0] * (n + 1)\nfor i, aa in enumerate(a):\n cum_sum[i + 1] = cum_sum[i] + aa\n\nmemo = [[None] * (n + 1) for _ in range(n + 1)]\n# memo[frm][to] = メモ化\n\nprint(rec(0, n))\n" ]
27
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#!/usr/bin/env python3\n\n\n ;\n ;ans = 0 ; ;pro = 1\n\n\n# print(dp)\n", "#!/usr/bin/env python3\n\n\n ;\n ;ans = 0 ; ;pro = 1\n\n\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\n\n\n ;\n ;ans = 0 ; ;pro = 1\n\n\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\n\n ;\n ;ans = 0 ; ;pro = 1\n\n\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\n\n ;\n ;ans = 0 ; ;pro = 1\n\n\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\n\n ;\n ;ans = 0 ;count = 0 ;pro = 1\n\n\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\n ;\n ;ans = 0 ;count = 0 ;pro = 1\n\n\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\n ;\n ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\n ;mod = 10**9+7\n ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \n\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\n ;mod = 10**9+7\n ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\n ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\ninf = float('inf') ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in :\n \nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\ninf = float('inf') ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in range(2,n+1):\n \nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , , bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\ninf = float('inf') ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in range(2,n+1):\n for i in range(n+1-length):\n j = i+length\n S = sum(A[i:j])\n tmp = inf\n for k in range(i+1,j):\n tmp = min(tmp,dp[i][k] + dp[k][j])\n dp[i][j] = tmp + S\nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, , collections, bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\ninf = float('inf') ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in range(2,n+1):\n for i in range(n+1-length):\n j = i+length\n S = sum(A[i:j])\n tmp = inf\n for k in range(i+1,j):\n tmp = min(tmp,dp[i][k] + dp[k][j])\n dp[i][j] = tmp + S\nprint(dp[0][n])\n# print(dp)\n", "#!/usr/bin/env python3\nimport sys, math, itertools, collections, bisect\ninput = lambda: sys.stdin.buffer.readline().rstrip().decode('utf-8')\ninf = float('inf') ;mod = 10**9+7\nmans = inf ;ans = 0 ;count = 0 ;pro = 1\n\nn = int(input())\nA = list(map(int,input().split()))\ndp = [[0]*(n+1) for i in range(n)]\nfor length in range(2,n+1):\n for i in range(n+1-length):\n j = i+length\n S = sum(A[i:j])\n tmp = inf\n for k in range(i+1,j):\n tmp = min(tmp,dp[i][k] + dp[k][j])\n dp[i][j] = tmp + S\nprint(dp[0][n])\n# print(dp)\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(n):\n", "a = list(map(int, input().split()))\n\n\nfor i in range(n):\n", "a = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\n\nfor i in range(n):\n", "a = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\n\nfor i in range(n):\n \n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n \n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n \n\nfor k in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n \n\nfor k in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n \n\nfor k in :\n for i in range(n-k+1):\n mini = 10**15\n for j in range(i+1, i+k):\n mini = min(dp[i][j] + dp[j][i+k], mini)\n dp[i][i+k] = mini + a_accum[i+k]-a_accum[i]\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n \n\nfor k in range(2, n+1):\n for i in range(n-k+1):\n mini = 10**15\n for j in range(i+1, i+k):\n mini = min(dp[i][j] + dp[j][i+k], mini)\n dp[i][i+k] = mini + a_accum[i+k]-a_accum[i]\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[0]*(n+1) for i in range(n+1)]\n\na_accum = [0]\nfor i in range(n):\n a_accum.append(a_accum[-1] + a[i])\n\nfor k in range(2, n+1):\n for i in range(n-k+1):\n mini = 10**15\n for j in range(i+1, i+k):\n mini = min(dp[i][j] + dp[j][i+k], mini)\n dp[i][i+k] = mini + a_accum[i+k]-a_accum[i]\nprint(dp[0][n])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "now = 0\n\n\n#print(a_data)\n", "now = 0\n\n\n#print(a_data)\n\n\nans = solve(0,n)\n", "sys.setrecursionlimit(10**8)\n\n\nnow = 0\n\n\n#print(a_data)\n\n\nans = solve(0,n)\n", "sys.setrecursionlimit(10**8)\n\n\nnow = 0\n\n\n#print(a_data)\n\n\nans = solve(0,n)\nprint(ans)\n", "sys.setrecursionlimit(10**8)\n\n\nnow = 0\nfor i in a:\n \n\n#print(a_data)\n\n\nans = solve(0,n)\nprint(ans)\n", "sys.setrecursionlimit(10**8)\n\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\n#print(a_data)\n\n\nans = solve(0,n)\nprint(ans)\n", "sys.setrecursionlimit(10**8)\n\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\n#print(a_data)\ndef solve(i,j):\n \n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\n#print(a_data)\ndef solve(i,j):\n \n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\n\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n \nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n \nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n \n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n \n dp[i][j] = a_data[j] - a_data[i]\n \n \n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n \n \n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n \n \n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n \n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n \n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n \n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n \n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n \n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n return dp[i][j]\n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n return dp[i][j]\n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in :\n \n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n return dp[i][j]\n if i+1 == j:\n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if :\n return dp[i][j]\n if i+1 == j:\n \n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n \n \n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n \n return dp[i][j]\n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n \n return dp[i][j]\n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n t = solve(k,j)\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n dp[i][j] = 0\n return dp[i][j]\n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n \n t = solve(k,j)\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n dp[i][j] = 0\n return dp[i][j]\n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n s = solve(i,k)\n t = solve(k,j)\n \n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n", "import sys\nsys.setrecursionlimit(10**8)\nn = int(input())\na = list(map(int,input().split()))\n\na_data = [0]\nnow = 0\nfor i in a:\n now += i\n a_data.append(now)\n\ndp = [[10**18 for _ in range(n+1)] for i in range(n)]\n#print(a_data)\ndef solve(i,j):\n if dp[i][j] != 10**18:\n return dp[i][j]\n if i+1 == j:\n dp[i][j] = 0\n return dp[i][j]\n dp[i][j] = a_data[j] - a_data[i]\n x = 10**18\n for k in range(i+1,j):\n s = solve(i,k)\n t = solve(k,j)\n x = min(x,s+t)\n dp[i][j] += x\n return dp[i][j]\n\nans = solve(0,n)\nprint(ans)\n" ]
32
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "sum_a = [[0] * n for _ in range(n) ]\n", "n = int(input())\n\n\nsum_a = [[0] * n for _ in range(n) ]\n", "n = int(input())\n\n\nsum_a = [[0] * n for _ in range(n) ]\n\n\nfor i in :\n", "n = int(input())\n\n\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in :\n", "n = int(input())\n\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in :\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in :\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in :\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n\nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n \n \nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n sum_a[i][i] = a[i]\n \n\nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n sum_a[i][i] = a[i]\n for j in :\n \n\nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n sum_a[i][i] = a[i]\n for j in range(i+1,n):\n \n\nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[0] * n for _ in range(n) ]\nsum_a = [[0] * n for _ in range(n) ]\n\nfor i in range(n):\n sum_a[i][i] = a[i]\n for j in range(i+1,n):\n sum_a[i][j] = sum_a[i][j-1] + a[j]\n\nfor i in range(1,n):\n for head in range(n-i):\n tail = head + i\n temp = 10**20\n for j in range(i):\n temp = min(temp, (dp[head][head+j] + dp[head+j+1][tail] + sum_a[head][tail]) )\n dp[head][tail] = temp\n\nprint(dp[0][n-1])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "main()\n", "import sys\n\n\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\n\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n \n \n a+=[0]\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n \n \n for i in :\n a+=[0]\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n \n \n d=[None]*(n*n+1)\n for i in :\n a+=[0]\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n \n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in :\n a+=[0]\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n \n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in :\n a+=[0]\n \nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n \n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in :\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n \n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n \n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):a[i+1]+=a[i]\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n k=l*n+r\n \n \n return t\n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):a[i+1]+=a[i]\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n k=l*n+r\n \n \n d[k]=t=min(s(l,i)+s(i,r)for i in range(l+1,r))+a[r-1]-a[l-1]\n return t\n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):a[i+1]+=a[i]\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n k=l*n+r\n \n if r-l<2:return 0\n d[k]=t=min(s(l,i)+s(i,r)for i in range(l+1,r))+a[r-1]-a[l-1]\n return t\n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):a[i+1]+=a[i]\n a+=[0]\n print(s(0,n))\nmain()\n", "import sys\nsys.setrecursionlimit(10**7)\ndef main():\n def s(l,r):\n k=l*n+r\n if d[k]:return d[k]\n if r-l<2:return 0\n d[k]=t=min(s(l,i)+s(i,r)for i in range(l+1,r))+a[r-1]-a[l-1]\n return t\n n,*a=map(int,open(0).read().split())\n d=[None]*(n*n+1)\n for i in range(n-1):a[i+1]+=a[i]\n a+=[0]\n print(s(0,n))\nmain()\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "import itertools\n", "import itertools\n\n\nx=float('inf')\n", "import itertools\n\n\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import itertools\ninput = sys.stdin.readline\n\n\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import itertools\ninput = sys.stdin.readline\n\n\na=list(map(int, input().split()))\n\n\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import itertools\ninput = sys.stdin.readline\n\n\na=list(map(int, input().split()))\n\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\na=list(map(int, input().split()))\n\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\n\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\n\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\nfor i in :\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\nb=itertools.accumulate(a)\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\nfor i in :\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\nb=itertools.accumulate(a)\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\nfor i in :\n \nprint(dp[0][-1])\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\nb=itertools.accumulate(a)\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\nfor i in range(n-1,-1,-1):\n \nprint(dp[0][-1])\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\n\nn=int(input())\na=list(map(int, input().split()))\nb=itertools.accumulate(a)\nb=[0]+list(b)\ndp=[[0]*(n) for i in range(n)]\n\nx=float('inf')\nfor i in range(n-1,-1,-1):\n for j in range(i+1,n):\n if j>=i+2:\n for k in range(i,j):\n x=min(dp[i][k]+dp[k+1][j],x)\n dp[i][j]=x+(b[j+1]-b[i])\n x=float('inf')\n else:\n dp[i][j]=b[j+1]-b[i]\nprint(dp[0][-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(N):\n", "import sys\n\n\nfor i in range(N):\n", "import sys\n\n\nfor i in range(N):\n \n\nfor i in range(N):\n", "import sys\n\n\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n", "import sys\n\n\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\n\n\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\n\n\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \n\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef cal(i,j):\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef cal(i,j):\n \n\nprint(cal(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef cal(i,j):\n if dp[i][j] != -1:\n return dp[i][j]\n else:\n res = INF\n for k in range(i,j):\n res = min(res,cal(i,k)+cal(k+1,j)+cum[j]-cum[i-1])\n dp[i][j] = res\n return res\n\nprint(cal(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n \ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\ndef cal(i,j):\n if dp[i][j] != -1:\n return dp[i][j]\n else:\n res = INF\n for k in range(i,j):\n res = min(res,cal(i,k)+cal(k+1,j)+cum[j]-cum[i-1])\n dp[i][j] = res\n return res\n\nprint(cal(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**9)\nINF = float('inf')\nN = int(input())\na = list(map(int,input().split()))\ncum = [0]*(N+1)\nfor i in range(N):\n cum[i] = cum[i-1]+a[i]\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\ndef cal(i,j):\n if dp[i][j] != -1:\n return dp[i][j]\n else:\n res = INF\n for k in range(i,j):\n res = min(res,cal(i,k)+cal(k+1,j)+cum[j]-cum[i-1])\n dp[i][j] = res\n return res\n\nprint(cal(0,N-1))\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "C=[0]\n", "C=[0]\n\n\nprint(f(0,N-1))\n", "C=[0]\n\n\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\n\nC=[0]\n\n\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\n\nC=[0]\n\n\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\n\nC=[0]\nfor i in range(N):\n \n\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\n\nC=[0]\nfor i in range(N):\n \nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n \nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n \nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n if :\n \n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n \n if :\n \n for i in :\n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n if l==r:\n return 0\n if :\n \n for i in :\n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n if l==r:\n return 0\n if :\n \n for i in range(l+1,r+1):\n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n if l==r:\n return 0\n if :\n return DP[l][r]\n for i in range(l+1,r+1):\n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n if l==r:\n return 0\n if DP[l][r]!=INF:\n return DP[l][r]\n for i in range(l+1,r+1):\n \n return DP[l][r]\n\nprint(f(0,N-1))\n", "N=int(input())\nA=list(map(int,input().split()))\nC=[0]\nfor i in range(N):\n C.append(C[i]+A[i])\nINF=10**18\nDP=[[INF]*N for i in range(N)]\ndef f(l,r):\n if l==r:\n return 0\n if DP[l][r]!=INF:\n return DP[l][r]\n for i in range(l+1,r+1):\n DP[l][r]=min(DP[l][r],f(l,i-1)+f(i,r)+C[r+1]-C[l])\n return DP[l][r]\n\nprint(f(0,N-1))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in :\n", "N = int(input())\n\n\nfor i in :\n", "N = int(input())\n\n\nfor i in :\n \n\nfor d in :\n", "N = int(input())\n\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n", "N = int(input())\nA = list(map(int,input().split()))\n\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n", "N = int(input())\nA = list(map(int,input().split()))\n\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n \n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n \n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n \n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in :\n for i in range(N-d) :\n for cut in range(i, i+d) :\n dp[i][i+d] = min(dp[i][i+d], dp[i][cut] + dp[cut+1][i+d] + cA[i+d+1] - cA[i])\n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in :\n \n\nfor d in range(1,N) :\n for i in range(N-d) :\n for cut in range(i, i+d) :\n dp[i][i+d] = min(dp[i][i+d], dp[i][cut] + dp[cut+1][i+d] + cA[i+d+1] - cA[i])\n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in range(1,N+1) :\n \n\nfor d in range(1,N) :\n for i in range(N-d) :\n for cut in range(i, i+d) :\n dp[i][i+d] = min(dp[i][i+d], dp[i][cut] + dp[cut+1][i+d] + cA[i+d+1] - cA[i])\n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in range(1,N+1) :\n \n\n dp[i-1][i-1] = 0\n\nfor d in range(1,N) :\n for i in range(N-d) :\n for cut in range(i, i+d) :\n dp[i][i+d] = min(dp[i][i+d], dp[i][cut] + dp[cut+1][i+d] + cA[i+d+1] - cA[i])\n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\nA = list(map(int,input().split()))\n\ndp = [[10**18]*N for i in range(N)]\n\ncA = [0]*(N+1)\nfor i in range(1,N+1) :\n cA[i] = cA[i-1] + A[i-1]\n\n dp[i-1][i-1] = 0\n\nfor d in range(1,N) :\n for i in range(N-d) :\n for cut in range(i, i+d) :\n dp[i][i+d] = min(dp[i][i+d], dp[i][cut] + dp[cut+1][i+d] + cA[i+d+1] - cA[i])\n\nans = dp[0][N-1]\n\nprint(ans)\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# n = 4\n# A = [10, 20, 30, 40]\n\n\nS = [0]\n", "# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\n\nS = [0]\n", "# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n", "# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n\n\nprint(f(0, n))\n", "n = int(input())\n\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\n\n\ndef f(l, r):\n \n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n \n\ndef f(l, r):\n \n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n \n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n \n \nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n \nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n \n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n \n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n \n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n if :\n \n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n if DP[l][r] != None:\n \n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n \n if DP[l][r] != None:\n return DP[l][r]\n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(f(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\n# n = 4\n# A = [10, 20, 30, 40]\ninf = 10**20\nDP = [[None for r in range(n+1)] for l in range(n)]\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\n\n\ndef f(l, r):\n if r <= l+1:\n DP[l][r] = 0\n if DP[l][r] != None:\n return DP[l][r]\n DP[l][r] = S[r]-S[l]+min([f(l, i)+f(i, r) for i in range(l+1, r)])\n return DP[l][r]\n\n\nprint(f(0, n))\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n", "# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\n\nprint(dfs(0, N - 1))\n", "A = list(map(int, input().split()))\n\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nA = list(map(int, input().split()))\n\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\nfor i in range(N):\n \n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\n\nfor i in range(N):\n \n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\n\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n \n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom import \n\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n \n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom import \nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n \n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n \n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n \n\n ret = float('inf')\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n \n\n ret = float('inf')\n for x in :\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n\n ret = float('inf')\n for x in :\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n\n ret = float('inf')\n for x in :\n \n\n dp[i][j] = ret\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n\n if :\n \n\n ret = float('inf')\n for x in :\n \n\n dp[i][j] = ret\n \n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n\n if :\n \n\n ret = float('inf')\n for x in :\n \n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n\n if :\n \n\n ret = float('inf')\n for x in range(i, j):\n \n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n \n if :\n \n\n ret = float('inf')\n for x in range(i, j):\n \n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n \n if :\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n \n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if :\n \n \n if :\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n ret = min(ret, dfs(i, x) + dfs(x + 1, j) + acc[j + 1] - acc[i])\n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if j - i == 1:\n \n \n if :\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n ret = min(ret, dfs(i, x) + dfs(x + 1, j) + acc[j + 1] - acc[i])\n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if j - i == 1:\n \n \n if dp[i][j] is not None:\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n ret = min(ret, dfs(i, x) + dfs(x + 1, j) + acc[j + 1] - acc[i])\n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if j - i == 1:\n dp[i][j] = A[i] + A[j]\n \n\n if dp[i][j] is not None:\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n ret = min(ret, dfs(i, x) + dfs(x + 1, j) + acc[j + 1] - acc[i])\n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n", "import sys\nfrom itertools import accumulate\nsys.setrecursionlimit(10 ** 9)\n\nN = int(input())\nA = list(map(int, input().split()))\nacc = [0] + list(accumulate(A))\n\n# dp[i][j] := 区間[i, j]のスライムたちを1匹にまとめるのに必要なコスト\ndp = [[None] * N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef dfs(i, j):\n if j - i == 1:\n dp[i][j] = A[i] + A[j]\n return dp[i][j]\n\n if dp[i][j] is not None:\n return dp[i][j]\n\n ret = float('inf')\n for x in range(i, j):\n ret = min(ret, dfs(i, x) + dfs(x + 1, j) + acc[j + 1] - acc[i])\n\n dp[i][j] = ret\n return ret\n\n\nprint(dfs(0, N - 1))\n" ]
29
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "main()\n", "import sys\n\n\nmain()\n", "import sys\n\n\nint1 = lambda x: int(x) - 1\n\n\nmain()\n", "import sys\n\n\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\n\nmain()\n", "import sys\n\n\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n \n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\n\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n \n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n \n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n \n\n cumsum_aa = [0]\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n \n\n cumsum_aa = [0]\n for i, a in :\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n cumsum_aa = [0]\n for i, a in :\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n aa = list(map(int, input().split()))\n \n cumsum_aa = [0]\n for i, a in :\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in :\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in :\n \n \nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in :\n \n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n \n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n \n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n \n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n \n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n \n \n res += cumsum_aa[r] - cumsum_aa[l]\n \n \n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n res += cumsum_aa[r] - cumsum_aa[l]\n \n \n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n if :\n \n \n res += cumsum_aa[r] - cumsum_aa[l]\n \n \n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n if :\n \n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n \n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n if :\n \n res = 10 ** 16\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n \n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n if :\n \n res = 10 ** 16\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n \n if :\n \n res = 10 ** 16\n for m in :\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n if :\n return 0\n if :\n \n res = 10 ** 16\n for m in :\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n \n if l + 1 == r:\n return 0\n if :\n \n res = 10 ** 16\n for m in :\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if :\n \n res = 10 ** 16\n for m in :\n \n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if :\n \n res = 10 ** 16\n for m in :\n res = min(res, cost(l, m) + cost(m, r))\n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if :\n \n res = 10 ** 16\n for m in range(l + 1, r):\n res = min(res, cost(l, m) + cost(m, r))\n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if :\n return dp[l][r]\n res = 10 ** 16\n for m in range(l + 1, r):\n res = min(res, cost(l, m) + cost(m, r))\n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if :\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if dp[l][r] != -1:\n return dp[l][r]\n res = 10 ** 16\n for m in range(l + 1, r):\n res = min(res, cost(l, m) + cost(m, r))\n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n", "import sys\n\nsys.setrecursionlimit(10 ** 6)\ninput = sys.stdin.readline\nint1 = lambda x: int(x) - 1\np2D = lambda x: print(*x, sep=\"\\n\")\n\ndef main():\n def cost(l, r):\n if l + 2 == r:\n return aa[l] + aa[l + 1]\n if l + 1 == r:\n return 0\n if dp[l][r] != -1:\n return dp[l][r]\n res = 10 ** 16\n for m in range(l + 1, r):\n res = min(res, cost(l, m) + cost(m, r))\n res += cumsum_aa[r] - cumsum_aa[l]\n dp[l][r] = res\n return res\n\n n = int(input())\n aa = list(map(int, input().split()))\n dp = [[-1] * (n + 1) for _ in range(n + 1)]\n cumsum_aa = [0]\n for i, a in enumerate(aa):\n cumsum_aa.append(cumsum_aa[i] + a)\n print(cost(0, n))\n\nmain()\n" ]
33
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "s = [0]\n", "n = int(input())\n\n\ns = [0]\n", "n = int(input())\n\n\ns = [0]\n\n\nfor i in :\n", "n = int(input())\n\n\ns = [0]\nfor i in a:\n \n\nfor i in :\n", "n = int(input())\n\n\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n \n\nfor i in :\n", "n = int(input())\n\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n \n\nfor i in :\n", "n = int(input())\na = [int(i) for i in input().split()]\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n \n\nfor i in :\n", "n = int(input())\na = [int(i) for i in input().split()]\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n \n\nfor i in :\n \n\nprint(dp[-1][0])\n", "n = int(input())\na = [int(i) for i in input().split()]\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n s.append(s[-1]+i)\n\n\nfor i in :\n \n\nprint(dp[-1][0])\n", "n = int(input())\na = [int(i) for i in input().split()]\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n s.append(s[-1]+i)\n\n\nfor i in range(1, n):\n \n\nprint(dp[-1][0])\n", "n = int(input())\na = [int(i) for i in input().split()]\n\ndp = [[10 ** 18] * n for _ in range(n)]\ndp[0] = [0] * n\n\ns = [0]\nfor i in a:\n s.append(s[-1]+i)\n\n\nfor i in range(1, n):\n for j in range(n):\n if i + j < n:\n b = 10 ** 18\n for k in range(i):\n l = i - k - 1\n b = min(b, dp[k][j]+dp[l][j+k+1])\n dp[i][j] = b + s[i+j+1]-s[j]\n\nprint(dp[-1][0])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i][j] [i,j)の答え ans = dp[0][n]\n", "# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n", "# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \n\nprint(dp[0][n])\n", "cul = [0]\n\n\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \n\nprint(dp[0][n])\n", "cul = [0]\n\n\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n \n\nprint(dp[0][n])\n", "a = list(map(int,input().split()))\n\ncul = [0]\n\n\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n \n\nprint(dp[0][n])\n", "a = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n \n\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n \n\nprint(dp[0][n])\n", "a = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n \n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n \n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n \n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n \nfor w in : # w:区間の長さ\n for i in range(n):\n j = i + w # [i,j)で考える\n if j > n:break\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]+cul[j]-cul[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n \n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n dp[i][i+1] = 0\nfor w in : # w:区間の長さ\n for i in range(n):\n j = i + w # [i,j)で考える\n if j > n:break\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]+cul[j]-cul[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n cul.append(cul[-1]+x)\n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n dp[i][i+1] = 0\nfor w in : # w:区間の長さ\n for i in range(n):\n j = i + w # [i,j)で考える\n if j > n:break\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]+cul[j]-cul[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\ncul = [0]\nfor x in a:\n cul.append(cul[-1]+x)\n\ndp = [[10**13 for i in range(n+1)] for j in range(n+1)]\n# dp[i][j] [i,j)の答え ans = dp[0][n]\nfor i in range(n):\n dp[i][i+1] = 0\nfor w in range(2,n+1): # w:区間の長さ\n for i in range(n):\n j = i + w # [i,j)で考える\n if j > n:break\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k][j]+cul[j]-cul[i])\n\nprint(dp[0][n])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = ni()\n", "import sys\n\n\nN = ni()\n", "import sys\n\n\nN = ni()\n\n\nslime = 0\n", "import sys\n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\n", "import sys\n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n", "import sys\n\n\ndef naa(N): \n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n", "import sys\n\n\ndef na(): \n\n\ndef naa(N): \n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\n\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\ndef solve(l, r):\n # print(l,r)\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\ndef solve(l, r):\n # print(l,r)\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n", "import sys\n\nstdin = sys.stdin\n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\n\nstdin = sys.stdin\n\n\ndef ni(): \n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): \n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): \n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): \n\n\ndef na(): \n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): \n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): \n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): \n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n \n \nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n \n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n \n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n \n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n \n if l == r:\n \n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if :\n \n if l == r:\n \n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if :\n \n if l == r:\n \n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if :\n return ans[l][r]\n if l == r:\n \n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in :\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if :\n return ans[l][r]\n if l == r:\n \n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in range(l, r):\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if ans[l][r] != INF:\n return ans[l][r]\n if l == r:\n \n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in range(l, r):\n \n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if ans[l][r] != INF:\n return ans[l][r]\n if l == r:\n \n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in range(l, r):\n ans[l][r] = min(ans[l][r], solve(l, i) + solve(i+1, r) + slime_sum)\n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\nstdin = sys.stdin\n\n\ndef ni(): return int(ns())\n\n\ndef na(): return list(map(int, stdin.readline().split()))\n\n\ndef naa(N): return [na() for _ in range(N)]\n\n\ndef ns(): return stdin.readline().rstrip() # ignore trailing spaces\n\n\nN = ni()\n\na_array = na()\nsum_array = [0]\nslime = 0\nfor a in a_array:\n slime += a\n sum_array.append(slime)\n\nINF = 10 ** 15\nans = [[INF] * N for _ in range(N)]\n\n\ndef solve(l, r):\n # print(l,r)\n if ans[l][r] != INF:\n return ans[l][r]\n if l == r:\n ans[l][r] = 0\n # print(l,r,ans[l][r])\n return 0\n slime_sum = sum_array[r+1] - sum_array[l]\n # print(l,r,\"slime\",slime_sum)\n for i in range(l, r):\n ans[l][r] = min(ans[l][r], solve(l, i) + solve(i+1, r) + slime_sum)\n # print(l,r,ans[l][r])\n return ans[l][r]\n\n\nprint(solve(0, N-1))\n" ]
37
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# coding: utf-8\n# Your code here!\n\n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nsys.setrecursionlimit(10**7)\n\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nsys.setrecursionlimit(10**7)\nfrom import \n\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\n", "# coding: utf-8\n# Your code here!\n\n\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\n\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import \n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n \n res=0\n \n \ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n \n res=0\n \n \ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n \n res=0\n \n \n memo[r][l] = res\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n \n res=0\n \n res += acc[r]- acc[l]\n\n memo[r][l] = res\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n if r-l==1:\n \n res=0\n \n res += acc[r]- acc[l]\n\n memo[r][l] = res\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n if r-l==1:\n \n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n \n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n \n if r-l==1:\n \n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n if :\n \n if r-l==1:\n \n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n if memo[r][l] > 0:\n \n if r-l==1:\n \n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n if memo[r][l] > 0:\n \n if r-l==1:\n \n return 0\n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n if memo[r][l] > 0:\n return memo[r][l]\n if r-l==1:\n \n return 0\n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n", "# coding: utf-8\n# Your code here!\n\nn=int(input())\naa = [int(i) for i in input().split()]\nimport sys\nsys.setrecursionlimit(10**7)\nfrom itertools import accumulate\n\nacc = list(accumulate([0]+aa))\n\nmemo = [[0]*(i+1) for i in range(n+1)]\n\ndef dp(r,l):\n if memo[r][l] > 0:\n return memo[r][l]\n if r-l==1:\n memo[r][l] = 0\n return 0\n res=0\n res = min([dp(c,l) + dp(r,c) for c in range(l+1,r)])\n res += acc[r]- acc[l]\n\n memo[r][l] = res\n return res\n\ndp(n,0)\nprint(memo[n][0])\n" ]
24
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\n\nimport itertools\n\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\nfrom import reduce\n\nimport itertools\n\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\nfrom import reduce\n\nimport itertools\n\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\nfrom import reduce\n\nimport itertools\n\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\n\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\n\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "import sys\nimport math\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in :\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in range(1,N+1):\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in range(1,N+1):\n \n\nfor k in :\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in range(1,N+1):\n \n\nfor k in range(2,N+1):\n \n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in range(1,N+1):\n \n\nfor k in range(2,N+1):\n for l in range(1,N-k+2):\n r = l + k\n for i in range(r-l-1):\n w1 = sum_a[l+i] - sum_a[l-1]\n w2 = sum_a[r-1] - sum_a[l+i]\n dp[l][r] = min(dp[l][r], dp[l][l+i+1] + dp[l+i+1][r] + w1 + w2)\n\nprint(dp[1][N+1])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nN = int(input())\na = [0] + list(map(int, input().split())) + [0]\nINF = float(\"inf\")\n\nsum_a = list(itertools.accumulate(a))\n\ndp = [[INF]*(N+5) for i in range(N+5)]\nfor i in range(1,N+1):\n dp[i][i+1] = 0\n\nfor k in range(2,N+1):\n for l in range(1,N-k+2):\n r = l + k\n for i in range(r-l-1):\n w1 = sum_a[l+i] - sum_a[l-1]\n w2 = sum_a[r-1] - sum_a[l+i]\n dp[l][r] = min(dp[l][r], dp[l][l+i+1] + dp[l+i+1][r] + w1 + w2)\n\nprint(dp[1][N+1])\n" ]
27
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# print(dp)\n", "a=list(map(int,input().split()))\n\n\n# print(dp)\n", "a=list(map(int,input().split()))\n\n\ndp[0][0]=0\n\n\n# print(dp)\n", "n=int(input())\na=list(map(int,input().split()))\n\n\ndp[0][0]=0\n\n\n# print(dp)\n", "n=int(input())\na=list(map(int,input().split()))\n\n\npre[0]=a[0]\ndp[0][0]=0\n\n\n# print(dp)\n", "n=int(input())\na=list(map(int,input().split()))\n\n\npre[0]=a[0]\ndp[0][0]=0\n\nfor i in :\n \n# print(dp)\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\n\npre[0]=a[0]\ndp[0][0]=0\n\nfor i in :\n \n# print(dp)\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\n\npre[0]=a[0]\ndp[0][0]=0\n\nfor i in :\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\n\npre[0]=a[0]\ndp[0][0]=0\nfor i in :\n \nfor i in :\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in :\n \nfor i in :\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in :\n \nfor i in range(3,n+1):\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n \nfor i in range(3,n+1):\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n \n \nfor i in range(3,n+1):\n \n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n \n \nfor i in range(3,n+1):\n for j in range(n-i+1):\n k=j+i-1\n for l in range(j,k):\n t1,t2=0,0\n if l>=j:\n t1=dp[j][l]\n if l+1<=k:\n t2=dp[l+1][k]\n # print(pre[l],pre[j],a[j],a[l],pre[l]-(pre[j]-a[j])-a[l],t1,t2)\n # if count==2:\n # print(t1,t2)\n # print(t1,t2,pre[k]-pre[j]+a[j])\n dp[j][k]=min(dp[j][k],t1+t2+pre[k]-pre[j]+a[j])\n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n \n dp[i-1][i]=a[i-1]+a[i]\n \nfor i in range(3,n+1):\n for j in range(n-i+1):\n k=j+i-1\n for l in range(j,k):\n t1,t2=0,0\n if l>=j:\n t1=dp[j][l]\n if l+1<=k:\n t2=dp[l+1][k]\n # print(pre[l],pre[j],a[j],a[l],pre[l]-(pre[j]-a[j])-a[l],t1,t2)\n # if count==2:\n # print(t1,t2)\n # print(t1,t2,pre[k]-pre[j]+a[j])\n dp[j][k]=min(dp[j][k],t1+t2+pre[k]-pre[j]+a[j])\n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n \n dp[i-1][i]=a[i-1]+a[i]\n dp[i][i]=0\nfor i in range(3,n+1):\n for j in range(n-i+1):\n k=j+i-1\n for l in range(j,k):\n t1,t2=0,0\n if l>=j:\n t1=dp[j][l]\n if l+1<=k:\n t2=dp[l+1][k]\n # print(pre[l],pre[j],a[j],a[l],pre[l]-(pre[j]-a[j])-a[l],t1,t2)\n # if count==2:\n # print(t1,t2)\n # print(t1,t2,pre[k]-pre[j]+a[j])\n dp[j][k]=min(dp[j][k],t1+t2+pre[k]-pre[j]+a[j])\n# print(dp)\nprint(dp[0][n-1])\n", "n=int(input())\na=list(map(int,input().split()))\ndp=[[9999999999999999999999999999999999999 for i in range(n)] for j in range(n)]\npre=[0]*n\npre[0]=a[0]\ndp[0][0]=0\nfor i in range(1,n):\n pre[i]=a[i]+pre[i-1]\n dp[i-1][i]=a[i-1]+a[i]\n dp[i][i]=0\nfor i in range(3,n+1):\n for j in range(n-i+1):\n k=j+i-1\n for l in range(j,k):\n t1,t2=0,0\n if l>=j:\n t1=dp[j][l]\n if l+1<=k:\n t2=dp[l+1][k]\n # print(pre[l],pre[j],a[j],a[l],pre[l]-(pre[j]-a[j])-a[l],t1,t2)\n # if count==2:\n # print(t1,t2)\n # print(t1,t2,pre[k]-pre[j]+a[j])\n dp[j][k]=min(dp[j][k],t1+t2+pre[k]-pre[j]+a[j])\n# print(dp)\nprint(dp[0][n-1])\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n main()\n", "import sys\n\n\nif :\n main()\n", "import sys\n\ndef main():\n \n\nif :\n main()\n", "import sys\ndef input(): \ndef main():\n \n\nif :\n main()\n", "import sys\ndef input(): \ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j)をまとめるために必要なコストの最小値\n \n \nif :\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j)をまとめるために必要なコストの最小値\n \n \nif :\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j)をまとめるために必要なコストの最小値\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j)をまとめるために必要なコストの最小値\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n A=list(map(int,input().split()))\n #Aの[0,i)の和\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in :\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in :\n \n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n \n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in :\n for i in range(n-length+1):\n j=i+length #右側\n res=10**20\n for k in range(i+1,j):#区間[i,k)と[k,j)に分ける\n res=min(res,dp[i][k]+dp[k][j])\n dp[i][j]=res+cum_A[j]-cum_A[i]\n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in :\n for i in range(n-length+1):\n j=i+length #右側\n res=10**20\n for k in range(i+1,j):#区間[i,k)と[k,j)に分ける\n res=min(res,dp[i][k]+dp[k][j])\n dp[i][j]=res+cum_A[j]-cum_A[i]\n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n for i in range(n-length+1):\n j=i+length #右側\n res=10**20\n for k in range(i+1,j):#区間[i,k)と[k,j)に分ける\n res=min(res,dp[i][k]+dp[k][j])\n dp[i][j]=res+cum_A[j]-cum_A[i]\n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in range(1,n+1):\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*(n+1) for _ in range(n+1)] #[i,j)をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n for i in range(n-length+1):\n j=i+length #右側\n res=10**20\n for k in range(i+1,j):#区間[i,k)と[k,j)に分ける\n res=min(res,dp[i][k]+dp[k][j])\n dp[i][j]=res+cum_A[j]-cum_A[i]\n print(dp[0][n])\n\n\nif __name__=='__main__':\n main()\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "n = int(input())\n", "n = int(input())\n\n\nfor a in A:\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\n\nfor a in A:\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\n\nDP = [[0] * (n - i) for i in range(n)]\n\n\nfor a in A:\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\n\nDP = [[0] * (n - i) for i in range(n)]\n\n\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\n\nDP = [[0] * (n - i) for i in range(n)]\n\n\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n \n\nfor i in :\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\n\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n \n\nfor i in :\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\n\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n \n\nfor i in :\n \n\nprint(DP[n-1][0])\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\ncsum_ = [0]\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n \n\nfor i in :\n \n\nprint(DP[n-1][0])\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\ncsum_ = [0]\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n \n\nfor i in :\n for j in range(n-i):\n if i > 1:\n DP[i][j] = min(DP[k][j] + DP[i-k-1][j+k+1] for k in range(0, i))\n\n DP[i][j] += csum(j, j + i + 1)\n\nprint(DP[n-1][0])\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\ncsum_ = [0]\nfor a in A:\n \n\ndef csum(i, j): #[i, j)\n return csum_[j] - csum_[i]\n\nfor i in :\n for j in range(n-i):\n if i > 1:\n DP[i][j] = min(DP[k][j] + DP[i-k-1][j+k+1] for k in range(0, i))\n\n DP[i][j] += csum(j, j + i + 1)\n\nprint(DP[n-1][0])\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\ncsum_ = [0]\nfor a in A:\n csum_.append(csum_[-1] + a)\n\ndef csum(i, j): #[i, j)\n return csum_[j] - csum_[i]\n\nfor i in :\n for j in range(n-i):\n if i > 1:\n DP[i][j] = min(DP[k][j] + DP[i-k-1][j+k+1] for k in range(0, i))\n\n DP[i][j] += csum(j, j + i + 1)\n\nprint(DP[n-1][0])\n", "n = int(input())\nA = [int(i) for i in input().split()]\n\nINF = 10 ** 18\nDP = [[0] * (n - i) for i in range(n)]\n\ncsum_ = [0]\nfor a in A:\n csum_.append(csum_[-1] + a)\n\ndef csum(i, j): #[i, j)\n return csum_[j] - csum_[i]\n\nfor i in range(1, n):\n for j in range(n-i):\n if i > 1:\n DP[i][j] = min(DP[k][j] + DP[i-k-1][j+k+1] for k in range(0, i))\n\n DP[i][j] += csum(j, j + i + 1)\n\nprint(DP[n-1][0])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for num in :\n", "DP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in :\n", "N = int(input())\n\n\nDP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in :\n", "N = int(input())\n\n\nDP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in :\n \nprint(DP[0][N][1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\nDP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in :\n \nprint(DP[0][N][1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\nDP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in range(1, N+1):\n \nprint(DP[0][N][1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\nDP = [[(0, float('inf'))] * (N+1) for _ in range(N)]\n\nfor num in range(1, N+1):\n for start in range(N):\n end = start + num\n if end > N:\n break\n if num == 1:\n DP[start][end] = (A[start], 0) # (大きさ、コスト)\n continue\n for i in range(start + 1, end):\n tmp = DP[start][i][0] + DP[start][i][1] + DP[i][end][0] + DP[i][end][1]\n large = DP[start][i][0] + DP[i][end][0]\n if DP[start][end][1] > tmp:\n DP[start][end] = (large, tmp)\nprint(DP[0][N][1])\n" ]
8
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#print(k, cs)\n", "N = int(input())\n\n\n#print(k, cs)\n", "N = int(input())\na = list(map(int, input().split()))\n\n\n#print(k, cs)\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n#print(k, cs)\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\n", "N = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\n\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\n", "N = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\n", "import sys\n\nN = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\n", "import sys\n\nN = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\n\nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\n\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\ndef mongedp():\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\ndef mongedp():\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n#print(k, cs)\ndef mongedp():\n \n global k\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n \n#print(k, cs)\ndef mongedp():\n \n global k\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n \n \n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n \n global k\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n \n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n \n global k\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n \n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n \n global k\n for d in :\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n k[i][i] = i\n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n \n global k\n for d in :\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n k[i][i] = i\n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n global dp\n global k\n for d in :\n \nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n k[i][i] = i\n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n global dp\n global k\n for d in :\n for i in range(N):\n if i + d >= N: continue\n j = i + d\n for t in range(k[i][j - 1], min(k[i + 1][j] + 1, j)):\n temp = dp[i][t] + dp[t + 1][j] + cs[j + 1] - cs[i]\n if temp < dp[i][j]:\n dp[i][j] = temp\n k[i][j] = t\nmongedp()\nprint(dp[0][-1])\n", "import sys\ninput = sys.stdin.readline\nN = int(input())\na = list(map(int, input().split()))\ndp = [[float(\"inf\")] * N for _ in range(N)]\nk = [[-1] * N for _ in range(N)]\ncs = [0] * (N + 1)\nfor i in range(N):\n cs[i + 1] = cs[i] + a[i]\n k[i][i] = i\n dp[i][i] = 0\n#print(k, cs)\ndef mongedp():\n global dp\n global k\n for d in range(1, N):\n for i in range(N):\n if i + d >= N: continue\n j = i + d\n for t in range(k[i][j - 1], min(k[i + 1][j] + 1, j)):\n temp = dp[i][t] + dp[t + 1][j] + cs[j + 1] - cs[i]\n if temp < dp[i][j]:\n dp[i][j] = temp\n k[i][j] = t\nmongedp()\nprint(dp[0][-1])\n" ]
22
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for l in :\n", "cumsum = list(accumulate([0] + A))\n\n\nfor l in :\n", "N = int(input())\n\ncumsum = list(accumulate([0] + A))\n\n\nfor l in :\n", "N = int(input())\n\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\n\nfor l in :\n", "N = int(input())\n\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in :\n", "N = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in :\n", "INF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in :\n", "from import \n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in :\n", "from import \n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in :\n \nprint(dp[0][N])\n", "from import \n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in range(2, N+1):\n \nprint(dp[0][N])\n", "from itertools import \n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in range(2, N+1):\n \nprint(dp[0][N])\n", "from itertools import \n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i + l\n dp[i][j] = min([dp[i][k] + dp[k][j] for k in range(i+1, j)]) + (cumsum[j] - cumsum[i])\nprint(dp[0][N])\n", "from itertools import accumulate\n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): \nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i + l\n dp[i][j] = min([dp[i][k] + dp[k][j] for k in range(i+1, j)]) + (cumsum[j] - cumsum[i])\nprint(dp[0][N])\n", "from itertools import accumulate\n\nINF = float('inf')\nN = int(input())\n*A, = map(int, input().split())\ncumsum = list(accumulate([0] + A))\ndp = [[INF] * (N+1) for _ in range(N+1)]\nfor i in range(N): dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i + l\n dp[i][j] = min([dp[i][k] + dp[k][j] for k in range(i+1, j)]) + (cumsum[j] - cumsum[i])\nprint(dp[0][N])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = [[None for i in range(ll+1)] for j in range(ll+1)]\n", "cumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\n", "ll = int(input())\n\ncumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\n", "ll = int(input())\n\ncumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def check(l,r):\n \n\nll = int(input())\n\ncumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def check(l,r):\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \ndef check(l,r):\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\n\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \ndef check(l,r):\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n \ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \ndef check(l,r):\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n \ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \n l+=1\n r+=1\n \ndef check(l,r):\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n \ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \n l+=1\n r+=1\n \ndef check(l,r):\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \n l+=1\n r+=1\n \ndef check(l,r):\n global dp\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \n l+=1\n r+=1\n \ndef check(l,r):\n global dp\n \n \n if :\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n \n l+=1\n r+=1\n \ndef check(l,r):\n global dp\n if l==r:\n return 0\n \n if :\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n \ndef check(l,r):\n global dp\n if l==r:\n return 0\n \n if :\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n \n if :\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n \n if :\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n \n if :\n \n else:\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if :\n \n else:\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if :\n return dp[l][r]\n else:\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n \n \nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n \n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n \n\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n \n\n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in :\n \n\n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in :\n \n \n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in range(l, r):\n \n \n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in range(l, r):\n \n \n ans = min(st1 + st2 + check(l,i)+ check(i+1, r), ans)\n\n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in range(l, r):\n \n st2 = asum(i,r+1)\n ans = min(st1 + st2 + check(l,i)+ check(i+1, r), ans)\n\n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "def asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in range(l, r):\n st1 = asum(l,i)\n st2 = asum(i,r+1)\n ans = min(st1 + st2 + check(l,i)+ check(i+1, r), ans)\n\n dp[l][r] = ans\n return ans\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n", "\ndef asum(l,r):\n global cumsum\n l+=1\n r+=1\n return cumsum[r-1]-cumsum[l-1]\ndef check(l,r):\n global dp\n if l==r:\n return 0\n if l == r-1:\n return arr[l]+arr[r]\n if dp[l][r] != None:\n return dp[l][r]\n else:\n ans = 10**18\n for i in range(l, r):\n st1 = asum(l,i)\n st2 = asum(i,r+1)\n ans = min(st1 + st2 + check(l,i)+ check(i+1, r), ans)\n\n dp[l][r] = ans\n return ans\n\n\n\n\n\nll = int(input())\narr = [int(i) for i in input().split()]\ncumsum = [0]\n\nfor i in arr:\n cumsum.append(cumsum[-1]+i)\ndp = [[None for i in range(ll+1)] for j in range(ll+1)]\nprint(check(0, ll-1))\n" ]
33
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "b = [0] * (n + 1)\n", "b = [0] * (n + 1)\nfor i in range(n):\n", "b = [0] * (n + 1)\nfor i in range(n):\n \n\nfor i in :\n", "INF = 10 ** 18\n\n\nb = [0] * (n + 1)\nfor i in range(n):\n \n\nfor i in :\n", "INF = 10 ** 18\nn = int(input())\n\nb = [0] * (n + 1)\nfor i in range(n):\n \n\nfor i in :\n", "INF = 10 ** 18\nn = int(input())\n\nb = [0] * (n + 1)\nfor i in range(n):\n \ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in :\n", "INF = 10 ** 18\nn = int(input())\na = list(map(int, input().split()))\nb = [0] * (n + 1)\nfor i in range(n):\n \ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in :\n", "INF = 10 ** 18\nn = int(input())\na = list(map(int, input().split()))\nb = [0] * (n + 1)\nfor i in range(n):\n \ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in :\n \nprint(dp[0][n])\n", "INF = 10 ** 18\nn = int(input())\na = list(map(int, input().split()))\nb = [0] * (n + 1)\nfor i in range(n):\n \ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in range(2, n + 1):\n \nprint(dp[0][n])\n", "INF = 10 ** 18\nn = int(input())\na = list(map(int, input().split()))\nb = [0] * (n + 1)\nfor i in range(n):\n \ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in range(2, n + 1):\n for j in range(n - i + 1):\n t = INF\n for k in range(j + 1, j + i):\n t = min(t, dp[j][k] + dp[k][j + i])\n dp[j][j + i] = b[j + i] - b[j] + t\nprint(dp[0][n])\n", "INF = 10 ** 18\nn = int(input())\na = list(map(int, input().split()))\nb = [0] * (n + 1)\nfor i in range(n):\n b[i + 1] = b[i] + a[i]\ndp = [[0] * (n + 1) for _ in range(n + 1)]\nfor i in range(2, n + 1):\n for j in range(n - i + 1):\n t = INF\n for k in range(j + 1, j + i):\n t = min(t, dp[j][k] + dp[k][j + i])\n dp[j][j + i] = b[j + i] - b[j] + t\nprint(dp[0][n])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp[0][N])\n", "A = tuple(map(int, input().split()))\n\n\nprint(dp[0][N])\n", "A = tuple(map(int, input().split()))\n\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nprint(dp[0][N])\n", "N = int(input())\nA = tuple(map(int, input().split()))\n\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nprint(dp[0][N])\n", "import itertools\n\nN = int(input())\nA = tuple(map(int, input().split()))\n\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nprint(dp[0][N])\n", "import itertools\n\nN = int(input())\nA = tuple(map(int, input().split()))\nS = [0] + list(itertools.accumulate(A))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nprint(dp[0][N])\n", "import itertools\n\nN = int(input())\nA = tuple(map(int, input().split()))\nS = [0] + list(itertools.accumulate(A))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\nfor length in :\n \nprint(dp[0][N])\n", "import itertools\n\nN = int(input())\nA = tuple(map(int, input().split()))\nS = [0] + list(itertools.accumulate(A))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\nfor length in range(2, N + 1):\n \nprint(dp[0][N])\n", "import itertools\n\nN = int(input())\nA = tuple(map(int, input().split()))\nS = [0] + list(itertools.accumulate(A))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\nfor length in range(2, N + 1):\n for l in range(N - length + 1):\n r = length + l\n dp[l][r] = min(dp[l][m] + dp[m][r] for m in range(l + 1, r)) + S[r] - S[l]\nprint(dp[0][N])\n" ]
10
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "aa = [0]\n", "n = int(input())\n\n\naa = [0]\n", "n = int(input())\n\n\naa = [0]\n\n\nprint(dp[0][n])\n", "n = int(input())\n\n\naa = [0]\nfor i in range(n):\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\naa = [0]\nfor i in range(n):\n \n\nfor i in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\naa = [0]\nfor i in range(n):\n \n\ndp = [[10**12 for i in range(n+1)] for i in range(n+1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = [int(x) for x in input().split()]\n\naa = [0]\nfor i in range(n):\n \n\ndp = [[10**12 for i in range(n+1)] for i in range(n+1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = [int(x) for x in input().split()]\n\naa = [0]\nfor i in range(n):\n \n\ndp = [[10**12 for i in range(n+1)] for i in range(n+1)]\n\nfor i in :\n for l in range(n):\n if i == 1:\n dp[l][l+i] = 0\n else:\n if l + i < n+1:\n dp[l][l+i] = min(dp[l][l+k] + dp[l+k][l+i] +\n aa[l+i] - aa[l] for k in range(1, i))\n\nprint(dp[0][n])\n", "n = int(input())\na = [int(x) for x in input().split()]\n\naa = [0]\nfor i in range(n):\n \n\ndp = [[10**12 for i in range(n+1)] for i in range(n+1)]\n\nfor i in range(1, n+1):\n for l in range(n):\n if i == 1:\n dp[l][l+i] = 0\n else:\n if l + i < n+1:\n dp[l][l+i] = min(dp[l][l+k] + dp[l+k][l+i] +\n aa[l+i] - aa[l] for k in range(1, i))\n\nprint(dp[0][n])\n", "n = int(input())\na = [int(x) for x in input().split()]\n\naa = [0]\nfor i in range(n):\n aa.append(a[i]+aa[i])\n\ndp = [[10**12 for i in range(n+1)] for i in range(n+1)]\n\nfor i in range(1, n+1):\n for l in range(n):\n if i == 1:\n dp[l][l+i] = 0\n else:\n if l + i < n+1:\n dp[l][l+i] = min(dp[l][l+k] + dp[l+k][l+i] +\n aa[l+i] - aa[l] for k in range(1, i))\n\nprint(dp[0][n])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "A=[int(i) for i in input().split()]\n", "A=[int(i) for i in input().split()]\n\n\nfor i in :\n", "A=[int(i) for i in input().split()]\n\n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\n\n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\n\nS=[0]*(N+1)\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in :\n \nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in :\n \nfor i in range(N):\n \nfor k in :\n \nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in :\n \nfor i in range(N):\n \nfor k in :\n for i in range(N-k):\n for l in range(i,i+k):\n dp[i][i+k]=min(dp[i][i+k],dp[i][l]+dp[l+1][i+k]+S[i+k+1]-S[i])\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in :\n \nfor i in range(N):\n \nfor k in range(1,N):\n for i in range(N-k):\n for l in range(i,i+k):\n dp[i][i+k]=min(dp[i][i+k],dp[i][l]+dp[l+1][i+k]+S[i+k+1]-S[i])\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in range(1,N+1):\n \nfor i in range(N):\n \nfor k in range(1,N):\n for i in range(N-k):\n for l in range(i,i+k):\n dp[i][i+k]=min(dp[i][i+k],dp[i][l]+dp[l+1][i+k]+S[i+k+1]-S[i])\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in range(1,N+1):\n S[i]=S[i-1]+A[i-1]\nfor i in range(N):\n \nfor k in range(1,N):\n for i in range(N-k):\n for l in range(i,i+k):\n dp[i][i+k]=min(dp[i][i+k],dp[i][l]+dp[l+1][i+k]+S[i+k+1]-S[i])\nprint(dp[0][N-1])\n", "N=int(input())\nA=[int(i) for i in input().split()]\ndp=[[10**23]*N for i in range(N)]\nS=[0]*(N+1)\nfor i in range(1,N+1):\n S[i]=S[i-1]+A[i-1]\nfor i in range(N):\n dp[i][i]=0\nfor k in range(1,N):\n for i in range(N-k):\n for l in range(i,i+k):\n dp[i][i+k]=min(dp[i][i+k],dp[i][l]+dp[l+1][i+k]+S[i+k+1]-S[i])\nprint(dp[0][N-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "arr=list(map(int,input().split()))\n", "arr=list(map(int,input().split()))\n\n\nprint(dp[0][n-1][1])\n", "arr=list(map(int,input().split()))\n\nfor i in range(n):\n \n\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\n\nfor i in range(n):\n \n\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \n\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in :\n \nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in :\n for j in range(n-i):\n for k in range(i):\n if dp[j][j+i][1]>dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]:\n dp[j][j+i][1]=dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]\n dp[j][j+i][0]=dp[j][j+k][0]+dp[j+k+1][j+i][0]\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \nfor i in range(1,n):\n for j in range(n-i):\n for k in range(i):\n if dp[j][j+i][1]>dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]:\n dp[j][j+i][1]=dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]\n dp[j][j+i][0]=dp[j][j+k][0]+dp[j+k+1][j+i][0]\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n \n \nfor i in range(1,n):\n for j in range(n-i):\n for k in range(i):\n if dp[j][j+i][1]>dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]:\n dp[j][j+i][1]=dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]\n dp[j][j+i][0]=dp[j][j+k][0]+dp[j+k+1][j+i][0]\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n dp[i][i][0]=arr[i]\n \nfor i in range(1,n):\n for j in range(n-i):\n for k in range(i):\n if dp[j][j+i][1]>dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]:\n dp[j][j+i][1]=dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]\n dp[j][j+i][0]=dp[j][j+k][0]+dp[j+k+1][j+i][0]\nprint(dp[0][n-1][1])\n", "n=int(input())\narr=list(map(int,input().split()))\ndp=[[[10**18,10**18] for _ in range(n)] for _ in range(n)]\nfor i in range(n):\n dp[i][i][0]=arr[i]\n dp[i][i][1]=0\nfor i in range(1,n):\n for j in range(n-i):\n for k in range(i):\n if dp[j][j+i][1]>dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]:\n dp[j][j+i][1]=dp[j][j+k][0]+dp[j+k+1][j+i][0]+dp[j][j+k][1]+dp[j+k+1][j+i][1]\n dp[j][j+i][0]=dp[j][j+k][0]+dp[j+k+1][j+i][0]\nprint(dp[0][n-1][1])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\n", "# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\n\ns = [0] * (n + 1)\n", "# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\n\ns = [0] * (n + 1)\nfor i in range(n):\n", "# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\n\ns = [0] * (n + 1)\nfor i in range(n):\n \nfor L in :\n", "a = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\n\ns = [0] * (n + 1)\nfor i in range(n):\n \nfor L in :\n", "a = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n \nfor L in :\n", "a = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n \nfor L in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n \nfor L in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n s[i + 1] += s[i] + a[i]\nfor L in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n s[i + 1] += s[i] + a[i]\nfor L in range(n - 1, -1, -1):\n \nprint(dp[0][n - 1])\n", "n = int(input())\na = list(map(int, input().split()))\n# dp[i][j] - the minimum total cost of combining interval [i,j] into one vertex\ndp = [[float('inf')] * n for _ in range(n)]\ns = [0] * (n + 1)\nfor i in range(n):\n s[i + 1] += s[i] + a[i]\nfor L in range(n - 1, -1, -1):\n for R in range(L, n):\n if L == R:\n dp[L][R] = 0\n else:\n for i in range(L, R):\n dp[L][R] = min(dp[L][R], dp[L][i] + dp[i + 1][R] + s[R + 1] - s[L])\nprint(dp[0][n - 1])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = [[0]*(n+2) for i in range(n+2)]\n", "dp = [[0]*(n+2) for i in range(n+2)]\n\n\nprint(dp[0][n])\n", "n = int(input())\n\ndp = [[0]*(n+2) for i in range(n+2)]\n\n\nprint(dp[0][n])\n", "n = int(input())\n\ndp = [[0]*(n+2) for i in range(n+2)]\n\n\nfor i in :\n \nprint(dp[0][n])\n", "n = int(input())\n\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\n\nfor i in :\n \nprint(dp[0][n])\n", "n = int(input())\n\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n \n\nfor i in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n \n\nfor i in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n \n\nfor i in range(2,n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n \n\nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n \n \nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n suma[i][i+1] = a[i]\n \n\nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n suma[i][i+1] = a[i]\n for j in :\n \n\nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n suma[i][i+1] = a[i]\n for j in range(i+2,n+1):\n \n\nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[0]*(n+2) for i in range(n+2)]\n\nsuma = [[0]*(n+2) for i in range(n+2)]\n\nfor i in range(n):\n suma[i][i+1] = a[i]\n for j in range(i+2,n+1):\n suma[i][j] = suma[i][j-1]+a[j-1]\n\nfor i in range(2,n+1):\n for l in range(n-i+1):\n r = i+l\n dp[l][r] = float(\"INF\")\n for k in range(l+1,r):\n dp[l][r] = min(dp[l][r],dp[l][k]+dp[k][r]+suma[l][r])\nprint(dp[0][n])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for w in :\n", "acc = [0] + list(accumulate(map(int, input().split())))\n\nfor w in :\n", "acc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in :\n", "acc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "n = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "from import \n\nn = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in range(2, n + 1):\n \nprint(dp[0][n])\n", "from itertools import \n\nn = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in range(2, n + 1):\n for l in range(n - w + 1):\n r = l + w\n dp[l][r] = min(dp[l][m] + dp[m][r] for m in range(l + 1, r)) + acc[r] - acc[l]\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\nacc = [0] + list(accumulate(map(int, input().split())))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor w in range(2, n + 1):\n for l in range(n - w + 1):\n r = l + w\n dp[l][r] = min(dp[l][m] + dp[m][r] for m in range(l + 1, r)) + acc[r] - acc[l]\nprint(dp[0][n])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for w in range(n):\n", "a = list(map(int,input().split()))\n\n\nfor w in range(n):\n", "a = list(map(int,input().split()))\n\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n", "a = list(map(int,input().split()))\n\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n \nprint(dp[0][-1])\n", "from import \n\na = list(map(int,input().split()))\n\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n \nprint(dp[0][-1])\n", "from import \nn = int(input())\na = list(map(int,input().split()))\n\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n \nprint(dp[0][-1])\n", "from import \nn = int(input())\na = list(map(int,input().split()))\nacc = [0]+list(accumulate(a))\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n \nprint(dp[0][-1])\n", "from import \nn = int(input())\na = list(map(int,input().split()))\nacc = [0]+list(accumulate(a))\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n for i in range(n-w):\n j = i+w\n if w == 0:\n dp[i][j] = 0\n elif w == 1:\n dp[i][j] = a[i]+a[j]\n else:\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+acc[j+1]-acc[i])\nprint(dp[0][-1])\n", "from import accumulate\nn = int(input())\na = list(map(int,input().split()))\nacc = [0]+list(accumulate(a))\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n for i in range(n-w):\n j = i+w\n if w == 0:\n dp[i][j] = 0\n elif w == 1:\n dp[i][j] = a[i]+a[j]\n else:\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+acc[j+1]-acc[i])\nprint(dp[0][-1])\n", "from itertools import accumulate\nn = int(input())\na = list(map(int,input().split()))\nacc = [0]+list(accumulate(a))\ndp = [[10**18 for i in range(n)] for j in range(n)]\nfor w in range(n):\n for i in range(n-w):\n j = i+w\n if w == 0:\n dp[i][j] = 0\n elif w == 1:\n dp[i][j] = a[i]+a[j]\n else:\n for k in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp[k+1][j]+acc[j+1]-acc[i])\nprint(dp[0][-1])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "INF=float(\"inf\")\n", "INF=float(\"inf\")\n\ninput=lambda :sys.stdin.readline().rstrip()\n", "INF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\n", "sys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\n", "sys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\n\nresolve()\n", "sys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n \n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n A=list(map(int,input().split()))\n \n \n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n A=list(map(int,input().split()))\n \n \n def dfs(L,R):\n \n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n A=list(map(int,input().split()))\n \n for i in range(n): \n \n\n def dfs(L,R):\n \n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n \n A=list(map(int,input().split()))\n \n for i in range(n): \n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n \n for i in range(n): \n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): \n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): \n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n \n res=INF\n \n \n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n \n res=INF\n \n \n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n \n res=INF\n \n \n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n \n res=INF\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n if: \n res=INF\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n \n if: \n res=INF\n for h in :\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n if(R-L==1): return 0\n if: \n res=INF\n for h in :\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n if(R-L==1): return 0\n if: return dp[L][R]\n res=INF\n for h in :\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n if(R-L==1): return 0\n if: return dp[L][R]\n res=INF\n for h in range(L+1,R):\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n if(R-L==1): return 0\n if(dp[L][R]!=INF): return dp[L][R]\n res=INF\n for h in range(L+1,R):\n \n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7\ninput=lambda :sys.stdin.readline().rstrip()\ndef resolve():\n n=int(input())\n A=list(map(int,input().split()))\n S=[0]*(n+1)\n for i in range(n): S[i+1]=S[i]+A[i]\n dp=[[INF]*(n+1) for _ in range(n+1)]\n\n def dfs(L,R):\n if(R-L==1): return 0\n if(dp[L][R]!=INF): return dp[L][R]\n res=INF\n for h in range(L+1,R):\n res=min(res,dfs(L,h)+dfs(h,R)+S[R]-S[L])\n dp[L][R]=res\n return res\n\n print(dfs(0,n))\nresolve()\n" ]
27
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs:\n \n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs:\n \n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs:\n \n \ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs:\n \n \ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n \n \ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if :\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if :\n \n \n else:\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if :\n return dp[l][r]\n \n else:\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if :\n return dp[l][r]\n elif :\n \n else:\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif :\n \n else:\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n \n else:\n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n \n else:\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n \n return dp[l][r]\n else:\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n \n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n \n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n \n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in range(l + 1, r):\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r, infnum):\n if dp[l][r] != infnum:\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in range(l + 1, r):\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n res = min(res, dfs(l, k, infnum) + dfs(k, r, infnum) + (cost[r] - cost[l]))\n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n, float(\"inf\"))\nprint(dp[0][n])\n" ]
31
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "S = [0]*(N+1)\n", "mod = 10**9+7\n\n\nS = [0]*(N+1)\n", "mod = 10**9+7\n\n\nS = [0]*(N+1)\n\n\nfor l in :\n", "mod = 10**9+7\n\na = list(map(int, input().split()))\nS = [0]*(N+1)\n\n\nfor l in :\n", "mod = 10**9+7\n\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n \n\nfor l in :\n", "mod = 10**9+7\n\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n \n\nfor i in range(N):\n \nfor l in :\n", "mod = 10**9+7\n\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n \n\nfor i in range(N):\n \nfor l in :\n \nprint(dp[0][-1])\n", "mod = 10**9+7\n\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n \ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in :\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n \ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in :\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n S[i] = S[i-1]+a[i-1]\ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in :\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n S[i] = S[i-1]+a[i-1]\ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n \nfor l in range(2, N+1):\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in :\n S[i] = S[i-1]+a[i-1]\ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in range(1, N+1):\n S[i] = S[i-1]+a[i-1]\ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n \nprint(dp[0][-1])\n", "mod = 10**9+7\nN = int(input())\na = list(map(int, input().split()))\nS = [0]*(N+1)\nfor i in range(1, N+1):\n S[i] = S[i-1]+a[i-1]\ndp = [[float('inf')]*(N+1) for _ in range(N)]\nfor i in range(N):\n dp[i][i+1] = 0\nfor l in range(2, N+1):\n for i in range(N-l+1):\n j = i+l\n for ll in range(1, l):\n k = i+ll\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]+S[j]-S[i])\nprint(dp[0][-1])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "ruiseki = [0] * (n+1)\n", "ruiseki = [0] * (n+1)\n\n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\nruiseki = [0] * (n+1)\n\n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\nruiseki = [0] * (n+1)\n\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\nruiseki = [0] * (n+1)\n\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n\nprint(dp[0][n])\n", "a = list(map(int, input().split()))\nruiseki = [0] * (n+1)\n\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\n\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n \n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n \n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n \nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n \nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n if :\n \n \nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n \n if :\n \n \n dp[l][r] = ans\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n \n if :\n \n \n dp[l][r] = ans\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n \n if :\n \n \n for i in :\n \n dp[l][r] = ans\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n \n if :\n \n ans = 10**18\n for i in :\n \n dp[l][r] = ans\n \n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n \n if :\n \n ans = 10**18\n for i in :\n \n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n \n if :\n \n \n ans = 10**18\n for i in :\n \n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if :\n return dp[l][r]\n if :\n \n \n ans = 10**18\n for i in :\n \n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n \n ans = 10**18\n for i in :\n \n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n \n ans = 10**18\n for i in range(l+1, r):\n \n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if :\n \n \n ans = 10**18\n for i in range(l+1, r):\n ans = min(ans, solve(l, i) + solve(i, r) + ruiseki[r] - ruiseki[l])\n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n \n \n ans = 10**18\n for i in range(l+1, r):\n ans = min(ans, solve(l, i) + solve(i, r) + ruiseki[r] - ruiseki[l])\n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n dp[l][r] = 0\n \n ans = 10**18\n for i in range(l+1, r):\n ans = min(ans, solve(l, i) + solve(i, r) + ruiseki[r] - ruiseki[l])\n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\nruiseki = [0] * (n+1)\nfor i in range(n):\n ruiseki[i+1] = ruiseki[i] + a[i]\n\ndp = [[-1]*(n+1) for i in range(n+1)]\n\ndef solve(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n if r - l == 1:\n dp[l][r] = 0\n return dp[l][r]\n ans = 10**18\n for i in range(l+1, r):\n ans = min(ans, solve(l, i) + solve(i, r) + ruiseki[r] - ruiseki[l])\n dp[l][r] = ans\n return dp[l][r]\n\nsolve(0, n)\nprint(dp[0][n])\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in :\n", "for i in :\n \n\nfor i in :\n", "for i in :\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "n = int(stdin.readline())\n\n\nfor i in :\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "n = int(stdin.readline())\n\n\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\n\n\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\n\n\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \ndp1[-1][-1] = arr[-1]\nfor i in :\n \nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\n\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \ndp1[-1][-1] = arr[-1]\nfor i in :\n \nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \ndp1[-1][-1] = arr[-1]\nfor i in :\n \nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \ndp1[-1][-1] = arr[-1]\nfor i in :\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \n \ndp1[-1][-1] = arr[-1]\nfor i in :\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in :\n \n \ndp1[-1][-1] = arr[-1]\nfor i in range(n-3,-1,-1):\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in range(n-1):\n \n \ndp1[-1][-1] = arr[-1]\nfor i in range(n-3,-1,-1):\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in range(n-1):\n \n \n dp1[i][i+1] = arr[i]+arr[i+1]\ndp1[-1][-1] = arr[-1]\nfor i in range(n-3,-1,-1):\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in range(n-1):\n \n dp[i][i+1] = arr[i]+arr[i+1]\n dp1[i][i+1] = arr[i]+arr[i+1]\ndp1[-1][-1] = arr[-1]\nfor i in range(n-3,-1,-1):\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n", "from sys import stdin\nn = int(stdin.readline())\narr = list(map(int,stdin.readline().split()))\ndp = [[0]*n for _ in range(n)]\ndp1 = [[0]*n for _ in range(n)]\nfor i in range(n-1):\n dp1[i][i] = arr[i]\n dp[i][i+1] = arr[i]+arr[i+1]\n dp1[i][i+1] = arr[i]+arr[i+1]\ndp1[-1][-1] = arr[-1]\nfor i in range(n-3,-1,-1):\n for j in range(i+2,n):\n dp[i][j] = 10**20\n for k in range(j-1,i-1,-1):\n dp[i][j] = min(dp[i][j],dp[i][k]+dp1[i][k]+dp[k+1][j]+dp1[k+1][j])\n dp1[i][j] = dp1[i][j-1]+arr[j]\nprint(dp[0][-1])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp=[[10**20]*(n+1) for _ in range(n)]\n", "dp=[[10**20]*(n+1) for _ in range(n)]\n\n\nprint(dp[0][n])\n", "dp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \n\nprint(dp[0][n])\n", "a=list(map(int,input().split()))\n\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \n\nprint(dp[0][n])\n", "import itertools\n\n\na=list(map(int,input().split()))\n\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \n\nprint(dp[0][n])\n", "import itertools\n\n\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \n\nprint(dp[0][n])\n", "import itertools\n\nn=int(input())\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \n\nprint(dp[0][n])\n", "import itertools\n\nn=int(input())\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \nfor d in :\n \n\nprint(dp[0][n])\n", "import itertools\n\nn=int(input())\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n \nfor d in :\n for k in range(1,d):\n for i in range(n-d+1):\n j=i+d\n S=s[j]-s[i]\n dp[i][j]=min(dp[i][i+k]+dp[i+k][j]+S,dp[i][j])\n\nprint(dp[0][n])\n", "import itertools\n\nn=int(input())\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n dp[l][l+1]=0\nfor d in :\n for k in range(1,d):\n for i in range(n-d+1):\n j=i+d\n S=s[j]-s[i]\n dp[i][j]=min(dp[i][i+k]+dp[i+k][j]+S,dp[i][j])\n\nprint(dp[0][n])\n", "import itertools\n\nn=int(input())\na=list(map(int,input().split()))\ns=[0]+list(itertools.accumulate(a))\n\ndp=[[10**20]*(n+1) for _ in range(n)]\nfor l in range(n):\n dp[l][l+1]=0\nfor d in range(2,n+1):\n for k in range(1,d):\n for i in range(n-d+1):\n j=i+d\n S=s[j]-s[i]\n dp[i][j]=min(dp[i][i+k]+dp[i+k][j]+S,dp[i][j])\n\nprint(dp[0][n])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(solve())\n", "from import groupby, , product, , \n\nprint(solve())\n", "from import groupby, , product, , \ndef solve():\n \nprint(solve())\n", "from import groupby, , product, , \ndef solve():\n \n \nprint(solve())\n", "from import groupby, , product, permutations, \ndef solve():\n \n \nprint(solve())\n", "from itertools import groupby, , product, permutations, \ndef solve():\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, \ndef solve():\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n \n dp = [[float('inf')]*N for _ in range(N)]\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n \n for i in :\n \n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n \n for i in :\n \n \n ans = dp[0][-1]\n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n \n ans = dp[0][-1]\n \nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n \n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n \n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n for k in :\n \n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n \n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n for k in :\n \n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n for k in :\n \n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in :\n \n for k in :\n for i in range(N):\n j = i+k\n if j>N-1:\n break\n for l in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][l]+dp[l+1][j])\n dp[i][j] += cum[j+1]-cum[i]\n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in range(N-1):\n \n for k in :\n for i in range(N):\n j = i+k\n if j>N-1:\n break\n for l in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][l]+dp[l+1][j])\n dp[i][j] += cum[j+1]-cum[i]\n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n \n for i in range(N-1):\n dp[i][i+1] = A[i]+A[i+1]\n for k in :\n for i in range(N):\n j = i+k\n if j>N-1:\n break\n for l in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][l]+dp[l+1][j])\n dp[i][j] += cum[j+1]-cum[i]\n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n for i in range(N-1):\n dp[i][i+1] = A[i]+A[i+1]\n for k in :\n for i in range(N):\n j = i+k\n if j>N-1:\n break\n for l in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][l]+dp[l+1][j])\n dp[i][j] += cum[j+1]-cum[i]\n ans = dp[0][-1]\n return ans\nprint(solve())\n", "from itertools import groupby, accumulate, product, permutations, combinations\ndef solve():\n N = int(input())\n A = list(map(int, input().split()))\n cum = [0]+list(accumulate(A))\n dp = [[float('inf')]*N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n for i in range(N-1):\n dp[i][i+1] = A[i]+A[i+1]\n for k in range(2,N):\n for i in range(N):\n j = i+k\n if j>N-1:\n break\n for l in range(i,j):\n dp[i][j] = min(dp[i][j],dp[i][l]+dp[l+1][j])\n dp[i][j] += cum[j+1]-cum[i]\n ans = dp[0][-1]\n return ans\nprint(solve())\n" ]
23
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in :\n", "for i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n\n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nfor i in range(N):\n \nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\n\n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n \n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n \n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n \nfor d in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n \n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n dp[i][i+1] = a[i] + a[i+1]\nfor d in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n \n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n dp[i][i+1] = a[i] + a[i+1]\nfor d in range(2, N):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n \n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n dp[i][i+1] = a[i] + a[i+1]\nfor d in range(2, N):\n for i in range(N - d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d], S[i+d+1] - S[i] + dp[i][i+k] + dp[i+k+1][i+d])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n S[i+1] = S[i] + a[i]\n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in :\n dp[i][i+1] = a[i] + a[i+1]\nfor d in range(2, N):\n for i in range(N - d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d], S[i+d+1] - S[i] + dp[i][i+k] + dp[i+k+1][i+d])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n S[i+1] = S[i] + a[i]\n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N-1):\n dp[i][i+1] = a[i] + a[i+1]\nfor d in range(2, N):\n for i in range(N - d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d], S[i+d+1] - S[i] + dp[i][i+k] + dp[i+k+1][i+d])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nS = [0] * (N+1)\nfor i in range(N):\n S[i+1] = S[i] + a[i]\n\ndp = [[float('inf') for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\nfor i in range(N-1):\n dp[i][i+1] = a[i] + a[i+1]\nfor d in range(2, N):\n for i in range(N - d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d], S[i+d+1] - S[i] + dp[i][i+k] + dp[i+k+1][i+d])\n\nprint(dp[0][N-1])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n", "# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nprint(ans)\n", "read = sys.stdin.buffer.read\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\nsys.setrecursionlimit(10 ** 7)\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\n\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\n\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n \n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n \n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\n mass = Acum[j] - Acum[i]\n \n \nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\n mass = Acum[j] - Acum[i]\n \n cost[i][j] = res\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n \n cost[i][j] = res\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in :\n \n cost[i][j] = res\n \n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in :\n \n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n if :\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in :\n \n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n if cost[i][j] != -1:\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in :\n \n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n if cost[i][j] != -1:\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in range(i + 1, j):\n \n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n if cost[i][j] != -1:\n \n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in range(i + 1, j):\n res = min(res, mass + slime(i, x) + slime(x, j))\n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n", "import sys\nread = sys.stdin.buffer.read\nreadline = sys.stdin.buffer.readline\nreadlines = sys.stdin.buffer.readlines\nsys.setrecursionlimit(10 ** 7)\n\nN = int(input())\nA = [0]+list(map(int, input().split()))\n\n# 区間[i, j)の質量の合計はAcum[j-1] - Acum[i]\nAcum = A[::]\nfor i in range(N):\n Acum[i + 1] += Acum[i]\n\n\ncost = [[-1] * (N + 1) for _ in range(N + 1)]\nfor i in range(N):\n cost[i][i + 1] = 0\n\n\ndef slime(i, j):\n if cost[i][j] != -1:\n return cost[i][j]\n\n res = 10 ** 18\n mass = Acum[j] - Acum[i]\n for x in range(i + 1, j):\n res = min(res, mass + slime(i, x) + slime(x, j))\n cost[i][j] = res\n return res\n\n\nans = slime(0, N)\nprint(ans)\n" ]
28
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\n\n\ndp=[[0]*(n+1) for i in range(n)]\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\n\n\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\n\n\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\n\n\nn=int(input())\n\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom import \n\nn=int(input())\n\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom import \n\nn=int(input())\na=[0]+list(accumulate(map(int,input().split())))\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom itertools import \n\nn=int(input())\na=[0]+list(accumulate(map(int,input().split())))\ndp=[[0]*(n+1) for i in range(n)]\nfor w in :\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom itertools import \n\nn=int(input())\na=[0]+list(accumulate(map(int,input().split())))\ndp=[[0]*(n+1) for i in range(n)]\nfor w in range(2,n+1):\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom itertools import accumulate\n\nn=int(input())\na=[0]+list(accumulate(map(int,input().split())))\ndp=[[0]*(n+1) for i in range(n)]\nfor w in range(2,n+1):\n \nprint(dp[0][n])\n", "# from https://ikatakos.com/pot/programming_algorithm/contest_history/atcoder/2019/0106_educational_dp_2\nfrom itertools import accumulate\n\nn=int(input())\na=[0]+list(accumulate(map(int,input().split())))\ndp=[[0]*(n+1) for i in range(n)]\nfor w in range(2,n+1):\n for l in range(n-w+1):\n r=l+w\n dp[l][r]=min(dp[l][m]+dp[m][r] for m in range(l+1,r)) + a[r]-a[l]\nprint(dp[0][n])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "ru=[0]\n", "dp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\n", "dp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n", "a=list(map(int,input().split()))\n\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n", "a=list(map(int,input().split()))\n\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n \ndef f(l,r):\n", "a=list(map(int,input().split()))\n\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n \ndef f(l,r):\n \n\nans=f(0,n-1)\n", "a=list(map(int,input().split()))\n\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n \ndef f(l,r):\n \n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\n\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n \ndef f(l,r):\n \n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n \ndef f(l,r):\n \n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n \n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n \n \nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n \nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n \n for m in :\n \n \nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n \n if l==r:\n return 0\n \n for m in :\n \n \nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n \n for m in :\n \n \nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n \n for m in :\n \n \n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n \n for m in :\n \n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n fans=10**20\n for m in :\n \n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n fans=10**20\n for m in range(l,r):\n \n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if :\n \n flag[l][r]=1\n if l==r:\n return 0\n fans=10**20\n for m in range(l,r):\n fans=min(fans,f(l,m)+f(m+1,r))\n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if flag[l][r]==1:\n \n flag[l][r]=1\n if l==r:\n return 0\n fans=10**20\n for m in range(l,r):\n fans=min(fans,f(l,m)+f(m+1,r))\n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n", "n=int(input())\na=list(map(int,input().split()))\nflag=[[0 for j in range(n)] for i in range(n)]\ndp=[[0 for j in range(n)] for i in range(n)]\nru=[0]\nfor i in range(n):\n ru.append(ru[-1]+a[i])\ndef f(l,r):\n if flag[l][r]==1:\n return dp[l][r]\n flag[l][r]=1\n if l==r:\n return 0\n fans=10**20\n for m in range(l,r):\n fans=min(fans,f(l,m)+f(m+1,r))\n dp[l][r]=fans+ru[r+1]-ru[l]\n return dp[l][r]\n\nans=f(0,n-1)\nprint(ans)\n" ]
23
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\n# 合成するときの必要経費を構成\n\n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nINF=10**15\n\n\n# 合成するときの必要経費を構成\n\n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nINF=10**15\n\n\n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \n\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\n\n\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\n\nINF=10**15\n\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\n\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\n\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n\nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\n\nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in :\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in :\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(1,n):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in range(n-1):\n \ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(1,n):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(1,n):\n \nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \n# 合成するときの必要経費を構成\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(1,n):\n for j in range(n-i):\n ans=INF\n for k in range(j,i+j):\n ans=min(ans,dp[j][k]+dp[k+1][i+j])\n dp[j][i+j]+=ans\nprint(dp[0][-1])\n", "# dp[l][r]=min(区間[l,r]を合成するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\n# 合成するときの必要経費を構成\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\ndp[0][-1]=0\n# dp[i][j]=min(dp[i][k]+dp[k+1][j])+必要経費 で斜め(0,1),(1,2),(0,2),(1,3),...の順に見ていく\n# ループの書き方に手間取った\nfor i in range(1,n):\n for j in range(n-i):\n ans=INF\n for k in range(j,i+j):\n ans=min(ans,dp[j][k]+dp[k+1][i+j])\n dp[j][i+j]+=ans\nprint(dp[0][-1])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]