id
stringclasses
1 value
instruction
stringclasses
206 values
trajectory
listlengths
2
297
length
int64
2
297
public_tests
listlengths
1
6
generated_tests
listlengths
4
100
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "for i in a:c[i]+=1\n", "for i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\n", "_,a=open(0)\n\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\n", "_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\n", "_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\nprint(' '.join(str(s-c[i]+1)for i in a))\n", "c=[0]*8**6\n_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\nprint(' '.join(str(s-c[i]+1)for i in a))\n" ]
7
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "Sc = 0\n", "K = list(map(int, input().split()))\n\n\nSc = 0\n", "K = list(map(int, input().split()))\nC = [0]*(N+1)\n\nSc = 0\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\n\nSc = 0\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n \nSc = 0\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n \nSc = 0\nfor c in C:\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n \nSc = 0\nfor c in C:\n \nfor k in K:\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n C[k] += 1\nSc = 0\nfor c in C:\n \nfor k in K:\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n C[k] += 1\nSc = 0\nfor c in C:\n \nfor k in K:\n print(Sc-(C[k]-1))\n", "N = int(input())\nK = list(map(int, input().split()))\nC = [0]*(N+1)\nfor k in K:\n C[k] += 1\nSc = 0\nfor c in C:\n Sc += c*(c-1)//2\nfor k in K:\n print(Sc-(C[k]-1))\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "ans = 0\n", "C = collections.Counter(A)\n\nans = 0\n", "N = int(input())\n\nC = collections.Counter(A)\n\nans = 0\n", "N = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\nfor i in :\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\nfor i in :\n \nfor j in A:\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\nfor i in C.values():\n \nfor j in A:\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\nfor i in C.values():\n \nfor j in A:\n print(ans-C[j]+1)\n", "import collections\nN = int(input())\nA = list(map(int,input().split()))\nC = collections.Counter(A)\n\nans = 0\nfor i in C.values():\n ans += int(0.5* i * (i-1))\nfor j in A:\n print(ans-C[j]+1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "ans = 0\n", "N = int(input())\n\n\nans = 0\n", "N = int(input())\nA = [int(i) for i in input().split()]\n\n\nans = 0\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\n\nans = 0\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\n\nans = 0\nfor k, v in :\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\n\nans = 0\nfor k, v in :\n \n\nfor a in A:\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\nC = collections.Counter(A)\nans = 0\nfor k, v in :\n \n\nfor a in A:\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\nC = collections.Counter(A)\nans = 0\nfor k, v in :\n ans += v*(v-1)//2\n\nfor a in A:\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\nC = collections.Counter(A)\nans = 0\nfor k, v in C.items():\n ans += v*(v-1)//2\n\nfor a in A:\n", "import collections\nN = int(input())\nA = [int(i) for i in input().split()]\n\nC = collections.Counter(A)\nans = 0\nfor k, v in C.items():\n ans += v*(v-1)//2\n\nfor a in A:\n print(ans-C[a]+1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "s = sum([i*(i-1)//2 for i in d.values()])\n", "n = int(input())\n\n\ns = sum([i*(i-1)//2 for i in d.values()])\n", "n = int(input())\n\nd = collections.Counter(a)\ns = sum([i*(i-1)//2 for i in d.values()])\n", "n = int(input())\na = list(map(int,input().split()))\nd = collections.Counter(a)\ns = sum([i*(i-1)//2 for i in d.values()])\n", "import collections\n\nn = int(input())\na = list(map(int,input().split()))\nd = collections.Counter(a)\ns = sum([i*(i-1)//2 for i in d.values()])\n", "import collections\n\nn = int(input())\na = list(map(int,input().split()))\nd = collections.Counter(a)\ns = sum([i*(i-1)//2 for i in d.values()])\n\nfor j in a:\n", "import collections\n\nn = int(input())\na = list(map(int,input().split()))\nd = collections.Counter(a)\ns = sum([i*(i-1)//2 for i in d.values()])\n\nfor j in a:\n print(s-d[j]+1)\n" ]
8
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "for k in a:\n", "s = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n", "c = Counter(a)\ns = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n", "_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n", "from import Counter\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n", "from collections import Counter\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n", "from collections import Counter\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(c*~-c // 2 for c in c.values())\nfor k in a:\n print(s - c[k] + 1)\n" ]
8
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "b=[0]*N\nsum=0\n", "N=int(input())\n\nb=[0]*N\nsum=0\n", "N=int(input())\n\nb=[0]*N\nsum=0\n\n\nfor i in range(N):\n", "N=int(input())\n\nb=[0]*N\nsum=0\nfor i in range(N):\n \n\nfor i in range(N):\n", "N=int(input())\n\nb=[0]*N\nsum=0\nfor i in range(N):\n \n\nfor i in range(N):\n \nfor i in range(N):\n", "N=int(input())\na=list(map(int,input().split()))\nb=[0]*N\nsum=0\nfor i in range(N):\n \n\nfor i in range(N):\n \nfor i in range(N):\n", "N=int(input())\na=list(map(int,input().split()))\nb=[0]*N\nsum=0\nfor i in range(N):\n \n\nfor i in range(N):\n \nfor i in range(N):\n print(sum-b[a[i]-1]+1)\n", "N=int(input())\na=list(map(int,input().split()))\nb=[0]*N\nsum=0\nfor i in range(N):\n \n\nfor i in range(N):\n sum+=b[i]*(b[i]-1)//2\nfor i in range(N):\n print(sum-b[a[i]-1]+1)\n", "N=int(input())\na=list(map(int,input().split()))\nb=[0]*N\nsum=0\nfor i in range(N):\n b[a[i]-1]+=1\n\nfor i in range(N):\n sum+=b[i]*(b[i]-1)//2\nfor i in range(N):\n print(sum-b[a[i]-1]+1)\n" ]
10
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "for i in B:\n", "N= int(input())\n\n\nfor i in B:\n", "N= int(input())\n\n\nfor i in A:\n \n\nfor i in B:\n", "N= int(input())\n\n\nfor i in A:\n \n\nfor i in B:\n \n\nfor i in range(N):\n", "N= int(input())\n\n\nfor i in A:\n \n\nB_sum = 0\nfor i in B:\n \n\nfor i in range(N):\n", "N= int(input())\nA = list(map(int,input().split()))\n\n\nfor i in A:\n \n\nB_sum = 0\nfor i in B:\n \n\nfor i in range(N):\n", "N= int(input())\nA = list(map(int,input().split()))\nB = [0] * N\n\nfor i in A:\n \n\nB_sum = 0\nfor i in B:\n \n\nfor i in range(N):\n", "N= int(input())\nA = list(map(int,input().split()))\nB = [0] * N\n\nfor i in A:\n \n\nB_sum = 0\nfor i in B:\n \n\nfor i in range(N):\n print(B_sum-B[A[i]-1]+1)\n", "N= int(input())\nA = list(map(int,input().split()))\nB = [0] * N\n\nfor i in A:\n \n\nB_sum = 0\nfor i in B:\n B_sum += i * (i-1) //2\n\nfor i in range(N):\n print(B_sum-B[A[i]-1]+1)\n", "N= int(input())\nA = list(map(int,input().split()))\nB = [0] * N\n\nfor i in A:\n B[i-1] +=1\n\nB_sum = 0\nfor i in B:\n B_sum += i * (i-1) //2\n\nfor i in range(N):\n print(B_sum-B[A[i]-1]+1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "前者=0\n", "A=list(map(int,input().split()))\n\n\n前者=0\n", "A=list(map(int,input().split()))\n数え=[0]*N\n\n前者=0\n", "A=list(map(int,input().split()))\n数え=[0]*N\n\n前者=0\n\nfor i in A:\n", "A=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n \n前者=0\n\nfor i in A:\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n \n前者=0\n\nfor i in A:\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n \n前者=0\nfor i in 数え:\n \nfor i in A:\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n \n前者=0\nfor i in 数え:\n 前者+=i*(i-1)//2\nfor i in A:\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n 数え[i-1]+=1\n前者=0\nfor i in 数え:\n 前者+=i*(i-1)//2\nfor i in A:\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n 数え[i-1]+=1\n前者=0\nfor i in 数え:\n 前者+=i*(i-1)//2\nfor i in A:\n \n print(前者-後者)\n", "N=int(input())\nA=list(map(int,input().split()))\n数え=[0]*N\nfor i in A:\n 数え[i-1]+=1\n前者=0\nfor i in 数え:\n 前者+=i*(i-1)//2\nfor i in A:\n 後者=数え[i-1]-1\n print(前者-後者)\n" ]
12
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "from import Counter\n", "from import Counter\nctr = Counter(A)\n", "from import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\n", "from import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\nfor a in A:\n", "A = list(map(int,input().split()))\nfrom import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\nfor a in A:\n", "N = int(input())\nA = list(map(int,input().split()))\nfrom import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\nfor a in A:\n", "N = int(input())\nA = list(map(int,input().split()))\nfrom collections import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\nfor a in A:\n", "N = int(input())\nA = list(map(int,input().split()))\nfrom collections import Counter\nctr = Counter(A)\ntmp = sum(v*(v-1)//2 for v in ctr.values())\nfor a in A:\n print(tmp - ctr[a] + 1)\n" ]
9
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "tmp = 0\n", "for v in a:\n \n\ntmp = 0\n", "a = [int(x) for x in input().split()]\n\n\nfor v in a:\n \n\ntmp = 0\n", "n = int(input())\na = [int(x) for x in input().split()]\n\n\nfor v in a:\n \n\ntmp = 0\n", "n = int(input())\na = [int(x) for x in input().split()]\n\n\nfor v in a:\n \n\ntmp = 0\nfor c in cnt:\n", "n = int(input())\na = [int(x) for x in input().split()]\n\ncnt = [0] * (n+1)\nfor v in a:\n \n\ntmp = 0\nfor c in cnt:\n", "n = int(input())\na = [int(x) for x in input().split()]\n\ncnt = [0] * (n+1)\nfor v in a:\n \n\ntmp = 0\nfor c in cnt:\n \nfor v in a:\n", "n = int(input())\na = [int(x) for x in input().split()]\n\ncnt = [0] * (n+1)\nfor v in a:\n \n\ntmp = 0\nfor c in cnt:\n \nfor v in a:\n print(tmp - cnt[v] + 1)\n", "n = int(input())\na = [int(x) for x in input().split()]\n\ncnt = [0] * (n+1)\nfor v in a:\n \n\ntmp = 0\nfor c in cnt:\n tmp += c * (c-1) // 2\nfor v in a:\n print(tmp - cnt[v] + 1)\n", "n = int(input())\na = [int(x) for x in input().split()]\n\ncnt = [0] * (n+1)\nfor v in a:\n cnt[v] += 1\n\ntmp = 0\nfor c in cnt:\n tmp += c * (c-1) // 2\nfor v in a:\n print(tmp - cnt[v] + 1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "import collections as cl\n", "import collections as cl\n\n\nfor k in range(N):\n", "import collections as cl\n\n\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n", "import collections as cl\n\n\ncn = cl.Counter(A)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n", "import collections as cl\nN = int(input())\n\ncn = cl.Counter(A)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n", "import collections as cl\nN = int(input())\nA = list(map(int,input().split()))\ncn = cl.Counter(A)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n", "import collections as cl\nN = int(input())\nA = list(map(int,input().split()))\ncn = cl.Counter(A)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n print(sumC - cn[A[k]] +1)\n" ]
8
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "ans = 0\n", "N = int(input())\n\n\nans = 0\n", "N = int(input())\n\n\nans = 0\nfor i in C:\n", "N = int(input())\n\n\nC = [0] * (N + 1)\n\n\nans = 0\nfor i in C:\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\n\n\nans = 0\nfor i in C:\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\n\n\nans = 0\nfor i in C:\n \n\nfor i in range(N):\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\nfor i in A:\n \n\nans = 0\nfor i in C:\n \n\nfor i in range(N):\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\nfor i in A:\n C[i] += 1\n\nans = 0\nfor i in C:\n \n\nfor i in range(N):\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\nfor i in A:\n C[i] += 1\n\nans = 0\nfor i in C:\n \n\nfor i in range(N):\n print(ans - C[A[i]] + 1)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nC = [0] * (N + 1)\nfor i in A:\n C[i] += 1\n\nans = 0\nfor i in C:\n ans += i * (i - 1) // 2\n\nfor i in range(N):\n print(ans - C[A[i]] + 1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "b={}\n", "a=list(map(int,input().split()))\nb={}\n", "a=list(map(int,input().split()))\nb={}\n\n\nfor i in a:\n", "a=list(map(int,input().split()))\nb={}\nfor i in a:\n \n\nfor i in a:\n", "a=list(map(int,input().split()))\nb={}\nfor i in a:\n \ns=sum([i*(i-1)//2 for i in b.values()])\nfor i in a:\n", "n=int(input())\na=list(map(int,input().split()))\nb={}\nfor i in a:\n \ns=sum([i*(i-1)//2 for i in b.values()])\nfor i in a:\n", "n=int(input())\na=list(map(int,input().split()))\nb={}\nfor i in a:\n b[i]=b.get(i,0)+1\ns=sum([i*(i-1)//2 for i in b.values()])\nfor i in a:\n", "n=int(input())\na=list(map(int,input().split()))\nb={}\nfor i in a:\n b[i]=b.get(i,0)+1\ns=sum([i*(i-1)//2 for i in b.values()])\nfor i in a:\n print(s-b[i]+1)\n" ]
9
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "N = int(input())\n", "N = int(input())\n\n\nfor i in A:\n", "N = int(input())\n\n\nfor i in A:\n \n\nfor k in range(N):\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nfor i in A:\n \n\nfor k in range(N):\n", "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n \n\nfor k in range(N):\n", "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n \nsum_original = sum([j*(j-1)//2 for j in B])\nfor k in range(N):\n", "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n B[i] += 1\nsum_original = sum([j*(j-1)//2 for j in B])\nfor k in range(N):\n", "N = int(input())\nA = list(map(int, input().split()))\nB = [0] * (N+1)\n\nfor i in A:\n B[i] += 1\nsum_original = sum([j*(j-1)//2 for j in B])\nfor k in range(N):\n print(sum_original - B[A[k]] + 1)\n" ]
9
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "s = 0\n", "B = collections.Counter(A)\n\ns = 0\n", "n = int(input())\n\nB = collections.Counter(A)\n\ns = 0\n", "n = int(input())\n\nB = collections.Counter(A)\n\ns = 0\n\nfor a in A:\n", "n = int(input())\n\nB = collections.Counter(A)\n\ns = 0\nfor k, i in :\n \nfor a in A:\n", "n = int(input())\nA = list(map(int, input().split()))\nB = collections.Counter(A)\n\ns = 0\nfor k, i in :\n \nfor a in A:\n", "import collections\n\nn = int(input())\nA = list(map(int, input().split()))\nB = collections.Counter(A)\n\ns = 0\nfor k, i in :\n \nfor a in A:\n", "import collections\n\nn = int(input())\nA = list(map(int, input().split()))\nB = collections.Counter(A)\n\ns = 0\nfor k, i in :\n s += i*(i-1) // 2\nfor a in A:\n", "import collections\n\nn = int(input())\nA = list(map(int, input().split()))\nB = collections.Counter(A)\n\ns = 0\nfor k, i in B.items():\n s += i*(i-1) // 2\nfor a in A:\n", "import collections\n\nn = int(input())\nA = list(map(int, input().split()))\nB = collections.Counter(A)\n\ns = 0\nfor k, i in B.items():\n s += i*(i-1) // 2\nfor a in A:\n print(s-(B[a]-1))\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "ans=0\n", "ans=0\n\nfor i in range(n):\n", "ans=0\nfor i in d:\n \nfor i in range(n):\n", "l=list(map(int,input().split()))\n\n\nans=0\nfor i in d:\n \nfor i in range(n):\n", "n=int(input())\nl=list(map(int,input().split()))\n\n\nans=0\nfor i in d:\n \nfor i in range(n):\n", "n=int(input())\nl=list(map(int,input().split()))\nd=[0]*(n+1)\n\nans=0\nfor i in d:\n \nfor i in range(n):\n", "n=int(input())\nl=list(map(int,input().split()))\nd=[0]*(n+1)\nfor i in l:\n d[i]+=1\nans=0\nfor i in d:\n \nfor i in range(n):\n", "n=int(input())\nl=list(map(int,input().split()))\nd=[0]*(n+1)\nfor i in l:\n d[i]+=1\nans=0\nfor i in d:\n \nfor i in range(n):\n print(ans-d[l[i]]+1)\n", "n=int(input())\nl=list(map(int,input().split()))\nd=[0]*(n+1)\nfor i in l:\n d[i]+=1\nans=0\nfor i in d:\n ans+=i*(i-1)//2\nfor i in range(n):\n print(ans-d[l[i]]+1)\n" ]
10
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "ans = 0\n", "from import Counter\n\n\nans = 0\n", "from import Counter\n\n\nans = 0\n\nfor i in range(n):\n", "from import Counter\nn = int(input())\n\n\nans = 0\n\nfor i in range(n):\n", "from import Counter\nn = int(input())\n\n\nans = 0\nfor x in :\n \nfor i in range(n):\n", "from import Counter\nn = int(input())\n\nc = Counter(a)\nans = 0\nfor x in :\n \nfor i in range(n):\n", "from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in :\n \nfor i in range(n):\n", "from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in :\n ans += x*(x-1)//2\nfor i in range(n):\n", "from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in c.values():\n ans += x*(x-1)//2\nfor i in range(n):\n", "from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in c.values():\n ans += x*(x-1)//2\nfor i in range(n):\n", "from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in c.values():\n ans += x*(x-1)//2\nfor i in range(n):\n t = c[a[i]]\n", "from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nans = 0\nfor x in c.values():\n ans += x*(x-1)//2\nfor i in range(n):\n t = c[a[i]]\n print(ans-t+1)\n" ]
13
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "d = {}\n\ns = 0\n", "n = int(input())\n\nd = {}\n\ns = 0\n", "n = int(input())\n\nd = {}\n\ns = 0\nfor i in d:\n", "n = int(input())\n\nd = {}\nfor i in a:\n \ns = 0\nfor i in d:\n", "n = int(input())\n\nd = {}\nfor i in a:\n \ns = 0\nfor i in d:\n \nfor i in a:\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n \ns = 0\nfor i in d:\n \nfor i in a:\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n \ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n \n \ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n \n \ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n print(s - d[i] + 1)\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n \n d[i] += 1\ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n print(s - d[i] + 1)\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n if :\n d[i] = 0\n d[i] += 1\ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n print(s - d[i] + 1)\n", "n = int(input())\na = list(map(int, input().split()))\nd = {}\nfor i in a:\n if d.get(i, -1) == -1:\n d[i] = 0\n d[i] += 1\ns = 0\nfor i in d:\n s += d[i] * (d[i] - 1) // 2\nfor i in a:\n print(s - d[i] + 1)\n" ]
13
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "kw = Counter(A)\n", "N=int(input())\n\nkw = Counter(A)\n", "N=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\n", "N=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\nans = sum([x * (x - 1) // 2 for x in kw.values()])\n", "N=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\nans = sum([x * (x - 1) // 2 for x in kw.values()])\nfor i in A:\n", "from import Counter\nN=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\nans = sum([x * (x - 1) // 2 for x in kw.values()])\nfor i in A:\n", "from collections import Counter\nN=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\nans = sum([x * (x - 1) // 2 for x in kw.values()])\nfor i in A:\n", "from collections import Counter\nN=int(input())\nA=[int(i) for i in input().split()]\nkw = Counter(A)\nans = sum([x * (x - 1) // 2 for x in kw.values()])\nfor i in A:\n print(ans-kw[i]+1)\n" ]
9
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "s = 0\n", "s = 0\n\n\nfor i in range(n):\n", "n = int(input())\n\n\ns = 0\n\n\nfor i in range(n):\n", "n = int(input())\n\n\ns = 0\nfor i in a:\n \n\nfor i in range(n):\n", "n = int(input())\n\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n \n\nfor i in range(n):\n", "n = int(input())\na = list(map(int,input().split()))\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n \n\nfor i in range(n):\n", "n = int(input())\na = list(map(int,input().split()))\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n \nfor i in num:\n \nfor i in range(n):\n", "n = int(input())\na = list(map(int,input().split()))\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n \nfor i in num:\n \nfor i in range(n):\n print(s-num[a[i]]+1)\n", "n = int(input())\na = list(map(int,input().split()))\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n num[i] += 1\nfor i in num:\n \nfor i in range(n):\n print(s-num[a[i]]+1)\n", "n = int(input())\na = list(map(int,input().split()))\nnum = [0]*(n+1)\ns = 0\nfor i in a:\n num[i] += 1\nfor i in num:\n s += i*(i-1)//2\nfor i in range(n):\n print(s-num[a[i]]+1)\n" ]
11
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
We have N balls. The i-th ball has an integer A_i written on it. For each k=1, 2, ..., N, solve the following problem and print the answer. * Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal. Constraints * 3 \leq N \leq 2 \times 10^5 * 1 \leq A_i \leq N * All values in input are integers. Input Input is given from Standard Input in the following format: N A_1 A_2 ... A_N Output For each k=1,2,...,N, print a line containing the answer. Examples Input 5 1 1 2 1 2 Output 2 2 3 2 3 Input 4 1 2 3 4 Output 0 0 0 0 Input 5 3 3 3 3 3 Output 6 6 6 6 6 Input 8 1 2 1 4 2 1 4 1 Output 5 7 5 7 7 5 7 5
[ "\n", "r=0\n", "r=0\n\nfor i in :\n", "c=collections.Counter(a)\nr=0\n\nfor i in :\n", "a=list(map(int,input().split()))\n\nc=collections.Counter(a)\nr=0\n\nfor i in :\n", "a=list(map(int,input().split()))\n\nc=collections.Counter(a)\nr=0\nfor i in :\n \nfor i in :\n", "n=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nr=0\nfor i in :\n \nfor i in :\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in :\n \nfor i in :\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in :\n \nfor i in range(0,n):\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in :\n r+=int(i*(i-1)/2)\nfor i in range(0,n):\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in c.values():\n r+=int(i*(i-1)/2)\nfor i in range(0,n):\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in c.values():\n r+=int(i*(i-1)/2)\nfor i in range(0,n):\n \n print(r-k+1)\n", "n=int(input())\na=list(map(int,input().split()))\nimport collections\nc=collections.Counter(a)\nr=0\nfor i in c.values():\n r+=int(i*(i-1)/2)\nfor i in range(0,n):\n k=c[a[i]]\n print(r-k+1)\n" ]
13
[ { "input": "8\n1 2 1 4 2 1 4 1", "output": "5\n7\n5\n7\n7\n5\n7\n5" }, { "input": "5\n1 1 2 1 2", "output": "2\n2\n3\n2\n3" }, { "input": "4\n1 2 3 4", "output": "0\n0\n0\n0" }, { "input": "5\n3 3 3 3 3", "output": "6\n6\n6\n6\n6" } ]
[ { "input": "8\n1 2 1 6 2 1 4 1", "output": "4\n6\n4\n7\n6\n4\n7\n4\n" }, { "input": "5\n0 1 2 1 2", "output": "2\n1\n1\n1\n1\n" }, { "input": "4\n2 2 3 4", "output": "0\n0\n1\n1\n" }, { "input": "5\n3 3 2 3 3", "output": "3\n3\n6\n3\n3\n" }, { "input": "8\n1 3 1 6 2 1 4 1", "output": "3\n6\n3\n6\n6\n3\n6\n3\n" }, { "input": "5\n0 1 2 1 0", "output": "1\n1\n2\n1\n1\n" }, { "input": "5\n0 3 2 3 3", "output": "3\n1\n3\n1\n1\n" }, { "input": "8\n1 3 1 6 2 0 4 1", "output": "1\n3\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 2 1 6 2 0 4 1", "output": "2\n3\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 1 1 6 2 0 4 1", "output": "3\n3\n3\n6\n6\n6\n6\n3\n" }, { "input": "5\n1 0 2 1 1", "output": "1\n3\n3\n1\n1\n" }, { "input": "8\n1 1 1 3 1 0 4 1", "output": "6\n6\n6\n10\n6\n10\n10\n6\n" }, { "input": "5\n0 0 2 1 0", "output": "1\n1\n3\n3\n1\n" }, { "input": "5\n0 -1 2 1 0", "output": "0\n1\n1\n1\n0\n" }, { "input": "8\n2 1 1 5 1 0 4 1", "output": "6\n3\n3\n6\n3\n6\n6\n3\n" }, { "input": "8\n2 2 1 5 1 0 4 1", "output": "3\n3\n2\n4\n2\n4\n4\n2\n" }, { "input": "8\n1 2 1 4 2 2 4 1", "output": "5\n5\n5\n6\n5\n5\n6\n5\n" }, { "input": "5\n1 2 2 1 2", "output": "3\n2\n2\n3\n2\n" }, { "input": "4\n1 2 2 4", "output": "1\n0\n0\n1\n" }, { "input": "5\n3 3 3 0 3", "output": "3\n3\n3\n6\n3\n" }, { "input": "5\n1 1 4 1 2", "output": "1\n1\n3\n1\n3\n" }, { "input": "8\n1 6 1 6 2 1 4 1", "output": "4\n6\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n0 3 1 6 2 0 4 1", "output": "1\n2\n1\n2\n2\n1\n2\n1\n" }, { "input": "8\n2 2 1 6 2 0 4 1", "output": "2\n2\n3\n4\n2\n4\n4\n3\n" }, { "input": "5\n1 1 2 2 1", "output": "2\n2\n3\n3\n2\n" }, { "input": "8\n2 1 1 6 2 0 4 1", "output": "3\n2\n2\n4\n3\n4\n4\n2\n" }, { "input": "8\n1 0 1 3 2 0 4 1", "output": "2\n3\n2\n4\n4\n3\n4\n2\n" }, { "input": "5\n1 -1 2 1 0", "output": "0\n1\n1\n0\n1\n" }, { "input": "8\n1 1 1 1 1 0 4 1", "output": "10\n10\n10\n10\n10\n15\n15\n10\n" }, { "input": "8\n2 1 1 5 0 0 4 1", "output": "4\n2\n2\n4\n3\n3\n4\n2\n" }, { "input": "8\n2 2 0 5 1 0 4 1", "output": "2\n2\n2\n3\n2\n2\n3\n2\n" }, { "input": "8\n1 2 1 4 2 2 7 1", "output": "4\n4\n4\n6\n4\n4\n6\n4\n" }, { "input": "5\n1 4 2 1 2", "output": "1\n2\n1\n1\n1\n" }, { "input": "4\n2 2 2 4", "output": "1\n1\n1\n3\n" }, { "input": "4\n2 2 3 2", "output": "1\n1\n3\n1\n" }, { "input": "5\n4 3 2 3 5", "output": "1\n0\n1\n0\n1\n" }, { "input": "8\n0 6 1 6 2 1 4 1", "output": "4\n3\n2\n3\n4\n2\n4\n2\n" }, { "input": "5\n0 3 2 2 4", "output": "1\n1\n0\n0\n1\n" }, { "input": "8\n0 3 1 3 2 0 4 1", "output": "2\n2\n2\n2\n3\n2\n3\n2\n" }, { "input": "8\n2 4 1 6 2 0 4 1", "output": "2\n2\n2\n3\n2\n3\n2\n2\n" }, { "input": "8\n1 0 1 0 2 0 4 1", "output": "4\n4\n4\n4\n6\n4\n6\n4\n" }, { "input": "8\n1 1 1 3 1 0 3 1", "output": "7\n7\n7\n10\n7\n11\n10\n7\n" }, { "input": "5\n1 -1 2 0 0", "output": "1\n1\n1\n0\n0\n" }, { "input": "8\n2 1 0 5 0 0 4 1", "output": "4\n3\n2\n4\n2\n2\n4\n3\n" }, { "input": "8\n2 2 0 2 1 0 4 1", "output": "3\n3\n4\n3\n4\n4\n5\n4\n" }, { "input": "4\n0 2 3 2", "output": "1\n0\n1\n0\n" }, { "input": "8\n0 6 1 7 2 1 4 1", "output": "3\n3\n1\n3\n3\n1\n3\n1\n" }, { "input": "8\n0 3 1 3 0 0 4 1", "output": "3\n4\n4\n4\n3\n3\n5\n4\n" }, { "input": "8\n2 4 1 6 2 0 4 0", "output": "2\n2\n3\n3\n2\n2\n2\n2\n" }, { "input": "8\n1 0 1 0 1 0 4 1", "output": "6\n7\n6\n7\n6\n7\n9\n6\n" }, { "input": "5\n1 1 2 -1 0", "output": "0\n0\n1\n1\n1\n" }, { "input": "8\n1 1 0 1 1 0 6 1", "output": "7\n7\n10\n7\n7\n10\n11\n7\n" }, { "input": "8\n2 0 0 5 0 0 4 1", "output": "6\n3\n3\n6\n3\n3\n6\n6\n" }, { "input": "8\n2 2 0 1 1 0 4 1", "output": "4\n4\n4\n3\n3\n4\n5\n3\n" }, { "input": "8\n1 2 1 7 3 1 3 1", "output": "4\n7\n4\n7\n6\n4\n6\n4\n" }, { "input": "8\n0 3 0 3 0 0 4 1", "output": "4\n6\n4\n6\n4\n4\n7\n7\n" }, { "input": "8\n2 4 1 6 2 0 4 -1", "output": "1\n1\n2\n2\n1\n2\n1\n2\n" }, { "input": "8\n1 0 2 0 1 0 4 1", "output": "4\n4\n6\n4\n4\n4\n6\n4\n" }, { "input": "8\n1 1 0 3 1 -1 3 1", "output": "4\n4\n7\n6\n4\n7\n6\n4\n" }, { "input": "5\n1 1 0 -1 0", "output": "1\n1\n1\n2\n1\n" }, { "input": "8\n1 1 0 1 1 1 6 1", "output": "10\n10\n15\n10\n10\n10\n15\n10\n" }, { "input": "8\n2 0 0 5 0 0 0 1", "output": "10\n6\n6\n10\n6\n6\n6\n10\n" }, { "input": "8\n1 2 1 4 1 1 7 1", "output": "6\n10\n6\n10\n6\n6\n10\n6\n" }, { "input": "5\n3 1 1 3 5", "output": "1\n1\n1\n1\n2\n" }, { "input": "8\n-1 3 0 3 0 0 4 1", "output": "4\n3\n2\n3\n2\n2\n4\n4\n" }, { "input": "8\n3 4 1 6 2 0 4 -1", "output": "1\n0\n1\n1\n1\n1\n0\n1\n" }, { "input": "8\n2 1 1 6 0 -1 3 1", "output": "3\n1\n1\n3\n3\n3\n3\n1\n" }, { "input": "8\n1 0 2 1 1 0 4 1", "output": "4\n6\n7\n4\n4\n6\n7\n4\n" }, { "input": "8\n1 2 0 3 1 -1 3 1", "output": "2\n4\n4\n3\n2\n4\n3\n2\n" }, { "input": "5\n1 1 0 0 0", "output": "3\n3\n2\n2\n2\n" }, { "input": "8\n1 1 0 1 2 1 6 1", "output": "6\n6\n10\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 1", "output": "6\n6\n5\n5\n5\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 1 1 7 2", "output": "4\n6\n4\n7\n4\n4\n7\n6\n" }, { "input": "5\n2 1 1 3 5", "output": "1\n0\n0\n1\n1\n" }, { "input": "5\n1 4 0 3 2", "output": "0\n0\n0\n0\n0\n" }, { "input": "8\n2 0 1 6 0 0 3 1", "output": "4\n2\n3\n4\n2\n2\n4\n3\n" }, { "input": "8\n1 2 0 3 0 -1 3 1", "output": "2\n3\n2\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 0 1 2 1 6 1", "output": "6\n4\n7\n4\n6\n4\n7\n4\n" }, { "input": "8\n3 0 0 5 0 1 0 1", "output": "7\n4\n4\n7\n4\n6\n4\n6\n" }, { "input": "8\n2 2 0 1 1 0 0 0", "output": "7\n7\n5\n7\n7\n5\n5\n5\n" }, { "input": "8\n1 2 1 4 0 1 7 2", "output": "2\n3\n2\n4\n4\n2\n4\n3\n" }, { "input": "8\n2 0 1 6 0 0 1 1", "output": "6\n4\n4\n6\n4\n4\n4\n4\n" }, { "input": "8\n1 0 2 1 2 0 4 1", "output": "3\n4\n4\n3\n4\n4\n5\n3\n" }, { "input": "8\n2 2 0 3 0 -1 3 1", "output": "2\n2\n2\n2\n2\n3\n2\n3\n" }, { "input": "8\n2 1 0 1 4 1 6 1", "output": "6\n3\n6\n3\n6\n3\n6\n3\n" }, { "input": "8\n3 0 0 5 -1 1 0 1", "output": "4\n2\n2\n4\n4\n3\n2\n3\n" }, { "input": "8\n2 0 0 1 1 0 0 0", "output": "11\n7\n7\n10\n10\n7\n7\n7\n" }, { "input": "5\n2 1 2 4 5", "output": "0\n1\n0\n1\n1\n" }, { "input": "8\n2 0 2 6 0 0 1 1", "output": "4\n3\n4\n5\n3\n3\n4\n4\n" }, { "input": "8\n1 1 2 1 2 0 4 1", "output": "4\n4\n6\n4\n6\n7\n7\n4\n" }, { "input": "8\n2 2 0 3 1 -1 3 1", "output": "2\n2\n3\n2\n2\n3\n2\n2\n" }, { "input": "8\n2 1 1 1 4 1 6 1", "output": "10\n6\n6\n6\n10\n6\n10\n6\n" }, { "input": "8\n2 0 0 1 1 -1 0 0", "output": "7\n4\n4\n6\n6\n7\n4\n4\n" }, { "input": "8\n1 2 1 4 0 1 3 4", "output": "2\n4\n2\n3\n4\n2\n4\n3\n" }, { "input": "8\n2 0 2 6 0 1 1 1", "output": "4\n4\n4\n5\n4\n3\n3\n3\n" }, { "input": "8\n1 1 2 2 2 0 4 1", "output": "4\n4\n4\n4\n4\n6\n6\n4\n" }, { "input": "8\n2 2 0 3 1 -1 5 1", "output": "1\n1\n2\n2\n1\n2\n2\n1\n" }, { "input": "8\n2 1 1 2 4 1 6 1", "output": "6\n4\n4\n6\n7\n4\n7\n4\n" }, { "input": "8\n3 0 1 4 -1 1 0 1", "output": "4\n3\n2\n4\n4\n2\n3\n2\n" }, { "input": "8\n2 0 0 1 1 -1 0 1", "output": "6\n4\n4\n4\n4\n6\n4\n4\n" } ]
0/::0
In the Jambo Amusement Garden (JAG), you sell colorful drinks consisting of multiple color layers. This colorful drink can be made by pouring multiple colored liquids of different density from the bottom in order. You have already prepared several colored liquids with various colors and densities. You will receive a drink request with specified color layers. The colorful drink that you will serve must satisfy the following conditions. * You cannot use a mixed colored liquid as a layer. Thus, for instance, you cannot create a new liquid with a new color by mixing two or more different colored liquids, nor create a liquid with a density between two or more liquids with the same color by mixing them. * Only a colored liquid with strictly less density can be an upper layer of a denser colored liquid in a drink. That is, you can put a layer of a colored liquid with density $x$ directly above the layer of a colored liquid with density $y$ if $x < y$ holds. Your task is to create a program to determine whether a given request can be fulfilled with the prepared colored liquids under the above conditions or not. Input The input consists of a single test case in the format below. $N$ $C_1$ $D_1$ $\vdots$ $C_N$ $D_N$ $M$ $O_1$ $\vdots$ $O_M$ The first line consists of an integer $N$ ($1 \leq N \leq 10^5$), which represents the number of the prepared colored liquids. The following $N$ lines consists of $C_i$ and $D_i$ ($1 \leq i \leq N$). $C_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th prepared colored liquid. The length of $C_i$ is between $1$ and $20$ inclusive. $D_i$ is an integer and represents the density of the $i$-th prepared colored liquid. The value of $D_i$ is between $1$ and $10^5$ inclusive. The ($N+2$)-nd line consists of an integer $M$ ($1 \leq M \leq 10^5$), which represents the number of color layers of a drink request. The following $M$ lines consists of $O_i$ ($1 \leq i \leq M$). $O_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th layer from the top of the drink request. The length of $O_i$ is between $1$ and $20$ inclusive. Output If the requested colorful drink can be served by using some of the prepared colored liquids, print 'Yes'. Otherwise, print 'No'. Examples Input 2 white 20 black 10 2 black white Output Yes Input 2 white 10 black 10 2 black white Output No Input 2 white 20 black 10 2 black orange Output No Input 3 white 10 red 20 white 30 3 white red white Output Yes Input 4 red 3444 red 3018 red 3098 red 3319 4 red red red red Output Yes
[ "\n", "O=[]\n", "O=[]\n\n\nprint(\"Yes\")\n", "O=[]\n\nN = int(input())\n\n\nprint(\"Yes\")\n", "import sys\n\nO=[]\n\nN = int(input())\n\n\nprint(\"Yes\")\n", "import sys\n\nO=[]\n\nN = int(input())\n\n\nif M > N:\n \n\nprint(\"Yes\")\n", "import sys\n\nO=[]\n\nN = int(input())\n\n\nM = int(input())\nif M > N:\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\n\n\nM = int(input())\nif M > N:\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\n\n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n \n\nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \nfor i in :\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n \n\nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \nfor i in :\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n \n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \nfor i in :\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in :\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n \n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in :\n \n\nM = int(input())\nif M > N:\n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in :\n \n \nM = int(input())\nif M > N:\n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in liquids.keys():\n \n \nM = int(input())\nif M > N:\n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in liquids.keys():\n \n \nM = int(input())\nif M > N:\n \n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n \n\nM = int(input())\nif M > N:\n \n \nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n \n\nM = int(input())\nif M > N:\n \n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n \n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n \n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n \n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if :\n \n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if :\n \n else:\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if :\n liquids[C].append(int(D))\n else:\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if C in liquids.keys():\n liquids[C].append(int(D))\n else:\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if C in liquids.keys():\n liquids[C].append(int(D))\n else:\n \n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if C in liquids.keys():\n liquids[C].append(int(D))\n else:\n liquids[C]=[]\n \nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n", "import sys\nliquids={}\nO=[]\n\nN = int(input())\nfor i in range(N):\n C,D=(input().split())\n if C in liquids.keys():\n liquids[C].append(int(D))\n else:\n liquids[C]=[]\n liquids[C].append(int(D))\nfor i in liquids.keys():\n liquids[i]=list(set(liquids[i]))\n liquids[i].sort()\n\nM = int(input())\nif M > N:\n print(\"No\")\n sys.exit()\nfor i in range(M):\n O.append(input())\n\nnowdens=int(10**5+1)\n\nfor i in range(M):\n try:\n tmp=liquids[O[-(i+1)]]\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n while(maxdens>=nowdens):\n if len(tmp)==0:\n print(\"No\")\n sys.exit()\n maxdens=tmp.pop()\n nowdens=maxdens\n except KeyError:\n print(\"No\")\n sys.exit()\n\nprint(\"Yes\")\n" ]
31
[ { "input": "2\nwhite 10\nblack 10\n2\nblack\nwhite", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\norange", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nwhite", "output": "Yes" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nred\nred", "output": "Yes" }, { "input": "3\nwhite 10\nred 20\nwhite 30\n3\nwhite\nred\nwhite", "output": "Yes" } ]
[ { "input": "2\nwhite 10\nblack 10\n4\nblack\nwhite", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwhite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 18\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbladk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwiite 10\nblacj 10\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsed\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwihte 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\neqd 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 4487\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\netihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nclack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nkmacb\norange", "output": "No\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmacb\norange", "output": "Yes\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nkcalc\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwiite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 6\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmaca\norange", "output": "Yes\n" }, { "input": "2\nwiite 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n3\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\nkmaca\norange", "output": "No\n" }, { "input": "2\nwiite 49\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nqed 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n0\nbcalk\netihw", "output": "Yes\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\ncmaka\norange", "output": "No\n" } ]
0/::0
In the Jambo Amusement Garden (JAG), you sell colorful drinks consisting of multiple color layers. This colorful drink can be made by pouring multiple colored liquids of different density from the bottom in order. You have already prepared several colored liquids with various colors and densities. You will receive a drink request with specified color layers. The colorful drink that you will serve must satisfy the following conditions. * You cannot use a mixed colored liquid as a layer. Thus, for instance, you cannot create a new liquid with a new color by mixing two or more different colored liquids, nor create a liquid with a density between two or more liquids with the same color by mixing them. * Only a colored liquid with strictly less density can be an upper layer of a denser colored liquid in a drink. That is, you can put a layer of a colored liquid with density $x$ directly above the layer of a colored liquid with density $y$ if $x < y$ holds. Your task is to create a program to determine whether a given request can be fulfilled with the prepared colored liquids under the above conditions or not. Input The input consists of a single test case in the format below. $N$ $C_1$ $D_1$ $\vdots$ $C_N$ $D_N$ $M$ $O_1$ $\vdots$ $O_M$ The first line consists of an integer $N$ ($1 \leq N \leq 10^5$), which represents the number of the prepared colored liquids. The following $N$ lines consists of $C_i$ and $D_i$ ($1 \leq i \leq N$). $C_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th prepared colored liquid. The length of $C_i$ is between $1$ and $20$ inclusive. $D_i$ is an integer and represents the density of the $i$-th prepared colored liquid. The value of $D_i$ is between $1$ and $10^5$ inclusive. The ($N+2$)-nd line consists of an integer $M$ ($1 \leq M \leq 10^5$), which represents the number of color layers of a drink request. The following $M$ lines consists of $O_i$ ($1 \leq i \leq M$). $O_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th layer from the top of the drink request. The length of $O_i$ is between $1$ and $20$ inclusive. Output If the requested colorful drink can be served by using some of the prepared colored liquids, print 'Yes'. Otherwise, print 'No'. Examples Input 2 white 20 black 10 2 black white Output Yes Input 2 white 10 black 10 2 black white Output No Input 2 white 20 black 10 2 black orange Output No Input 3 white 10 red 20 white 30 3 white red white Output Yes Input 4 red 3444 red 3018 red 3098 red 3319 4 red red red red Output Yes
[ "\n", "#!usr/bin/env python3\n\n\n#Solve\n", "#!usr/bin/env python3\n\n\ndef LS():\n\n\n#Solve\n", "#!usr/bin/env python3\n\n\ndef LS():\ndef S(): \n\n\n#Solve\n", "#!usr/bin/env python3\n\n\ndef I(): \ndef LS():\ndef S(): \n\n\n#Solve\n", "#!usr/bin/env python3\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \n\n#Solve\n", "#!usr/bin/env python3\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \n\nsys.setrecursionlimit(1000000)\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \n\nsys.setrecursionlimit(1000000)\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\n\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \n\nsys.setrecursionlimit(1000000)\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\n\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\n\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\nimport math\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\nimport math\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \n\ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\nimport math\nimport bisect\n\n\ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\nimport math\nimport bisect\n\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\n\nimport math\nimport bisect\n\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\n\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\n\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\n\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif :\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n \n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n \ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n \ndef LIR(n):\n \ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n \ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): \ndef LS():\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): \ndef I(): return int(sys.stdin.readline())\ndef LS():\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import ,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n \n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): \ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n \n \n m = I()\n s = 0\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n \n \n m = I()\n s = 0\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n \n for i in range(n):\n \n \n m = I()\n s = 0\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n \n for i in range(n):\n \n \n m = I()\n s = 0\n for i in range(m):\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n m = I()\n s = 0\n for i in range(m):\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n for i in d.keys():\n \n m = I()\n s = 0\n for i in range(m):\n \n \n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n for i in d.keys():\n \n m = I()\n s = 0\n for i in range(m):\n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n for i in d.keys():\n \n m = I()\n s = 0\n for i in range(m):\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n \n \n if :\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n \n if :\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n j = bisect.bisect_right(d[o],s)\n if :\n \n \n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n j = bisect.bisect_right(d[o],s)\n if :\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n \n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n j = bisect.bisect_right(d[o],s)\n if :\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n \n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n j = bisect.bisect_right(d[o],s)\n if :\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n j = bisect.bisect_right(d[o],s)\n if :\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n return\n j = bisect.bisect_right(d[o],s)\n if :\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n return\n j = bisect.bisect_right(d[o],s)\n if j == len(d[o]):\n \n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n \n return\n j = bisect.bisect_right(d[o],s)\n if j == len(d[o]):\n \n return\n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n print(\"No\")\n return\n j = bisect.bisect_right(d[o],s)\n if j == len(d[o]):\n \n return\n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n", "#!usr/bin/env python3\nfrom collections import defaultdict,deque\nfrom heapq import heappush, heappop\nimport sys\nimport math\nimport bisect\nimport random\ndef LI(): return [int(x) for x in sys.stdin.readline().split()]\ndef I(): return int(sys.stdin.readline())\ndef LS():return [list(x) for x in sys.stdin.readline().split()]\ndef S(): return list(sys.stdin.readline())[:-1]\ndef IR(n):\n return [I() for i in range(n)]\ndef LIR(n):\n return [LI() for i in range(n)]\ndef SR(n):\n return [S() for i in range(n)]\ndef LSR(n):\n return [LS() for i in range(n)]\n\nsys.setrecursionlimit(1000000)\nmod = 1000000007\n\ndef solve():\n n = I()\n d = defaultdict(lambda : [])\n for i in range(n):\n a,b = input().split()\n b = int(b)\n d[a].append(b)\n for i in d.keys():\n d[i].sort()\n m = I()\n s = 0\n for i in range(m):\n o = input()\n if not d[o]:\n print(\"No\")\n return\n j = bisect.bisect_right(d[o],s)\n if j == len(d[o]):\n print(\"No\")\n return\n s = d[o][j]\n print(\"Yes\")\n return\n\n#Solve\nif __name__ == \"__main__\":\n solve()\n" ]
53
[ { "input": "2\nwhite 10\nblack 10\n2\nblack\nwhite", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\norange", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nwhite", "output": "Yes" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nred\nred", "output": "Yes" }, { "input": "3\nwhite 10\nred 20\nwhite 30\n3\nwhite\nred\nwhite", "output": "Yes" } ]
[ { "input": "2\nwhite 10\nblack 10\n4\nblack\nwhite", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwhite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 18\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbladk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwiite 10\nblacj 10\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsed\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwihte 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\neqd 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 4487\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\netihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nclack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nkmacb\norange", "output": "No\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmacb\norange", "output": "Yes\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nkcalc\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwiite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 6\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmaca\norange", "output": "Yes\n" }, { "input": "2\nwiite 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n3\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\nkmaca\norange", "output": "No\n" }, { "input": "2\nwiite 49\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nqed 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n0\nbcalk\netihw", "output": "Yes\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\ncmaka\norange", "output": "No\n" } ]
0/::0
In the Jambo Amusement Garden (JAG), you sell colorful drinks consisting of multiple color layers. This colorful drink can be made by pouring multiple colored liquids of different density from the bottom in order. You have already prepared several colored liquids with various colors and densities. You will receive a drink request with specified color layers. The colorful drink that you will serve must satisfy the following conditions. * You cannot use a mixed colored liquid as a layer. Thus, for instance, you cannot create a new liquid with a new color by mixing two or more different colored liquids, nor create a liquid with a density between two or more liquids with the same color by mixing them. * Only a colored liquid with strictly less density can be an upper layer of a denser colored liquid in a drink. That is, you can put a layer of a colored liquid with density $x$ directly above the layer of a colored liquid with density $y$ if $x < y$ holds. Your task is to create a program to determine whether a given request can be fulfilled with the prepared colored liquids under the above conditions or not. Input The input consists of a single test case in the format below. $N$ $C_1$ $D_1$ $\vdots$ $C_N$ $D_N$ $M$ $O_1$ $\vdots$ $O_M$ The first line consists of an integer $N$ ($1 \leq N \leq 10^5$), which represents the number of the prepared colored liquids. The following $N$ lines consists of $C_i$ and $D_i$ ($1 \leq i \leq N$). $C_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th prepared colored liquid. The length of $C_i$ is between $1$ and $20$ inclusive. $D_i$ is an integer and represents the density of the $i$-th prepared colored liquid. The value of $D_i$ is between $1$ and $10^5$ inclusive. The ($N+2$)-nd line consists of an integer $M$ ($1 \leq M \leq 10^5$), which represents the number of color layers of a drink request. The following $M$ lines consists of $O_i$ ($1 \leq i \leq M$). $O_i$ is a string consisting of lowercase alphabets and denotes the color of the $i$-th layer from the top of the drink request. The length of $O_i$ is between $1$ and $20$ inclusive. Output If the requested colorful drink can be served by using some of the prepared colored liquids, print 'Yes'. Otherwise, print 'No'. Examples Input 2 white 20 black 10 2 black white Output Yes Input 2 white 10 black 10 2 black white Output No Input 2 white 20 black 10 2 black orange Output No Input 3 white 10 red 20 white 30 3 white red white Output Yes Input 4 red 3444 red 3018 red 3098 red 3319 4 red red red red Output Yes
[ "\n", "N = I()\n\n\nM = I()\n", "from import \n\n\nN = I()\n\n\nM = I()\n", "from import \n\n\ndef IR(n): \n\n\nN = I()\n\n\nM = I()\n", "from import \n\n\ndef SR(n): \ndef IR(n): \n\n\nN = I()\n\n\nM = I()\n", "from import \n\n\ndef SR(n): \ndef IR(n): \n\n\nN = I()\n\n\nM = I()\n\n\nflag = True\n", "from import \n\n\nimport sys\n\n\ndef SR(n): \ndef IR(n): \n\n\nN = I()\n\n\nM = I()\n\n\nflag = True\n", "from import \n\n\nimport sys\n\n\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\n\nM = I()\n\n\nflag = True\n", "from import \n\n\nimport sys\n\n\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\nfor i in range(N):\n \n\nM = I()\n\n\nflag = True\n", "from import \n\n\nimport sys\n\n\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nimport sys\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nimport sys\nimport math\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nimport sys\nimport math\n\nimport random\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\n\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nimport sys\nimport math\n\nimport random\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nimport sys\nimport math\n\nimport random\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\n\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\n\n\nflag = True\n", "from import \n\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n", "from import \n\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef S(): \n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n", "from import \n\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef S(): \n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef S(): \n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef S(): \n\ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\n\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \n\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \n\nINF = float('inf')\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\n\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\n\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \n\ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \n\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \n\n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\n\n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \n\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n \nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in :\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): \ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): \ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): \ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): \n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): \ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n \ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd:\n return reduce(_gcd, numbers)\ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm:\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): \ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): \ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): \ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n \n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): \ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): \ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import \nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n \nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n \nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n D = int(D)\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n \n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n D = int(D)\n \n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n D = int(D)\n dic[C].append(D)\n\n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n \nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n D = int(D)\n dic[C].append(D)\n\n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n \n order.append(tmp)\n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n \n D = int(D)\n dic[C].append(D)\n\n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n tmp = LS()[0]\n order.append(tmp)\n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n C, D = LS()\n D = int(D)\n dic[C].append(D)\n\n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n tmp = LS()[0]\n order.append(tmp)\n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n", "from collections import defaultdict\nfrom collections import deque\nfrom heapq import heappush, heappop\nfrom functools import reduce\nimport sys\nimport math\nimport bisect\nimport random\ndef I(): return int(sys.stdin.readline())\ndef F(): return float(sys.stdin.readline())\ndef S(): return input()\ndef LI(): return list(map(int, sys.stdin.readline().split()))\ndef LI_(): return [int(x)-1 for x in sys.stdin.readline().split()]\ndef LF(): return list(map(float, sys.stdin.readline().split()))\ndef LS():return sys.stdin.readline().split()\ndef SR(n): return [list(sys.stdin.readline())[:-1] for i in range(n)]\ndef IR(n): return [int(sys.stdin.readline()) for i in range(n)]\ndef LIR(n): return [list(map(int, sys.stdin.readline().split())) for i in range(n)]\ndef LSR(n): return [list(map(list, sys.stdin.readline().split())) for i in range(n)]\n_gcd = lambda x, y: _gcd(y, x%y) if (x%y) else y\n_lcm = lambda x, y: x*y // _gcd(x, y)\ndef gcd(*numbers):\n return reduce(_gcd, numbers)\ndef lcm(*numbers):\n return reduce(_lcm, numbers)\nsys.setrecursionlimit(1000000)\nINF = float('inf')\nmod = 1000000007\ndire4 = [(1,0), (0,1), (-1,0), (0,-1)]\ndire8 = [(1, 0), (1, 1), (0, 1), (-1, 1), (-1, 0), (-1, -1), (0, -1), (1, -1)]\n\ndef solve(dic):\n return\n\n\n\nN = I()\ndic = defaultdict(list)\nfor i in range(N):\n C, D = LS()\n D = int(D)\n dic[C].append(D)\n\n\nfor key in dic.keys():\n dic[key].sort()\n\nM = I()\norder = []\nfor i in range(M):\n #tmp = input()\n tmp = LS()[0]\n order.append(tmp)\n\nflag = True\nprev = mod\n\nif N >= M :\n for layer in order[::-1] :\n while True:\n if len(dic[layer]) == 0 :\n flag = False\n break\n now = dic[layer].pop(-1)\n\n if now >= prev :\n continue\n else :\n prev = now\n break\nelse :\n flag = False\n\n\nprint(\"Yes\" if flag else \"No\")\n" ]
72
[ { "input": "2\nwhite 10\nblack 10\n2\nblack\nwhite", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\norange", "output": "No" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nwhite", "output": "Yes" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nred\nred", "output": "Yes" }, { "input": "3\nwhite 10\nred 20\nwhite 30\n3\nwhite\nred\nwhite", "output": "Yes" } ]
[ { "input": "2\nwhite 10\nblack 10\n4\nblack\nwhite", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 10\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nred 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwhite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 10\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 18\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 3444\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nred\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblack 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nblack 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n2\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\nrec\nred", "output": "No\n" }, { "input": "3\nwgite 10\nred 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nkcalb\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbladk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nblack\nhwite", "output": "No\n" }, { "input": "4\nred 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 30\n3\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwhite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\norange", "output": "No\n" }, { "input": "2\nwhite 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nred\ncer\nred", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 10\n4\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n2\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwite", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nred\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\nerd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwiite 10\nblacj 10\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nkcalb\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nblack 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsed\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nwhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 10\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 20\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nkcalb\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nred 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n2\nwhite\nerd\nwhite", "output": "No\n" }, { "input": "2\nwiite 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\negnaro", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nhwitf", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nrdd\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nerd\nwhite", "output": "Yes\n" }, { "input": "2\nwihte 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 19\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 20\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nred", "output": "No\n" }, { "input": "3\nwgite 10\neqd 40\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 4\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\nxhite 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n4\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\neqd 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n5\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcalk\norange", "output": "No\n" }, { "input": "2\nwihte 32\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 3018\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 22\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nblack\netihw", "output": "No\n" }, { "input": "2\netihx 34\nbmadk 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcalb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 4487\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 57\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 19\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\netihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nblack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\ncer 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 10\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n8\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n4\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n7\nclack\nftiwh", "output": "No\n" }, { "input": "4\nrec 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\ndqe 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 21\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nbcamk\norange", "output": "No\n" }, { "input": "2\nwihte 35\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n4\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nere\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\nblacj 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n8\nkmacb\norange", "output": "No\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncer 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwhite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 8\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmacb\norange", "output": "Yes\n" }, { "input": "2\nwihte 66\nkcamb 26\n11\nkcalc\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrec 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "3\nwgite 18\neqd 8\nxhite 40\n0\nwiite\nese\nwhite", "output": "Yes\n" }, { "input": "2\nwieth 6\njcalb 40\n2\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n0\nkmaca\norange", "output": "Yes\n" }, { "input": "2\nwiite 66\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nred 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n3\nbcalk\netihw", "output": "No\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\nkmaca\norange", "output": "No\n" }, { "input": "2\nwiite 49\nkcamb 26\n11\nclack\nftiwh", "output": "No\n" }, { "input": "4\ncre 2133\nder 6618\nqed 3098\nrce 3319\n5\nsde\nddr\ncer\nrde", "output": "No\n" }, { "input": "2\nwieth 6\njcalb 40\n0\nbcalk\netihw", "output": "Yes\n" }, { "input": "2\nesihx 34\nkdamb 17\n1\ncmaka\norange", "output": "No\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "used = [False] * (n + 1)\n", "for _ in :\n \n\nused = [False] * (n + 1)\n", "for _ in :\n \n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\n", "for _ in :\n \n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\n\nposition = [(-1, -1)] * (n + 1)\n", "for _ in :\n \n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\n\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\n\nfor _ in :\n \n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\n\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\n\nfor _ in :\n \n\nstack = [1]\n\n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\n\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\n\nfor _ in :\n \n\nstack = [1]\n\n\nused = [False] * (n + 1)\n\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\n\nfor _ in :\n \n\nstack = [1]\n\n\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstack = [1]\n\n\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\n\n\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\n\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\n\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\n\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\nA = [0] + list(map(int, input().split()))\n\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import \n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in :\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in :\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n\nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in :\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n \nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n \nwhile stack:\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n \n \nwhile stack:\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n \n \nwhile stack:\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n \n \nwhile stack:\n \n \n u = graph[v].pop()\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n \n \nwhile stack:\n \n if :\n \n \n u = graph[v].pop()\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n \n \n return L, pos, pre, cnt\n\n\nwhile stack:\n \n if :\n \n \n u = graph[v].pop()\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n \n \n return L, pos, pre, cnt\n\n\nwhile stack:\n \n if :\n \n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n \n \n return L, pos, pre, cnt\n\n\nwhile stack:\n \n if :\n \n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n \n \n return L, pos, pre, cnt\n\n\nwhile stack:\n \n if :\n \n used[v] = True\n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n \n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n \n if :\n \n used[v] = True\n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n \n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n \n \nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n par[u] = v\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n \n \nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n par[u] = v\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n par[u] = v\n \n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n \n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n u = graph[v].pop()\n if :\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if :\n \n used[v] = True\n if :\n \n \n continue\n u = graph[v].pop()\n if :\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n used[v] = True\n if :\n \n \n continue\n u = graph[v].pop()\n if :\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n used[v] = True\n if :\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n used[v] = True\n if not graph[v]:\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n \n used[v] = True\n if not graph[v]:\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n \n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n position[v] = (pos, pre)\n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n position[v] = (pos, pre)\n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n _ = stack.pop()\n \n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n position[v] = (pos, pre)\n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n _ = stack.pop()\n basho, atai = position[v]\n \n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n \n position[v] = (pos, pre)\n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n _ = stack.pop()\n basho, atai = position[v]\n LIS[basho] = atai\n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n", "from bisect import bisect_left\n\nn = int(input())\nA = [0] + list(map(int, input().split()))\ngraph = [[] for _ in range(n + 1)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n graph[v].append(u)\n graph[u].append(v)\n\nstart = 1\n\nstack = [1]\npar = [-1] * (n + 1)\nans = [0] * (n + 1)\nused = [False] * (n + 1)\ninfi = 10 ** 20\nLIS = [infi] * (n + 1)\nLIS[0] = -infi\nposition = [(-1, -1)] * (n + 1)\n\n\ndef hantei(val, L):\n pos = bisect_left(L, val)\n pre = L[pos]\n L[pos] = val\n cnt = bisect_left(L, infi)\n return L, pos, pre, cnt\n\n\nwhile stack:\n v = stack[-1]\n if not used[v]:\n LIS, pos, pre, cnt = hantei(A[v], LIS)\n position[v] = (pos, pre)\n ans[v] = cnt - 1\n used[v] = True\n if not graph[v]:\n _ = stack.pop()\n basho, atai = position[v]\n LIS[basho] = atai\n continue\n u = graph[v].pop()\n if u == par[v]:\n continue\n par[u] = v\n stack.append(u)\n\nprint(*ans[1:], sep=\"\\n\")\n" ]
50
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "LIS=[INF]*n\n", "LIS=[INF]*n\n\n\nif :\n main()\n", "input=sys.stdin.readline\n\n\nLIS=[INF]*n\n\n\nif :\n main()\n", "input=sys.stdin.readline\nn=int(input())\n\n\nLIS=[INF]*n\n\n\nif :\n main()\n", "import sys\n\n\ninput=sys.stdin.readline\nn=int(input())\n\n\nLIS=[INF]*n\n\n\nif :\n main()\n", "import sys\n\n\ninput=sys.stdin.readline\nn=int(input())\n\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\nif :\n main()\n", "import sys\n\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\n\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\nif :\n main()\n", "import sys\n\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\n\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\n\n\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\n\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\n\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\n\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\n\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\n\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\n\nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in :\n \nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in :\n \nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n \n return 0\n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n \n return 0\n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs:\n \n\ndef main():\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs:\n \n \n return 0\n\ndef main():\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n \n return 0\n\ndef main():\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n \n return 0\n\ndef main():\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n g[u-1].append(v-1)\n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n g[u-1].append(v-1)\n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n g[u-1].append(v-1)\n \nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n \n \n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n \n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(a[i], LIS[changeID])\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n \n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(a[i], LIS[changeID])\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, a[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(a[i], LIS[changeID])\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, a[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(a[i], LIS[changeID])\n Ans[i] = bisect_left(LIS, INF)\n for nextN in g[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\nINF=10**10\n\nchanged=[]\ninput=sys.stdin.readline\nn=int(input())\na=list(map(int,input().split()))\ng=[[] for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\nLIS=[INF]*n\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, a[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(a[i], LIS[changeID])\n Ans[i] = bisect_left(LIS, INF)\n for nextN in g[i]:\n if nextN != pre: dfs(nextN, i, Ans)\n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef main():\n Ans=[1]*n\n dfs(0,0,Ans)\n for i in Ans:\n print(i)\n\n return 0\n\nif __name__ == \"__main__\":\n main()\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "import sys\n", "import sys\n\n\nLIS = [a[1]]\n", "import sys\n\ndef dfs(i,LIS):\n \n\nLIS = [a[1]]\n", "import sys\n\ndef dfs(i,LIS):\n \n\nLIS = [a[1]]\ndfs(1,LIS)\n", "import sys\n\ndef dfs(i,LIS):\n \n\nans = [-1]*(N+1)\n\n\nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nans = [-1]*(N+1)\n\n\nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\n\n\nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nN = int(input())\n\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\n\n\nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nN = int(input())\n\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\n\nfor i in :\n \nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\n\nfor i in :\n \nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\n\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in :\n \nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in :\n \nLIS = [a[1]]\ndfs(1,LIS)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in :\n \nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in :\n \n \nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n \n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in range(N-1):\n \n \nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n if a[i] > LIS[-1]:\n LIS.append(a[i])\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS.pop()\n else:\n index = bisect.bisect_left(LIS, a[i])\n x = LIS[index]\n LIS[index] = a[i]\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS[index] = x\n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in range(N-1):\n \n \nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n if a[i] > LIS[-1]:\n LIS.append(a[i])\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS.pop()\n else:\n index = bisect.bisect_left(LIS, a[i])\n x = LIS[index]\n LIS[index] = a[i]\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS[index] = x\n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in range(N-1):\n u,v = map(int,input().split())\n \n \nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n if a[i] > LIS[-1]:\n LIS.append(a[i])\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS.pop()\n else:\n index = bisect.bisect_left(LIS, a[i])\n x = LIS[index]\n LIS[index] = a[i]\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS[index] = x\n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in range(N-1):\n u,v = map(int,input().split())\n \n edges[v].append(u)\nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(1<<30)\ndef dfs(i,LIS):\n if a[i] > LIS[-1]:\n LIS.append(a[i])\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS.pop()\n else:\n index = bisect.bisect_left(LIS, a[i])\n x = LIS[index]\n LIS[index] = a[i]\n ans[i] = len(LIS)\n for j in edges[i]:\n if parent[i] != j:\n parent[j] = i\n dfs(j,LIS)\n LIS[index] = x\n\nN = int(input())\na = [0]+list(map(int,input().split()))\nedges = [[] for _ in range(N+1)]\nans = [-1]*(N+1)\nparent = [-1]*(N+1)\nfor i in range(N-1):\n u,v = map(int,input().split())\n edges[u].append(v)\n edges[v].append(u)\nLIS = [a[1]]\ndfs(1,LIS)\nfor i in ans[1:]:\n print(i)\n" ]
20
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "A = list(map(int,input().split()))\n", "import sys\n\n\nA = list(map(int,input().split()))\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nvisited = [False]*N\n\n\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nvisited = [False]*N\nvisited[0] = True\n\n\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nvisited = [False]*N\nvisited[0] = True\n\n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import sys\n\n\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import sys\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import bisect\nimport sys\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in :\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in :\n \n \nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in :\n \n \nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n \n \nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n \n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if :\n continue\n\n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if :\n continue\n\n \n if :\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if :\n continue\n\n visited[nv] = True\n if :\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if :\n continue\n\n visited[nv] = True\n if or :\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if :\n continue\n\n visited[nv] = True\n if or :\n \n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if or :\n \n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if or :\n \n \n dp.pop()\n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if or A[nv]>dp[-1]:\n \n \n dp.pop()\n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n \n \n dp.pop()\n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n \n \n dp.pop()\n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n \n dfs(nv, dp)\n dp.pop()\n else:\n \n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n \n dfs(nv, dp)\n dp.pop()\n else:\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n \n \n answer[nv] = len(dp)\n \n \n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n \n \n answer[nv] = len(dp)\n \n dp[idx] = temp\n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n \n dp[idx] = A[nv]\n answer[nv] = len(dp)\n \n dp[idx] = temp\n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n temp = dp[idx]\n dp[idx] = A[nv]\n answer[nv] = len(dp)\n \n dp[idx] = temp\n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int,input().split()))\n\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\nvisited = [False]*N\nvisited[0] = True\nanswer = [1]*N\n\ndef dfs(v, dp):\n for nv in Edge[v]:\n if visited[nv]:\n continue\n\n visited[nv] = True\n if len(dp)==0 or A[nv]>dp[-1]:\n dp.append(A[nv])\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp.pop()\n else:\n idx = bisect.bisect_left(dp, A[nv])\n temp = dp[idx]\n dp[idx] = A[nv]\n answer[nv] = len(dp)\n dfs(nv, dp)\n dp[idx] = temp\n\n return\n\ndfs(0, [A[0]])\nanswer[0] = 1\nfor a in answer:\n print(a)\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "if :\n main()\n", "def main():\n \n\nif :\n main()\n", "import time\n\n\ndef main():\n \n\nif :\n main()\n", "import time\n\n\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif :\n main()\n", "import time\n\nreadline = sys.stdin.readline\n\n\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\n\n\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\n\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n \n \n dfs(0)\n \n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n \n \n dfs(0)\n \n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n for _ in :\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n for _ in :\n \n\n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n for _ in :\n \n\n visited = [False] * n\n\n \n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n for _ in :\n \n\n dp = [INF] * n\n \n visited = [False] * n\n\n \n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n \n\n for _ in :\n \n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n \n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n \n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n \n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from import deque\n \n\n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from import deque\n import bisect\n\n def dfs(cur):\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from import deque\n import bisect\n\n def dfs(cur):\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in :\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n \n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n \n \n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n \n \n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n \n \n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dp[index] = nv\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n \n \n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dp[index] = nv\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n \n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dp[index] = nv\n \n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n \n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n dp[index] = nv\n \n\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n \n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n \n\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n \n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n \n\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n \n\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n \n\n for nx in suc:\n \n\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n \n\n for nx in suc:\n \n\n ans[cur] = bisect.bisect_left(dp, INF)\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n \n index = bisect.bisect_left(dp, nv)\n \n dp[index] = nv\n suc = node[cur]\n\n for nx in suc:\n \n\n ans[cur] = bisect.bisect_left(dp, INF)\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n \n index = bisect.bisect_left(dp, nv)\n pv = dp[index]\n dp[index] = nv\n suc = node[cur]\n\n for nx in suc:\n \n\n ans[cur] = bisect.bisect_left(dp, INF)\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n nv = a[cur]\n index = bisect.bisect_left(dp, nv)\n pv = dp[index]\n dp[index] = nv\n suc = node[cur]\n\n for nx in suc:\n \n\n ans[cur] = bisect.bisect_left(dp, INF)\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n", "import sys\nimport time\n\nreadline = sys.stdin.readline\nMOD = 10 ** 9 + 7\nINF = float('INF')\nsys.setrecursionlimit(10**5)\n\n\ndef main():\n n = int(input())\n a = list(map(int, readline().split()))\n node = {i: [] for i in range(n)}\n\n for _ in range(n - 1):\n u, v = map(int, readline().split())\n u, v = u - 1, v - 1\n node[u].append(v)\n node[v].append(u)\n\n ans = [0] * n\n dp = [INF] * n\n dp[0] = a[0]\n visited = [False] * n\n\n from collections import deque\n import bisect\n\n def dfs(cur):\n visited[cur] = True\n nv = a[cur]\n index = bisect.bisect_left(dp, nv)\n pv = dp[index]\n dp[index] = nv\n suc = node[cur]\n\n for nx in suc:\n if not visited[nx]:\n dfs(nx)\n\n ans[cur] = bisect.bisect_left(dp, INF)\n dp[index] = pv\n\n dfs(0)\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == '__main__':\n main()\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "from bisect import\n", "from bisect import \n\n\nif :\n", "from bisect import \n\n\ndef dfs(p):\n \n\nif :\n", "from bisect import \nimport sys\n\n\ndef dfs(p):\n \n\nif :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n\nif :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n\nif :\n \n \n dfs(1)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \nif :\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \nif :\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \nif __name__ == \"__main__\":\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \nif __name__ == \"__main__\":\n \n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \n for child in to[p]:\n \n \nif __name__ == \"__main__\":\n \n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n \n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n a = [None] + list(map(int, input().split()))\n \n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n a = [None] + list(map(int, input().split()))\n \n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n a = [None] + list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n a = [None] + list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n \n a = [None] + list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n \n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n \n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n \n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n \n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n \n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n \n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n if ans[child] is None:\n dfs(child)\n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n if ans[child] is None:\n dfs(child)\n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n if ans[child] is None:\n dfs(child)\n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n \n to[v].append(u)\n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n if ans[child] is None:\n dfs(child)\n dp[i] = old\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n to[u].append(v)\n to[v].append(u)\n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\n\ndef dfs(p):\n ai = a[p]\n i = bisect_left(dp, ai)\n old = dp[i]\n dp[i] = ai\n ans[p] = bisect_left(dp, INF)-1\n for child in to[p]:\n if ans[child] is None:\n dfs(child)\n dp[i] = old\n\n\n\n\nif __name__ == \"__main__\":\n n = int(input())\n a = [None] + list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n to[u].append(v)\n to[v].append(u)\n INF = 10**20\n dp = [INF]*(n+1)\n dp[0]= -INF\n ans = [None]*(n+1)\n dfs(1)\n print(\"\\n\".join(list(map(str, ans[1:]))))\n" ]
33
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# ignore trailing spaces\n\nn = ni()\na = na()\ng = []\n", "ni = lambda: int(ns())\n\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\n", "ni = lambda: int(ns())\n\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\n\n\nla[0] = 0\n", "ni = lambda: int(ns())\n\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\n\n\nsys.setrecursionlimit(230000)\n\n\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\n\n\nsys.setrecursionlimit(230000)\n\n\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\n\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\n # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\n\nla = [999999999999] * (n+2)\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\n\nla = [999999999999] * (n+2)\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\n", "ni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\n", "stdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\n", "stdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\n\nfor v in anss:\n print(v)\n", "stdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "stdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \nfor i in :\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \nfor i in :\n \n\nsys.setrecursionlimit(230000)\n\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n \nfor i in :\n \n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in :\n \n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs:\n \n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs:\n \n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs:\n \n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n \n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n \n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n \n \n anss[cur] = nlis\n\n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n \n la[ind] = a[cur]\n \n anss[cur] = nlis\n\n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n \n \nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n \n la[ind] = a[cur]\n \n anss[cur] = nlis\n\n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n \n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n \n la[ind] = a[cur]\n \n anss[cur] = nlis\n\n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n \n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n \n anss[cur] = nlis\n\n \nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n \n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n \n anss[cur] = nlis\n\n \n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n \n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n \n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n g[x-1].append(y-1)\n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n \n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n g[x-1].append(y-1)\n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n for e in g[cur]:\n \n\n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n g[x-1].append(y-1)\n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n for e in g[cur]:\n \n \n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n g[x-1].append(y-1)\n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n for e in g[cur]:\n \n dfs(e, cur, g, nlis, la, anss, a)\n\n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n", "import sys\n\nstdin = sys.stdin\n\nni = lambda: int(ns())\nna = lambda: list(map(int, stdin.readline().split()))\nns = lambda: stdin.readline().rstrip() # ignore trailing spaces\n\nn = ni()\na = na()\ng = []\nfor i in range(n):\n g.append([])\nfor i in range(n-1):\n x, y = na()\n g[x-1].append(y-1)\n g[y-1].append(x-1)\n\nsys.setrecursionlimit(230000)\nimport bisect\ndef dfs(cur, pre, g, lis, la, anss, a):\n ind = bisect.bisect_left(la, a[cur], 0, lis+1)\n old = la[ind]\n la[ind] = a[cur]\n nlis = lis + 1 if ind == lis + 1 else lis\n anss[cur] = nlis\n\n for e in g[cur]:\n if e == pre: continue\n dfs(e, cur, g, nlis, la, anss, a)\n\n la[ind] = old\n\nanss = [0] * n\nla = [999999999999] * (n+2)\nla[0] = 0\ndfs(0, -1, g, 0, la, anss, a)\nfor v in anss:\n print(v)\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "ans = [0 for i in range(n)]\n\n\ndfs(0)\n", "input = sys.stdin.readline\n\n\nans = [0 for i in range(n)]\n\n\ndfs(0)\n", "input = sys.stdin.readline\n\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\n", "import sys\ninput = sys.stdin.readline\n\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\n", "import sys\ninput = sys.stdin.readline\n\n\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\n", "import sys\ninput = sys.stdin.readline\n\n\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\ninput = sys.stdin.readline\n\n\nn = int(input())\n\n\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\ninput = sys.stdin.readline\n\n\nn = int(input())\n\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\n\n\nn = int(input())\n\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\n\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\n\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import \nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n #print(now,dp)\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n #print(now,dp)\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n \n \n #print(now,dp)\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n \n #print(now,dp)\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n \n #print(now,dp)\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n \n #print(now,dp)\n for to in G[now]:\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n \n \nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n \n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n \ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n \n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n dp[ite] = tmp\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n G[u].append(v)\n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n \n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n dp[ite] = tmp\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n G[u].append(v)\n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n \n ite = bisect_left(dp, a[now])\n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n dp[ite] = tmp\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n G[u].append(v)\n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n check[now] = False\n ite = bisect_left(dp, a[now])\n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n \n dp[ite] = tmp\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "from bisect import bisect_left\nimport sys\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**7)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n-1):\n u,v = map(lambda z:int(z)-1,input().split())\n G[u].append(v)\n G[v].append(u)\n\nans = [0 for i in range(n)]\ndp = [10**10 for _ in range(n+1)]\ncheck = [True for _ in range(n)]\ndef dfs(now):\n check[now] = False\n ite = bisect_left(dp, a[now])\n tmp = dp[ite]\n dp[ite] = a[now]\n ans[now] = bisect_left(dp, 10**10)\n #print(now,dp)\n for to in G[now]:\n if check[to]:\n dfs(to)\n dp[ite] = tmp\n\ndfs(0)\nprint(*ans, sep=\"\\n\")\n" ]
30
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "main()\n", "def main():\n \n\nmain()\n", "def main():\n \n \n dfs(0)\n\n \nmain()\n", "def main():\n \n \n N = int(input())\n \n \n dfs(0)\n\n \nmain()\n", "def main():\n \n \n N = int(input())\n \n \n for u, v in :\n \n\n dfs(0)\n\n \nmain()\n", "def main():\n \n \n N = int(input())\n \n \n for u, v in :\n \n\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n \n \n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n \n \n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n \n \n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n \n \n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n \n \n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n \n \n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n \n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n \n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n def dfs:\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n \n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n def dfs:\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n \n ans = [0] * N\n def dfs:\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs:\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs:\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import \n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in :\n \n \n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ ]:\n \n \n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ ]:\n \n \n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ ]:\n \n \n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n old = dp[idx]\n \n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n old = dp[idx]\n \n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n old = dp[idx]\n \n ans[now] = idx\n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [ for _ in ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n old = dp[idx]\n \n ans[now] = idx\n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n \n old = dp[idx]\n \n ans[now] = idx\n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n \n ans[now] = idx\n \n for child in :\n \n \n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n \n ans[now] = idx\n \n for child in :\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n \n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n \n ans[now] = idx\n if :\n \n for child in :\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n \n ans[now] = idx\n if :\n \n for child in :\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if :\n \n for child in :\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in ]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if :\n \n for child in :\n \n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if :\n \n for child in :\n \n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if :\n ans[now] = ans[p]\n for child in :\n \n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and :\n ans[now] = ans[p]\n for child in :\n \n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and :\n ans[now] = ans[p]\n for child in tree[now]:\n \n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and :\n ans[now] = ans[p]\n for child in tree[now]:\n if : continue\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and ans[now] < ans[p]:\n ans[now] = ans[p]\n for child in tree[now]:\n if : continue\n \n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and ans[now] < ans[p]:\n ans[now] = ans[p]\n for child in tree[now]:\n if : continue\n dfs(child, now)\n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n", "def main():\n import sys\n sys.setrecursionlimit(10**9)\n input = sys.stdin.readline\n from collections import deque\n from bisect import bisect_left\n\n N = int(input())\n a = list(map(int, input().split()))\n tree = [[] for _ in [0]*N]\n for u, v in [map(int, input().split()) for _ in [0]*(N-1)]:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n dp = [1001001001] * (N+1)\n dp[0] = -1001001001\n ans = [0] * N\n def dfs(now, p=-1):\n idx = bisect_left(dp, a[now])\n old = dp[idx]\n dp[idx] = a[now]\n ans[now] = idx\n if p != -1 and ans[now] < ans[p]:\n ans[now] = ans[p]\n for child in tree[now]:\n if child == p: continue\n dfs(child, now)\n dp[idx] = old\n dfs(0)\n\n print(*ans, sep='\\n')\n\nmain()\n" ]
44
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\na = []\ndp = []\nans = []\nT = []\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef solve:\n \n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n\ndef solve:\n \n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\n\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n\ndef solve:\n \n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n\ndef solve:\n \n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n \ndef solve:\n \n\ndef main():\n \n\nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n \ndef solve:\n \n\ndef main():\n \n \n # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif :\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n \ndef solve:\n \n\ndef main():\n \n \n # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs:\n \n \ndef solve(N: int, , ):\n \n\ndef main():\n \n \n # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \ndef solve(N: int, , ):\n \n\ndef main():\n \n \n # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n \ndef main():\n \n \n # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n \nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n for u in T[v]:\n \n\ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n for u in T[v]:\n \n\ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n for u in T[v]:\n \n\ndef solve(N: int, , ):\n \n\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n for u in T[v]:\n \n\ndef solve(N: int, , ):\n \n\n dp = [INF] * N\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n \n\n dp = [INF] * N\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n \n dp = [INF] * N\n ans = [0] * N\n \n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n \n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n \ndef main():\n \n \n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n \n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n \ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n \n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n \n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n \n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n \n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, , ):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, , tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n \n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n \n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in :\n \n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n \n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n \n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n \n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n \n v = int(next(tokens)) - 1\n \n \n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n \n v = int(next(tokens)) - 1\n \n T[v].append(u)\n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n u = int(next(tokens)) - 1\n v = int(next(tokens)) - 1\n \n T[v].append(u)\n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n", "#!/usr/bin/env python3\n# Generated by 1.1.6 https://github.com/kyuridenamida/atcoder-tools\nimport sys\nimport bisect\n\nINF = 1145141919\n\na = []\ndp = []\nans = []\nT = []\n\n\ndef dfs(v: int, p: int):\n index = bisect.bisect_left(dp, a[v])\n dp[index], a[v] = a[v], dp[index]\n\n ans[v] = bisect.bisect_left(dp, INF)\n\n for u in T[v]:\n if u != p:\n dfs(u, v)\n\n dp[index], a[v] = a[v], dp[index]\n\n\ndef solve(N: int, tmp_a: \"List[int]\", tmp_T: \"List[List[int]]\"):\n sys.setrecursionlimit(10 ** 6)\n\n global dp, ans, a, T\n dp = [INF] * N\n ans = [0] * N\n a = tmp_a\n T = tmp_T\n\n dfs(0, -1)\n\n print(\"\\n\".join(map(str, ans)))\n\n\ndef main():\n def iterate_tokens():\n for line in sys.stdin:\n for word in line.split():\n yield word\n tokens = iterate_tokens()\n N = int(next(tokens)) # type: int\n a = [int(next(tokens)) for _ in range(N)] # type: \"List[int]\"\n T = [[] for _ in range(N)] # type: \"List[List[int]]\"\n for i in range(N - 1):\n u = int(next(tokens)) - 1\n v = int(next(tokens)) - 1\n T[u].append(v)\n T[v].append(u)\n solve(N, a, T)\n\n\nif __name__ == '__main__':\n main()\n" ]
44
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dp[0]=a[0]\n", "dp[0]=a[0]\nansls=[0]*n\n", "dp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\n", "INF=1001001001\n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\n", "INF=1001001001\n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n", "for i in :\n \n\nINF=1001001001\n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n", "for i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n", "for i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "a = list(map(int, input().split()))\n\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "a = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "from import deque\n\n\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "from import deque\n\n\nsys.setrecursionlimit(500000)\n\n\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "from import deque\n\nimport sys\nsys.setrecursionlimit(500000)\n\n\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n", "from import deque\n\nimport sys\nsys.setrecursionlimit(500000)\n\n\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\n\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\n\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs:\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n \n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in :\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in range(n-1):\n \n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in range(n-1):\n \n u-=1\n v-=1\n \n \nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in range(n-1):\n \n u-=1\n v-=1\n \n to[v].append(u)\n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in range(n-1):\n \n u-=1\n v-=1\n to[u].append(v)\n to[v].append(u)\n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n", "from collections import deque\nimport bisect\nimport sys\nsys.setrecursionlimit(500000)\n\nn = int(input())\na = list(map(int, input().split()))\nto=[list() for _ in range(n)]\n\nfor i in range(n-1):\n u,v = map(int, input().split())\n u-=1\n v-=1\n to[u].append(v)\n to[v].append(u)\n\nINF=1001001001\ndp = [INF]*n\ndp[0]=a[0]\nansls=[0]*n\nansls[0]=1\nhistory=deque()\ndef dfs(u,p,rank):\n for v in to[u]:\n if v==p:\n continue\n idx=bisect.bisect_left(dp,a[v])\n prv=dp[idx]\n dp[idx]=a[v]\n history.append((idx,prv))\n ansls[v]=bisect.bisect_left(dp,INF)\n dfs(v,u,rank+1)\n while len(history)>rank:\n idx,prv =history.pop()\n dp[idx] = prv\n\ndfs(0,-1,0)\n\nprint(*ansls,sep='\\n')\n" ]
26
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#設定\n\n\n#ライブラリインポート\n\n\n#入力受け取り\n\n\n#処理内容\n", "#設定\n\n\n#ライブラリインポート\nfrom import \n\n\n#入力受け取り\n\n\n#処理内容\n", "#設定\n\n\n#ライブラリインポート\nfrom import \n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\n", "#設定\n\n\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\n", "#設定\n\n\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\n\n\nif :\n main()\n", "#設定\n\n\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\n\n\nif :\n main()\n", "#設定\n\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\n\n\nif :\n main()\n", "#設定\n\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\n\n\ndef Euler_tour:\n \n\n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\n\n\nclass Graph(object):\n \n\ndef Euler_tour:\n \n\n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\n\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour:\n \n\n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour:\n \n\n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour:\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n\nif :\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour:\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import \nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n #DFS初期化\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n \n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n #DFS初期化\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n #DFS初期化\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n #DFS初期化\n \n \n visit = [\"No\"] * N\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n for i in :\n \n\n #DFS初期化\n \n \n visit = [\"No\"] * N\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n \n \n#処理内容\ndef main():\n \n A = getlist()\n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n \n\n#処理内容\ndef main():\n \n A = getlist()\n \n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n \n\n#処理内容\ndef main():\n \n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n \n\n#処理内容\ndef main():\n \n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n \n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n \n \nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n \n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n \n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n \n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n \n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n \n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in :\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n \n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in :\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n \n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge:\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge(self, a, b):\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n \n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge(self, a, b):\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n a, b = getlist()\n a -= 1; b -= 1\n \n \n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge(self, a, b):\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n a, b = getlist()\n a -= 1; b -= 1\n G.add_edge(a, b)\n \n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n", "#設定\nimport sys\ninput = sys.stdin.buffer.readline\nsys.setrecursionlimit(10 ** 7)\n\n#ライブラリインポート\nfrom collections import defaultdict\nimport bisect\nINF = float(\"inf\")\n\n#入力受け取り\ndef getlist():\n return list(map(int, input().split()))\n\n\nclass Graph(object):\n def __init__(self):\n self.graph = defaultdict(list)\n\n def __len__(self):\n return len(self.graph)\n\n def add_edge(self, a, b):\n self.graph[a].append(b)\n\n def get_nodes(self):\n return self.graph.keys()\n\ndef Euler_tour(G, node, visit, DP, prev, ans, A):\n for i in G.graph[node]:\n if visit[i] != \"Yes\":\n visit[i] = \"Yes\"\n #LIS更新\n x = bisect.bisect_left(DP, A[i])\n prev.append([x, DP[x]])\n DP[x] = A[i]\n ans[i] = bisect.bisect_left(DP, INF)\n # print(DP, i)\n # print(prev)\n Euler_tour(G, i, visit, DP, prev, ans, A)\n\n #LIS戻す\n x, val = prev.pop()\n DP[x] = val\n\n#処理内容\ndef main():\n N = int(input())\n A = getlist()\n G = Graph()\n for i in range(N - 1):\n a, b = getlist()\n a -= 1; b -= 1\n G.add_edge(a, b)\n G.add_edge(b, a)\n\n #DFS初期化\n DP = [INF] * N\n DP[0] = A[0]\n prev = [[0, A[0]]]\n ans = [None] * N\n ans[0] = 1\n visit = [\"No\"] * N\n visit[0] = \"Yes\"\n Euler_tour(G, 0, visit, DP, prev, ans, A)\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n main()\n" ]
53
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# MOD = 998244353\n\n\nroot = 0\n", "# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nroot = 0\n", "import bisect\n\n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nroot = 0\n", "import bisect\n\n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nroot = 0\n\n\ndef dfs(v, p):\n", "import bisect\n\n\nif :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nroot = 0\n\n\ndef dfs(v, p):\n", "import bisect\nimport os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nroot = 0\n\n\ndef dfs(v, p):\n", "import bisect\nimport os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n", "import bisect\nimport os\n\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n", "import bisect\nimport os\n\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\n\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\n\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \n # print(dp)\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n \ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \n # print(dp)\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n \ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \n # print(dp)\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \n # print(dp)\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n \n \n # print(dp)\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n \n \n # print(dp)\n for u in graph[v]:\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n \n # print(dp)\n for u in graph[v]:\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv:\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n \n # print(dp)\n for u in graph[v]:\n \n \n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv:\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n \n # print(dp)\n for u in graph[v]:\n \n \n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv:\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n \n # print(dp)\n for u in graph[v]:\n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n \n # print(dp)\n for u in graph[v]:\n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n \n \n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n \n dfs(u, v)\n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n # print(dp)\n for u in graph[v]:\n if u == p:\n continue\n dfs(u, v)\n assert dp[i] <= prev\n dp[i] = prev\n # print(dp)\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n" ]
37
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n", "# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n", "# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "import sys\n\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n# input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "if :\n main()\n", "readline = sys.stdin.readline\n\n\nif :\n main()\n", "readline = sys.stdin.readline\n\n\ndef main():\n \n\nif :\n main()\n", "readline = sys.stdin.readline\n\n\ndef main():\n \n\ndef binary_search(seq, v):\n \n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\n\ndef main():\n \n\ndef binary_search(seq, v):\n \n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n\ndef binary_search(seq, v):\n \n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \ndef binary_search(seq, v):\n \n\nif :\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \ndef binary_search(seq, v):\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \ndef binary_search(seq, v):\n left = 0\n \n \nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \n dp = [inf] * (N+1)\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \n tree = [[] for _ in range(N)]\n \n\n dp = [inf] * (N+1)\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \n tree = [[] for _ in range(N)]\n \n\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n \n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n \n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n \n\n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n \n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n \ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n \n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs:\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n \n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs:\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n \n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while :\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n \n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n\n dfs(0, 0)\n\n for k in range(N):\n \n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n \n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n \n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n \n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n lb = binary_search(dp, v)\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n \n lb = binary_search(dp, v)\n old = dp[lb]\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n \n \n for child in :\n \n \n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n \n \n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n \n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n \n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n \n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if :\n \n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in :\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n \n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n \n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n \n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n \n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n \n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n \n else:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n \n \n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n right = center\n else:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n \n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n right = center\n else:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n if :\n continue\n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n right = center\n else:\n \n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n if :\n continue\n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n right = center\n else:\n left = center+1\n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nreadline = sys.stdin.readline\n\nsys.setrecursionlimit(10**6)\n\n\ndef main():\n N = int(input())\n As = list(map(int, input().split()))\n\n query = (map(int, readline().strip().split()) for _ in range(N-1))\n\n tree = [[] for _ in range(N)]\n for u, v in query:\n tree[u-1].append(v-1)\n tree[v-1].append(u-1)\n\n inf = 10 ** 18\n dp = [inf] * (N+1)\n ans = [0] * N\n\n def dfs(node, parent):\n v = As[node]\n lb = binary_search(dp, v)\n old = dp[lb]\n dp[lb] = v\n ans[node] = binary_search(dp, inf)\n for child in tree[node]:\n if child == parent:\n continue\n dfs(child, node)\n dp[lb] = old\n\n dfs(0, 0)\n\n for k in range(N):\n print(ans[k])\n\n\ndef binary_search(seq, v):\n left = 0\n right = len(seq) - 1\n center = right // 2\n\n while left != right:\n if v <= seq[center]:\n right = center\n else:\n left = center+1\n center = (right + left) // 2\n\n return center\n\n\nif __name__ == \"__main__\":\n main()\n" ]
51
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\nfor i in :\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\nfor i in :\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nINF = 999999999999999999999999\n\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\nfor i in :\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\nfor i in :\n", "def input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\nfor i in :\n", "def input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "def input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "import sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "import sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "import sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "import sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\n\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\n\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in :\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n \n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\n# for _ in range(n-1):\nfor line in map(lambda s: s.strip(), sys.stdin.readlines()):\n # line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# 998244353\n", "MOD=10**9+7 # 998244353\n", "MOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\n", "import sys\n\n\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\n", "import sys\n\n\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\n\n\nresolve()\n", "import sys\n\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\n\n\nresolve()\n", "import sys\n\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import \n\nresolve()\n", "import sys\n\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import \ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import \ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n \n \n res = -1\n \n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n \n \n C = [INF] * (n + 1)\n res = -1\n \n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n \n \n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n \n \n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n \n \n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n \n \n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n \n \n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n \n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n \n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in :\n \n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n u -= 1; v -= 1\n \n \n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n u -= 1; v -= 1\n E[u].append(v)\n \n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n \n if v >= 0:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n \n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n \n \n else:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n \n \n ans[v] = res + 1\n \n \n else:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n \n ans[v] = res + 1\n \n \n else:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n \n ans[v] = res + 1\n \n \n for nv in E[v]:\n \n else:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n \n ans[v] = res + 1\n \n C[idx] = A[v]\n for nv in E[v]:\n \n else:\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n \n ans[v] = res + 1\n \n C[idx] = A[v]\n for nv in E[v]:\n \n else:\n v = ~v\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n \n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n else:\n v = ~v\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n else:\n v = ~v\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n else:\n v = ~v\n idx, prev = change[v]\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n \n else:\n v = ~v\n idx, prev = change[v]\n \n \n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n \n else:\n v = ~v\n idx, prev = change[v]\n if :\n res -= 1\n \n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n \n \n else:\n v = ~v\n idx, prev = change[v]\n if :\n res -= 1\n C[idx] = prev\n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n if nv == p:\n continue\n \n \n else:\n v = ~v\n idx, prev = change[v]\n if :\n res -= 1\n C[idx] = prev\n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n if nv == p:\n continue\n \n \n else:\n v = ~v\n idx, prev = change[v]\n if prev == INF:\n res -= 1\n C[idx] = prev\n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n if nv == p:\n continue\n \n stack.append((nv, v))\n else:\n v = ~v\n idx, prev = change[v]\n if prev == INF:\n res -= 1\n C[idx] = prev\n\n print(*ans, sep='\\n')\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF=float(\"inf\")\nMOD=10**9+7 # 998244353\ninput=lambda:sys.stdin.readline().rstrip()\nfrom bisect import bisect_left\ndef resolve():\n n = int(input())\n A = list(map(int,input().split()))\n E = [[] for _ in range(n)]\n for _ in range(n - 1):\n u, v = map(int,input().split())\n u -= 1; v -= 1\n E[u].append(v)\n E[v].append(u)\n\n C = [INF] * (n + 1)\n res = -1\n ans = [None] * n\n change = [None] * n # 行きがけでの変更\n\n # DFS\n stack = [(0, -1)] # v, p\n while stack:\n v, p = stack.pop()\n if v >= 0:\n idx = bisect_left(C, A[v])\n res = max(res, idx)\n ans[v] = res + 1\n change[v] = (idx, C[idx])\n C[idx] = A[v]\n for nv in E[v]:\n if nv == p:\n continue\n stack.append((~nv, v))\n stack.append((nv, v))\n else:\n v = ~v\n idx, prev = change[v]\n if prev == INF:\n res -= 1\n C[idx] = prev\n\n print(*ans, sep='\\n')\nresolve()\n" ]
47
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "main()\n", "def main():\n\n \nmain()\n", "def main():\n\n \n q = [0]\n lis = []\n \n \nmain()\n", "def main():\n\n \n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n \n \nmain()\n", "def main():\n\n from bisect import \n\n \n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n \n \nmain()\n", "def main():\n\n from bisect import \n\n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n \n \nmain()\n", "def main():\n\n from bisect import \n\n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n \n a = list(map(int, input().split()))\n \n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n \n \n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n \n a = list(map(int, input().split()))\n \n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n \n\n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n \n a = list(map(int, input().split()))\n \n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n n = int(input())\n a = list(map(int, input().split()))\n \n \n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n n = int(input())\n a = list(map(int, input().split()))\n \n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import \n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if :\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if :\n \n if not g[i]:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n \n if not g[i]:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n \n if not g[i]:\n \n else:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n \n \n if not g[i]:\n \n else:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n \n \n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n \n \n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n \n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n \n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n \n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n \n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n \n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if :\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n \n \n else:\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n visited[i] = \"push\"\n \n else:\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n visited[i] = \"push\"\n lis.append(ai)\n else:\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n visited[i] = \"push\"\n lis.append(ai)\n else:\n \n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n visited[i] = \"push\"\n lis.append(ai)\n else:\n visited[i] = [b, lis[b]]\n \n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n", "def main():\n\n from bisect import bisect_left as bl\n\n n = int(input())\n a = list(map(int, input().split()))\n ab = [list(map(int, input().split())) for _ in [0]*(n-1)]\n g = [set() for _ in [0]*n]\n ans = [0]*n\n [g[a-1].add(b-1) for a, b in ab]\n [g[b-1].add(a-1) for a, b in ab]\n visited = [False]*n\n\n q = [0]\n lis = []\n while q:\n i = q.pop()\n ai = a[i]\n if not visited[i]:\n b = bl(lis, ai)\n if b == len(lis):\n visited[i] = \"push\"\n lis.append(ai)\n else:\n visited[i] = [b, lis[b]]\n lis[b] = ai\n ans[i] = len(lis)\n if not g[i]:\n if visited[i] == \"push\":\n lis.pop()\n else:\n lis[visited[i][0]] = visited[i][1]\n else:\n q.append(i)\n j = g[i].pop()\n g[j].remove(i)\n q.append(j)\n for i in ans:\n print(i)\n\n\nmain()\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "f(0)\n", "import bisect\n\n\nf(0)\n", "import bisect\n\n\ndef f(v):\n \n\nf(0)\n", "import bisect\n\n\ndef f(v):\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\n\nstate=[0]*N\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\n\n\nstate=[0]*N\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\n\nans=[0]*N\nstate=[0]*N\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\n\nans=[0]*N\nstate=[0]*N\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\n\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\n\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\n\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\n\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n \n # push\n \n\n # 巻き戻し\n \n \nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n \n # push\n \n\n # 巻き戻し\n \n \nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in :\n \n \nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n \n # push\n \n\n # 巻き戻し\n \n \nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n # push\n \n\n # 巻き戻し\n \n \nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n \n\n # 巻き戻し\n \n \nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n \n\n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n \n\n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n \n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n \n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n \n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n \n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n \n for u in V[v]:\n \n\n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n \n for u in V[v]:\n \n\n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n ans[v] = bisect.bisect_left(D,float('inf'))\n\n for u in V[v]:\n \n\n # 巻き戻し\n \n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n ans[v] = bisect.bisect_left(D,float('inf'))\n\n for u in V[v]:\n \n\n # 巻き戻し\n i_pre,d_pre=stack.pop()\n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n \n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n ans[v] = bisect.bisect_left(D,float('inf'))\n\n for u in V[v]:\n \n\n # 巻き戻し\n i_pre,d_pre=stack.pop()\n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n u,v=map(int,input().split())\n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n ans[v] = bisect.bisect_left(D,float('inf'))\n\n for u in V[v]:\n if state[u] == 0:\n f(u)\n\n # 巻き戻し\n i_pre,d_pre=stack.pop()\n D[i_pre] = d_pre\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n u,v=map(int,input().split())\n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n", "import collections\nimport bisect\nimport sys\n\nsys.setrecursionlimit(10 ** 8)\n\ndef f(v):\n state[v] = 1\n a=As[v]\n idx = bisect.bisect_left(D,a)\n stack.append( (idx,D[idx]) ) # push\n D[idx] = a\n\n ans[v] = bisect.bisect_left(D,float('inf'))\n\n for u in V[v]:\n if state[u] == 0:\n f(u)\n\n # 巻き戻し\n i_pre,d_pre=stack.pop()\n D[i_pre] = d_pre\n\n\n\nN=int(input())\nAs=list(map(int,input().split()))\n\nD=[float('inf')]*N\nstack=collections.deque([])\nans=[0]*N\nstate=[0]*N\n\nV=[[] for _ in range(N)]\nfor _ in range(N-1):\n u,v=map(int,input().split())\n V[u-1].append(v-1)\n V[v-1].append(u-1)\n\nf(0)\n\nprint(*ans,sep='\\n')\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# coding: utf-8\n# Your code here!\n\n\nval = 0\n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\n\n\nq = [~0,0]\n\n\nval = 0\n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\n\n\nq = [~0,0]\n\n\nval = 0\n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\n\n\nn = int(input())\n\n\nq = [~0,0]\n\n\nval = 0\n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\n\n\nn = int(input())\n\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\n\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\n\nwhile q:\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\n\nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\n\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\n\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import \nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n \nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n \nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n \nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n \n \nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n \n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n \n \n else:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n \n \n else:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n \n \n else:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n \n \n dp[iv] = a[v]\n \n else:\n \n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n \n \n dp[iv] = a[v]\n \n else:\n v = ~v\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n \n ans[v] = val\n\n dp[iv] = a[v]\n \n else:\n v = ~v\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n if x == INF: val += 1\n ans[v] = val\n\n dp[iv] = a[v]\n \n else:\n v = ~v\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n if x == INF: val += 1\n ans[v] = val\n\n dp[iv] = a[v]\n for c in g[v]:\n \n else:\n v = ~v\n \n \nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n if x == INF: val += 1\n ans[v] = val\n\n dp[iv] = a[v]\n for c in g[v]:\n \n else:\n v = ~v\n \n if x == INF: val -= 1\n\n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n if x == INF: val += 1\n ans[v] = val\n\n dp[iv] = a[v]\n for c in g[v]:\n \n else:\n v = ~v\n x = dp[idx[v]] = old[v]\n if x == INF: val -= 1\n\n\nprint(*ans,sep=\"\\n\")\n", "# coding: utf-8\n# Your code here!\nimport sys\nreadline = sys.stdin.readline\nread = sys.stdin.read\n\nn = int(input())\na = [int(i) for i in readline().split()]\nm = map(int,read().split())\n\ng = [[] for _ in range(n)]\nfor i,j in zip(m,m):\n g[i-1].append(j-1)\n g[j-1].append(i-1)\n\nINF = 10**9\n\nq = [~0,0]\ndp = [INF]*n\nans = [0]*n\nval = 0\nidx = [-1]*n\nold = [-1]*n\nparent = [-1]*n\n\nss = 0\nfrom bisect import bisect_left\nwhile q:\n v = q.pop()\n if v >= 0:\n iv = idx[v] = bisect_left(dp,a[v])\n x = old[v] = dp[idx[v]]\n if x == INF: val += 1\n ans[v] = val\n\n dp[iv] = a[v]\n for c in g[v]:\n if c != parent[v]:\n parent[c] = v\n q.append(~c)\n q.append(c)\n else:\n v = ~v\n x = dp[idx[v]] = old[v]\n if x == INF: val -= 1\n\n\nprint(*ans,sep=\"\\n\")\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "if :\n main()\n", "def main():\n \n\nif :\n main()\n", "def main():\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n root = 0\n \n \n vs = []\n\n \n # print (vs)\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n G = [[] for _ in range(N)]\n\n \n root = 0\n \n \n vs = []\n\n \n # print (vs)\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n \n G = [[] for _ in range(N)]\n\n \n root = 0\n \n \n vs = []\n\n \n # print (vs)\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n \n G = [[] for _ in range(N)]\n\n \n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n \n # print (vs)\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n N = int(input())\n \n\n G = [[] for _ in range(N)]\n\n \n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n \n # print (vs)\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n N = int(input())\n \n\n G = [[] for _ in range(N)]\n\n \n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n N = int(input())\n \n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \n from bisect import \n\n N = int(input())\n \n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n \n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n \n \n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n memo = [None] * N\n \n\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n \n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n memo = [None] * N\n \n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n \n visited = set()\n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n memo = [None] * N\n \n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n \n vs = []\n\n ans = [0] * N\n memo = [None] * N\n \n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n \n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import \n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n u -= 1\n v -= 1\n \n \n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in :\n \n u -= 1\n v -= 1\n \n \n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n \n u -= 1\n v -= 1\n G[u].append(v)\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if :\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if :\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if :\n \n \n else:\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n \n \n else:\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n \n \n else:\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n \n \n vs.append(now_)\n else:\n \n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n \n \n vs.append(now_)\n else:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n \n stack.pop()\n vs.append(now_)\n else:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n \n \n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n \n \n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n \n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n \n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n done.add(now_)\n\n \n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n done.add(now_)\n\n \n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in :\n \n \n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in G[now_][::-1]:\n \n \n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in G[now_][::-1]:\n \n \n stack.append(next_)\n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in G[now_][::-1]:\n if :\n continue\n \n stack.append(next_)\n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in G[now_][::-1]:\n if :\n continue\n visited.add(next_)\n stack.append(next_)\n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n", "def main():\n import sys\n input = sys.stdin.readline\n\n from bisect import bisect_left\n\n N = int(input())\n A = list(map(int, input().split()))\n\n G = [[] for _ in range(N)]\n\n for _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n root = 0\n stack = [root]\n visited = set()\n visited.add(root)\n done = set()\n vs = []\n\n ans = [0] * N\n memo = [None] * N\n memo[root] = (0, A[root])\n\n INF = 10 ** 10\n dp = [INF] * N\n\n while stack:\n now_ = stack[-1]\n if now_ in done:\n j, a = memo[now_]\n dp[j] = a\n stack.pop()\n vs.append(now_)\n else:\n for next_ in G[now_][::-1]:\n if next_ in visited:\n continue\n visited.add(next_)\n stack.append(next_)\n done.add(now_)\n\n tmp = bisect_left(dp, A[now_])\n memo[now_] = (tmp, dp[tmp])\n dp[tmp] = A[now_]\n ans[now_] = bisect_left(dp, INF)\n\n # print (vs)\n print (*ans, sep = '\\n')\n\nif __name__ == '__main__':\n main()\n" ]
52
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "from import \n\n\ndfs(0)\n", "from import \n\n\ndef dfs(pos):\n \n\ndfs(0)\n", "from import \n\n\ndp = [float(\"inf\") for _ in range(n+1)]\n\n\ndef dfs(pos):\n \n\ndfs(0)\n", "from import \n\n\ndp = [float(\"inf\") for _ in range(n+1)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n", "from import \n\n\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n", "from import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n", "from import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n\nfor i in range(n):\n", "from import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\n\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n\nfor i in range(n):\n", "from import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\n\nfor i in range(n):\n", "from import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\n\n\nfrom import \n\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\n\nn = int(input())\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\n\nn = int(input())\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\n\n\nn = int(input())\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\n\n\nfrom import \n\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\n\n\nfrom import \nG = defaultdict(list)\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom import \nG = defaultdict(list)\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom import \nG = defaultdict(list)\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom import defaultdict\nG = defaultdict(list)\n\nfor _ in :\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n \n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n \n \nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n \nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n \n \n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n \n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n idx = bisect(dp, al[pos] - 1)\n \n \n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n idx = bisect(dp, al[pos] - 1)\n \n \n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n idx = bisect(dp, al[pos] - 1)\n \n dp[idx] = min(al[pos], dp[idx])\n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n idx = bisect(dp, al[pos] - 1)\n stack.append((idx, dp[idx]))\n dp[idx] = min(al[pos], dp[idx])\n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n \n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n", "import sys\nsys.setrecursionlimit(10**7)\n\nimport sys\ninput = sys.stdin.readline\n\nn = int(input())\nal = list(map(int,input().split()))\n\nfrom collections import defaultdict\nG = defaultdict(list)\n\nfor _ in range(n-1):\n u,v = map(int,input().split())\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nfrom bisect import bisect\nansl = [0 for i in range(n)]\ndp = [float(\"inf\") for _ in range(n+1)]\ndp[0] = -1\nused = [0 for i in range(n)]\nused[0] = 1\n\n\nstack = []\ndef dfs(pos):\n idx = bisect(dp, al[pos] - 1)\n stack.append((idx, dp[idx]))\n dp[idx] = min(al[pos], dp[idx])\n ansl[pos] = bisect(dp, 10**18) - 1\n for v in G[pos]:\n if used[v] == 0:\n used[v] = 1\n dfs(v)\n idx, k = stack.pop()\n dp[idx] = k\n\n\ndfs(0)\nflag = False\nfor i in range(n):\n print(ansl[i])\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n", "now = [0]\n\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n", "now = [0]\n\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\nnow = [0]\n\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\npre = [inf for _ in range(n)]\n\n\nnow = [0]\n\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\n\nnow = [0]\n\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\n\nnow = [0]\nwhile now:\n \n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \ninf = 10**12\n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \ninf = 10**12\n\npre = [inf for _ in range(n)]\n\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \ninf = 10**12\n\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\n\nnow = 0\n\nwhile True:\n", "for _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\n\nnow = 0\n\nwhile True:\n", "peer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\n\nnow = 0\n\nwhile True:\n", "peer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\nlis = [inf for _ in range(n)]\n\nnow = 0\n\nwhile True:\n", "peer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\nlis = [inf for _ in range(n)]\n\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "peer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\n\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\n\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\n\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\n\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\n\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\n\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\n\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\n\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n \nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \n a -= 1\n b -= 1\n \n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \n a -= 1\n b -= 1\n \n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n \ndown = [i for i in range(n)]\nfor i in range(n):\n \n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in :\n \n a -= 1\n b -= 1\n \n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n a -= 1\n b -= 1\n \n \ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n a -= 1\n b -= 1\n \n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n a -= 1\n b -= 1\n peer[a].append(b)\n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n a -= 1\n b -= 1\n peer[a].append(b)\n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n \n now = []\n for x in last:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n a -= 1\n b -= 1\n peer[a].append(b)\n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n last = now\n now = []\n for x in last:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n peer[a].append(b)\n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n last = now\n now = []\n for x in last:\n \ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n", "n = int(input())\nA = list(map(int,input().split()))\npeer = [[] for _ in range(n)]\nfor _ in range(n-1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n peer[a].append(b)\n peer[b].append(a)\ninf = 10**12\nminf = 10**11\npre = [inf for _ in range(n)]\npst = [[] for _ in range(n)]\nright = [inf for _ in range(n)]\nseen = [0 for _ in range(n)]\nseen[0] = 1\nnow = [0]\nwhile now:\n last = now\n now = []\n for x in last:\n for y in peer[x]:\n if seen[y] == 0:\n now.append(y)\n seen[y] = 1\n pre[y] = x\n right[y] = x\n if pst[x]:\n right[pst[x][-1]] = y\n pst[x].append(y)\ndown = [i for i in range(n)]\nfor i in range(n):\n if pst[i]:\n down[i] = pst[i][0]\n#print(pre)\n#print(right)\n#print(pst)\n#print(down)\nseen = [0 for _ in range(n)]\nimport bisect\nlis = [inf for _ in range(n)]\nrec = [[] for _ in range(n)]\nnow = 0\nans = [0 for _ in range(n)]\nwhile True:\n if seen[now] == 0:\n seen[now] += 1\n #print(A[now],lis)\n b = bisect.bisect_left(lis,A[now])\n rec[now] = [b,lis[b]]\n lis[b] = A[now]\n ans[now] = bisect.bisect_left(lis,minf)\n now = down[now]\n else:\n seen[now] += 1\n b,c = rec[now]\n lis[b] = c\n if now == 0:\n break\n now = right[now]\nfor x in ans:\n print(x)\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\n## a, bを無向辺として,隣接リストを作成\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\ndef dfs_rec(u):\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "import copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "import sys\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "import sys\nimport math\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "import sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n", "import sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "import sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "import sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\n\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\n\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\n\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\n\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\n\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\n\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\n\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\n\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\n\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\ndfs_rec(1)\n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in :\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\ndfs_rec(1)\n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\ndfs_rec(1)\n\nfor i in :\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n \n\ndfs_rec(1)\n\nfor i in :\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\ndfs_rec(1)\n\nfor i in :\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\n for v in al[u]:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n \n\n ans[u] = len(LIS)\n\n \n for v in al[u]:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n \n for v in al[u]:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n \n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n \n \n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n \n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n \n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n \n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n \n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if :\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if :\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n \n \ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n \n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n \n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n else:\n \n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n \n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n \n else:\n \n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n pre_v = INF\n \n else:\n \n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n pre_v = INF\n \n else:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n \n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n pre_v = INF\n \n else:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n \n pre_v = INF\n LIS.append(x)\n else:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n pre_idx = len(LIS)\n pre_v = INF\n LIS.append(x)\n else:\n \n \n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n pre_idx = len(LIS)\n pre_v = INF\n LIS.append(x)\n else:\n \n \n LIS[bisect.bisect_left(LIS, x)] = x\n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n pre_idx = len(LIS)\n pre_v = INF\n LIS.append(x)\n else:\n pre_idx = bisect.bisect_left(LIS, x)\n \n LIS[bisect.bisect_left(LIS, x)] = x\n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n", "from sys import stdin\nimport sys\nimport math\nfrom functools import reduce\nimport functools\nimport itertools\nfrom collections import deque,Counter\nfrom operator import mul\nimport copy\n# ! /usr/bin/env python\n# -*- coding: utf-8 -*-\nimport heapq\nsys.setrecursionlimit(10**6)\nINF = float(\"inf\")\nimport bisect\n\n## a, bを無向辺として,隣接リストを作成\nN = int(input())\na = [0] + list(map(int, input().split()))\nal = [[] for i in range(N+1)]\n\nfor i in range(N-1):\n c, d = list(map(int, input().split()))\n al[c].append(d)\n al[d].append(c)\n\nvisited = [0 for i in range(N+1)]\n\nLIS = [a[1]]\nans = [0 for i in range(N+1)]\nans[1] = 1\n\ndef dfs_rec(u):\n x = a[u]\n if x > LIS[-1]:\n pre_idx = len(LIS)\n pre_v = INF\n LIS.append(x)\n else:\n pre_idx = bisect.bisect_left(LIS, x)\n pre_v = LIS[pre_idx]\n LIS[bisect.bisect_left(LIS, x)] = x\n\n ans[u] = len(LIS)\n\n visited[u] = 1\n for v in al[u]:\n if visited[v] == 0:\n dfs_rec(v)\n\n if pre_v == INF:\n LIS.pop()\n else:\n LIS[pre_idx] = pre_v\n\ndfs_rec(1)\n\nfor i in range(1,N+1):\n print(ans[i])\n" ]
56
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\n\nlst = []\n", "n = int(input())\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\n\nlst = []\n", "n = int(input())\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\n\ndef sub:\n \n\nlst = []\n", "n = int(input())\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\n", "n = int(input())\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\n", "n = int(input())\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "n = int(input())\na = list(map(int, input().split()))\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "n = int(input())\na = list(map(int, input().split()))\n\n\nns = defaultdict(set)\n\n\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "n = int(input())\na = list(map(int, input().split()))\n\n\nns = defaultdict(set)\n\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "n = int(input())\na = list(map(int, input().split()))\n\n\nns = defaultdict(set)\n\n\nfrom bisect import \n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\n\nns = defaultdict(set)\n\n\nfrom bisect import \n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\n\nns = defaultdict(set)\nfor _ in :\n \n\nfrom bisect import \n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\n\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n\nfrom bisect import \n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n\nfrom bisect import \n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import \nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub:\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in :\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n for v in ns[u]:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n \n \nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n \n ns[u-1].add(v-1)\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n \n \n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n \n \n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n \n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n \n \nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n lst.pop()\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n old = -1\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n lst.pop()\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n if old==-1:\n lst.pop()\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if :\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or :\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or :\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif :\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or :\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or aa > lst[-1]:\n \n old = -1\n \n else:\n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or aa > lst[-1]:\n \n old = -1\n \n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n \n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or aa > lst[-1]:\n \n old = -1\n \n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if or aa > lst[-1]:\n \n old = -1\n ind = None\n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n \n old = -1\n ind = None\n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n \n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n \n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n if prev==v:\n continue\n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n ind = bisect_left(lst, aa)\n \n \n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n if prev==v:\n continue\n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n ind = bisect_left(lst, aa)\n \n lst[ind] = aa\n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n if prev==v:\n continue\n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "from collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n ind = bisect_left(lst, aa)\n old = lst[ind]\n lst[ind] = aa\n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n if prev==v:\n continue\n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n", "\nfrom collections import defaultdict\nn = int(input())\na = list(map(int, input().split()))\n\nimport sys\nsys.setrecursionlimit(max(1000, 2*n))\n\n\nns = defaultdict(set)\nfor _ in range(n-1):\n u,v = [int(c) for c in input().split()]\n ns[u-1].add(v-1)\n ns[v-1].add(u-1)\n\nfrom bisect import bisect_left\n\nl = [a[0]]\n# for a in A[1:]:\n# if a > L[-1]:\n# # Lの末尾よりaが大きければ増加部分列を延長できる\n# L.append(a)\n# else:\n# # そうでなければ、「aより小さい最大要素の次」をaにする\n# # 該当位置は、二分探索で特定できる\n# L[bisect_left(L, a)] = a\n# return len(L)\n\nans = [None] * n\n\ndef sub(u, prev, lst, old, ind, ans):\n aa = a[u]\n if len(lst)==0 or aa > lst[-1]:\n lst.append(aa)\n old = -1\n ind = None\n else:\n ind = bisect_left(lst, aa)\n old = lst[ind]\n lst[ind] = aa\n ans[u] = len(lst)\n# print(lst)\n for v in ns[u]:\n if prev==v:\n continue\n sub(v, u, lst, old, ind, ans)\n if old==-1:\n lst.pop()\n elif old is not None:\n lst[ind] = old\n\nlst = []\nsub(0, -1, lst, None, None, ans)\nprint(\"\\n\".join(map(str, ans)))\n" ]
49
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "inf_ind = 0\n", "inf_ind = 0\n\n\nd = deque()\n", "links = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\n\n\nd = deque()\n", "n = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\n\n\nd = deque()\n", "input = sys.stdin.readline\n\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\n\n\nd = deque()\n", "input = sys.stdin.readline\n\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\nparent = [-1]*(n+1)\n\n\nd = deque()\n", "input = sys.stdin.readline\n\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n", "input = sys.stdin.readline\n\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n\nwhile(d):\n", "input = sys.stdin.readline\n\nimport bisect\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n\nwhile(d):\n", "input = sys.stdin.readline\n\nimport bisect\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n\nwhile(d):\n", "input = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n\nwhile(d):\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\n\nd = deque()\n\nwhile(d):\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\n\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\n\nwhile(d):\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\n\nwhile(d):\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\n\nwhile(d):\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\n\nwhile(d):\n \n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\n\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in :\n \n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in :\n \n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n \n \ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n \n \ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n \n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if:\n \n else:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if:\n \n \n else:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n \n \n else:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n \n else:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n for child in :\n \n\n else:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n for child in :\n \n\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n for child in :\n \n\n if:\n \n \n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n for child in :\n \n\n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n \n for child in :\n \n\n ind = bisect.bisect_left(lis,a_now)\n \n \n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n \n for child in :\n \n\n ind = bisect.bisect_left(lis,a_now)\n \n \n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n \n for child in :\n \n\n ind = bisect.bisect_left(lis,a_now)\n \n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n \n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n \n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n \n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n \n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n \n \n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n \n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n \n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n \n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in :\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in links[now]:\n \n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in links[now]:\n if(child != p):\n parent[child] = now\n d.appendleft(child)\n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if:\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in links[now]:\n if(child != p):\n parent[child] = now\n d.appendleft(child)\n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if(inf_ind == ind):\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if:\n \n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in links[now]:\n if(child != p):\n parent[child] = now\n d.appendleft(child)\n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if(inf_ind == ind):\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if:\n inf_ind -= 1\n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\ninput = sys.stdin.readline\nfrom collections import deque\nimport bisect\n\nn = int(input())\na = list(map(int,input().split()))\n\nlinks = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n v,w = map(int, input().split())\n links[v].append(w)\n links[w].append(v)\n\ninf = 10**10\nlis = [inf] * n\ninf_ind = 0\nparent = [-1]*(n+1)\noperate = [0] * (n+1)\nans = [-1]*(n+1)\nd = deque()\nd.append(1)\nwhile(d):\n now = d.popleft()\n if(operate[now]==0):\n p = parent[now]\n if(p!=-1):\n d.appendleft(now)\n for child in links[now]:\n if(child != p):\n parent[child] = now\n d.appendleft(child)\n\n a_now = a[now-1]\n ind = bisect.bisect_left(lis,a_now)\n operate[now] = (ind,lis[ind],a_now)\n lis[ind] = a_now\n if(inf_ind == ind):\n inf_ind += 1\n ans[now] = inf_ind\n else:\n ind,before,after = operate[now]\n lis[ind] = before\n if(before == inf):\n inf_ind -= 1\n # print(lis)\n\nfor i in ans[1:]:\n print(i)\n" ]
51
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# MOD = 998244353\n\n\nroot = 0\n", "# MOD = 998244353\n\n\nfor v, u in VU:\n \n\nroot = 0\n", "# MOD = 998244353\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n", "# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n", "if :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n", "if :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\n", "if :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\n\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\n\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\n\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\n\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n \n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n \n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n \ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n \ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n \n prev = dp[i]\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n \n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n \n ans[v] = bisect.bisect_left(dp, INF)\n \n \ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif :\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n \n ans[v] = bisect.bisect_left(dp, INF)\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv:\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n \n ans[v] = bisect.bisect_left(dp, INF)\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv:\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n for u in graph[v]:\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n for u in graph[v]:\n \n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n for u in graph[v]:\n if u == p:\n continue\n \n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n", "import bisect\nimport os\n\nimport sys\n\nif os.getenv(\"LOCAL\"):\n sys.stdin = open(\"_in.txt\", \"r\")\n\nsys.setrecursionlimit(10 ** 9)\nINF = float(\"inf\")\nIINF = 10 ** 18\nMOD = 10 ** 9 + 7\n# MOD = 998244353\n\n\nN = int(sys.stdin.buffer.readline())\nA = list(map(int, sys.stdin.buffer.readline().split()))\nVU = [list(map(int, sys.stdin.buffer.readline().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor v, u in VU:\n v -= 1\n u -= 1\n graph[v].append(u)\n graph[u].append(v)\n\ndp = [INF] * (N + 10)\nans = [0] * N\nroot = 0\n\n\ndef dfs(v, p):\n i = bisect.bisect_left(dp, A[v])\n prev = dp[i]\n dp[i] = A[v]\n ans[v] = bisect.bisect_left(dp, INF)\n for u in graph[v]:\n if u == p:\n continue\n dfs(u, v)\n dp[i] = prev\n\n\ndfs(root, None)\nprint(*ans, sep='\\n')\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "q = []\n", "for _ in :\n \n\nq = []\n", "*a, = map(int, input().split())\n\nfor _ in :\n \n\nq = []\n", "*a, = map(int, input().split())\n\nfor _ in :\n \n\nq = []\n\n\ndef dfs:\n", "*a, = map(int, input().split())\n\nfor _ in :\n \n\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n", "*a, = map(int, input().split())\n\nfor _ in :\n \n\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "from bisect import \n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "from bisect import \n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "import sys\n\nfrom bisect import \n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "import sys\n\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\nfor i in :\n", "import sys\n\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\n\n\ndef dfs:\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\n\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs:\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\n\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs:\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\n\nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs:\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\nfrom import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs:\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\nfrom import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n\ndfs(1, 0)\nfor i in :\n", "import sys\nfrom import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in :\n", "import sys\nfrom import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in :\n", "import sys\nfrom collections import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in :\n", "import sys\nfrom collections import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in :\n print(ans[i])\n", "import sys\nfrom collections import \nfrom bisect import \nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import \nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in :\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import \nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n \nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \n for t in d[s]:\n \n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \n for t in d[s]:\n \n\n ba, bb = q.pop()\n \n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n \n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n \n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n \n \n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n \n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n \n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n l[v] = a[s-1]\n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n d[v].append(u)\n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n l[v] = a[s-1]\n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n d[v].append(u)\n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n l[v] = a[s-1]\n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n \n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n d[v].append(u)\n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n l[v] = a[s-1]\n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n \n dfs(t, s)\n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n", "import sys\nfrom collections import defaultdict\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\ninput=sys.stdin.readline\n\n\nN = int(input())\n*a, = map(int, input().split())\nd = defaultdict(list)\nfor _ in range(N-1):\n u, v = map(int, input().split())\n d[u].append(v)\n d[v].append(u)\n\nINF = 10**20\nl = [INF]*(N)\nq = []\nans = [0]*(N+1)\n\ndef dfs(s, root):\n v = bisect_left(l, a[s-1])\n q.append((v, l[v]))\n l[v] = a[s-1]\n ans[s] = bisect_left(l, INF)\n\n for t in d[s]:\n if t==root:continue\n dfs(t, s)\n\n ba, bb = q.pop()\n l[ba] = bb\n\ndfs(1, 0)\nfor i in range(1, N+1):\n print(ans[i])\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "for u, v in uv:\n \n\ndfs(0)\n", "for u, v in uv:\n \n\ndp = [INF] * n\n\n\ndfs(0)\n", "from bisect import \n\n\nfor u, v in uv:\n \n\ndp = [INF] * n\n\n\ndfs(0)\n", "from bisect import \n\n\nINF = 10 ** 10\n\n\nfor u, v in uv:\n \n\ndp = [INF] * n\n\n\ndfs(0)\n", "from bisect import \n\n\nINF = 10 ** 10\n\n\nfor u, v in uv:\n \n\narrived = [False] * n\n\n\ndp = [INF] * n\n\n\ndfs(0)\n", "from bisect import \n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\n\ndp = [INF] * n\n\n\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\n\ndp = [INF] * n\n\n\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\n\n\ndp = [INF] * n\n\n\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\n\n\ndp = [INF] * n\n\n\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndp[0] = a[0]\ndfs(0)\n", "sys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\n\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n \n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n \n \ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n arrived[u] = True\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n \narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n arrived[u] = True\n for v in adj[u]:\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n \n adj[v].append(u)\n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n arrived[u] = True\n for v in adj[u]:\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n adj[u].append(v)\n adj[v].append(u)\n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n arrived[u] = True\n for v in adj[u]:\n \n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n", "import sys\nsys.setrecursionlimit(10 ** 7)\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nuv = [list(map(int, input().split())) for _ in range(n - 1)]\n\nINF = 10 ** 10\n\nadj = [[] for _ in range(n)]\nfor u, v in uv:\n u -= 1\n v -= 1\n adj[u].append(v)\n adj[v].append(u)\n\narrived = [False] * n\n\nans = [None] * n\nans[0] = 1\n\ndp = [INF] * n\n\n\ndef dfs(u):\n arrived[u] = True\n for v in adj[u]:\n if not arrived[v]:\n idx = bisect_left(dp, a[v])\n tmp = dp[idx]\n dp[idx] = a[v]\n ans[v] = bisect_left(dp, INF - 1)\n dfs(v)\n dp[idx] = tmp\n\n\ndp[0] = a[0]\ndfs(0)\nprint(*ans, sep=\"\\n\")\n" ]
26
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#import numpy as np\n\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n", "#import numpy as np\n\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n", "#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n\nsetrecursionlimit(10**7)\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\n\nsetrecursionlimit(10**7)\n\n\ndef main():\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\n\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\n\nimport bisect\n\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\nimport queue\nimport bisect\n\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\n\n#import numpy as np\n\nimport queue\nimport bisect\nfrom import deque,\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\n\nimport queue\nimport bisect\nfrom import deque,\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom import deque,\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n\nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n \n stk = []\n\n \nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n \n stk = []\n\n \nif :\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n \n stk = []\n\n \nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n \nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n \n solve(0,-1)\n\n \nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n \n solve(0,-1)\n\n \n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n \n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n \n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n \n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n \n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n \n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n \n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in :\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n u -= 1;v -= 1\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n u -= 1;v -= 1\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n u -= 1;v -= 1\n \n \n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n pl,val = stk.pop()\n \n \n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n u -= 1;v -= 1\n \n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n pl,val = stk.pop()\n \n \n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n \n u -= 1;v -= 1\n \n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n \n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n \n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n \n stk.append((pt,dp[pt]))\n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n \n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n \n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n \n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n return None\n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n dp[pt] = ai\n ans[ni] = bisect.bisect_left(dp,10**18-1)\n \n pl,val = stk.pop()\n dp[pl] = val\n return None\n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n dp[pt] = ai\n ans[ni] = bisect.bisect_left(dp,10**18-1)\n for i in way[ni]:\n \n pl,val = stk.pop()\n dp[pl] = val\n return None\n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n dp[pt] = ai\n ans[ni] = bisect.bisect_left(dp,10**18-1)\n for i in way[ni]:\n if i == pi:\n continue\n else:\n solve(i,ni)\n pl,val = stk.pop()\n dp[pl] = val\n return None\n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n", "'''\n自宅用PCでの解答\n'''\nimport math\n#import numpy as np\nimport itertools\nimport queue\nimport bisect\nfrom collections import deque,defaultdict\nimport heapq as hpq\nfrom sys import stdin,setrecursionlimit\n#from scipy.sparse.csgraph import dijkstra\n#from scipy.sparse import csr_matrix\nipt = stdin.readline\nsetrecursionlimit(10**7)\n\n\n\ndef main():\n n = int(ipt())\n# n = 2*10**5\n a = [int(i) for i in ipt().split()]\n# a = [i+1 for i in range(n)]\n way = [[] for i in range(n)]\n for i in range(n-1):\n u,v = map(int,ipt().split())\n u -= 1;v -= 1\n way[u].append(v)\n way[v].append(u)\n# way = [[i-1,i+1] for i in range(n)]\n# way[0] = [1]\n# way[n-1] = [n-2]\n ans = [0]*n\n dp = [10**18]*n\n stk = []\n\n def solve(ni,pi):\n ai = a[ni]\n pt = bisect.bisect_left(dp,ai)\n stk.append((pt,dp[pt]))\n dp[pt] = ai\n ans[ni] = bisect.bisect_left(dp,10**18-1)\n for i in way[ni]:\n if i == pi:\n continue\n else:\n solve(i,ni)\n pl,val = stk.pop()\n dp[pl] = val\n return None\n\n solve(0,-1)\n\n for i in ans:\n print(i)\n\n return None\n\nif __name__ == '__main__':\n main()\n" ]
46
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "stack=[]\n\n\ndfs(0)\n", "stack=[]\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "stack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\n\n\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\nn=int(input())\n\n\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\nn=int(input())\na=list(map(int,input().split()))\n\n\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\nn=int(input())\na=list(map(int,input().split()))\n\n\nlis=[a[0]]\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\n\n\nlis=[a[0]]\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "from bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n\nlis=[a[0]]\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\n\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n\nlis=[a[0]]\nstack=[]\nans=[1]*n\n\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\n\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n\nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs:\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\n\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n\nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs:\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n\nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs:\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs:\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in :\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n \n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import ,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n for nx in G[cur]:\n if nx==p:continue\n idx=bisect_left(lis,a[nx])\n if idx==len(lis):\n stack.append((idx,-1))\n lis.append(a[nx])\n else:\n stack.append((idx,lis[idx]))\n lis[idx]=a[nx]\n\n ans[nx]=len(lis)\n\n dfs(nx,cur)\n\n idx,v=stack.pop()\n if v<0:\n lis.pop()\n else:\n lis[idx]=v\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import bisect_left,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n for nx in G[cur]:\n if nx==p:continue\n idx=bisect_left(lis,a[nx])\n if idx==len(lis):\n stack.append((idx,-1))\n lis.append(a[nx])\n else:\n stack.append((idx,lis[idx]))\n lis[idx]=a[nx]\n\n ans[nx]=len(lis)\n\n dfs(nx,cur)\n\n idx,v=stack.pop()\n if v<0:\n lis.pop()\n else:\n lis[idx]=v\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import bisect_left,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n \nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n for nx in G[cur]:\n if nx==p:continue\n idx=bisect_left(lis,a[nx])\n if idx==len(lis):\n stack.append((idx,-1))\n lis.append(a[nx])\n else:\n stack.append((idx,lis[idx]))\n lis[idx]=a[nx]\n\n ans[nx]=len(lis)\n\n dfs(nx,cur)\n\n idx,v=stack.pop()\n if v<0:\n lis.pop()\n else:\n lis[idx]=v\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import bisect_left,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n G[v-1].append(u-1)\n\nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n for nx in G[cur]:\n if nx==p:continue\n idx=bisect_left(lis,a[nx])\n if idx==len(lis):\n stack.append((idx,-1))\n lis.append(a[nx])\n else:\n stack.append((idx,lis[idx]))\n lis[idx]=a[nx]\n\n ans[nx]=len(lis)\n\n dfs(nx,cur)\n\n idx,v=stack.pop()\n if v<0:\n lis.pop()\n else:\n lis[idx]=v\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(100000000)\n\nfrom bisect import bisect_left,bisect_right\nn=int(input())\na=list(map(int,input().split()))\nG=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nlis=[a[0]]\nstack=[]\nans=[1]*n\ndef dfs(cur,p=-1):\n for nx in G[cur]:\n if nx==p:continue\n idx=bisect_left(lis,a[nx])\n if idx==len(lis):\n stack.append((idx,-1))\n lis.append(a[nx])\n else:\n stack.append((idx,lis[idx]))\n lis[idx]=a[nx]\n\n ans[nx]=len(lis)\n\n dfs(nx,cur)\n\n idx,v=stack.pop()\n if v<0:\n lis.pop()\n else:\n lis[idx]=v\n\ndfs(0)\nprint(*ans,sep=\"\\n\")\n" ]
23
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#print(tree)\n", "#print(tree)\n\n\ndef dfs:\n", "#print(tree)\n\n\ndef dfs:\n \ndfs(1,-1)\n", "import sys\n\n\n#print(tree)\n\n\ndef dfs:\n \ndfs(1,-1)\n", "import sys\nsys.setrecursionlimit(10**9)\n\n\n#print(tree)\n\n\ndef dfs:\n \ndfs(1,-1)\n", "import sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\n\n#print(tree)\n\n\ndef dfs:\n \ndfs(1,-1)\n", "import sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\n\n#print(tree)\n\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\n\n#print(tree)\n\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\n\nfor _ in :\n \n#print(tree)\n\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\n\nfor _ in :\n \n#print(tree)\n\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\ntree = [[] for _ in range(n+1)]\nfor _ in :\n \n#print(tree)\n\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\n\ntree = [[] for _ in range(n+1)]\nfor _ in :\n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in :\n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in :\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs:\n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in :\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs:\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs:\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n \n \n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n tree[u].append(v)\n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n \n \n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n tree[u].append(v)\n \n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n d[i] = a[now]\n \n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n \n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n d[i] = a[now]\n \n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n d[i] = a[now]\n \n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n \n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in :\n \n \ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in :\n \n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in tree[now]:\n \n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in tree[now]:\n \n \n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in tree[now]:\n if :\n continue\n \n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in tree[now]:\n if :\n continue\n dfs(nxt, now)\n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\nn = int(input())\na = [0]+list(map(int,input().split()))\ntree = [[] for _ in range(n+1)]\nfor _ in range(n-1):\n u,v = map(int,input().split())\n tree[u].append(v)\n tree[v].append(u)\n#print(tree)\nd = [float(\"inf\")]*(n+1)\nans = [0]*(n+1)\n\ndef dfs(now, pre):\n i = bisect.bisect_left(d, a[now])\n tmp = d[i]\n d[i] = a[now]\n ans[now] = bisect.bisect_left(d, float(\"inf\"))\n for nxt in tree[now]:\n if nxt == pre:\n continue\n dfs(nxt, now)\n d[i] = tmp\ndfs(1,-1)\n\nfor i in ans[1:]:\n print(i)\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "a = list(map(int, input().split()))\n\n\ndfs(0)\n", "a = list(map(int, input().split()))\n\n\nans = [0] * N\n\n\ndfs(0)\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nans = [0] * N\n\n\ndfs(0)\n", "from bisect import \n\n\nN = int(input())\na = list(map(int, input().split()))\n\n\nans = [0] * N\n\n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\n\n\nans = [0] * N\n\n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\n\n\nans = [0] * N\nvisited = [False] * N\n\n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\n\n\nans = [0] * N\nvisited = [False] * N\n\n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nvisited = [False] * N\n\n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in :\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \n lis[i] = a[v]\n \n \ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \n lis[i] = a[v]\n \n \ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \n lis[i] = a[v]\n \n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \n lis[i] = a[v]\n \n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n \n \n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n \n \n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n \n \n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n \nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n \n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n \n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n \n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n \n dfs(c)\n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n if :\n continue\n dfs(c)\n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\ninput = sys.stdin.readline\n\nN = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\nlis = [float('inf')] * N\nans = [0] * N\nvisited = [False] * N\n\ndef dfs(v):\n visited[v] = True\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for c in G[v]:\n if visited[c]:\n continue\n dfs(c)\n lis[i] = tmp\n\ndfs(0)\nprint('\\n'.join(map(str, ans)))\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "RET = 0\nPROC = 1\n", "N = int(input())\n\n\nRET = 0\nPROC = 1\n", "from import \nN = int(input())\n\n\nRET = 0\nPROC = 1\n", "from import \nN = int(input())\n\n\nRET = 0\nPROC = 1\n\n\nstack.append((PROC, 0, 0))\n", "from import \nN = int(input())\n\n\nRET = 0\nPROC = 1\n\n\nstack.append((PROC, 0, 0))\n\nfor ans in anss:\n", "from import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\n\nstack.append((PROC, 0, 0))\n\nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\n\nstack.append((PROC, 0, 0))\n\nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\n\nanss = [INF] * N\n\n\nstack.append((PROC, 0, 0))\n\nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\nstack = []\n\nanss = [INF] * N\n\n\nstack.append((PROC, 0, 0))\n\nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\nstack = []\n\nanss = [INF] * N\n\n\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\nstack = []\n\nanss = [INF] * N\nvisited = [False] * N\n\n\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\n\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\n\n\nfor _ in :\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\nAs = list(map(int, input().split()))\n\nfor _ in :\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in :\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in :\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n", "from bisect import \nfrom import \nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n", "from bisect import \nfrom collections import \nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n", "from bisect import \nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n", "from bisect import \nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n \nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n", "from bisect import \nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n \nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n \nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n \nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n \n if :\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n \n \nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if :\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n \n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if :\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if :\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if :\n \n else:\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n \n else:\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n \n \n else:\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n \n \n else:\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n \n lismin[i] = backup\n else:\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n \n \n anss[node] = bisect_left(lismin, INF)\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n \n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n \n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n \n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n \n for to in :\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n node, i = v\n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n \n for to in :\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n node, i = v\n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n visited[node] = True\n for to in :\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n node, i = v\n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n visited[node] = True\n for to in Es[node].keys():\n \nfor ans in anss:\n print(ans)\n", "from bisect import bisect_left\nfrom collections import defaultdict as dd\nN = int(input())\nAs = list(map(int, input().split()))\nEs = dd(dict)\nfor _ in range(N-1):\n f, t = map(int, input().split())\n Es[f-1][t-1] = Es[t-1][f-1] = 1\n\nINF = float('inf')\nRET = 0\nPROC = 1\n\nstack = []\nlismin = [INF] * N\nanss = [INF] * N\nvisited = [False] * N\n\nstack.append((RET, 0, INF))\nstack.append((PROC, 0, 0))\nwhile stack:\n cmd, *v = stack.pop()\n if cmd == RET:\n i, backup = v\n lismin[i] = backup\n else:\n node, i = v\n lismin[i] = As[node]\n anss[node] = bisect_left(lismin, INF)\n visited[node] = True\n for to in Es[node].keys():\n if not visited[to]:\n x = bisect_left(lismin, As[to])\n stack.append((RET, x, lismin[x]))\n stack.append((PROC, to, x))\nfor ans in anss:\n print(ans)\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "INF = 10**20\n", "sys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n", "sys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n\nans = [0]*(N+1)\n", "sys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n\nans = [0]*(N+1)\n\ndef dfs(v,p):\n", "from bisect import \nsys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n\nans = [0]*(N+1)\n\ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n\nans = [0]*(N+1)\n\ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\n\n\nINF = 10**20\n\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\n\n\ndic = [[] for i in range(N+1)]\nINF = 10**20\n\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\n\ndic = [[] for i in range(N+1)]\nINF = 10**20\n\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\n\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\n\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n \ndfs(1,-1)\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n \ndfs(1,-1)\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n \ndfs(1,-1)\nfor i in :\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in :\n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in :\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in :\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in :\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in :\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in :\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n \ndef dfs(v,p):\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n \ndef dfs(v,p):\n \n old = dp[i]\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n \ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n \ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n \n ans[v] = bisect_left(dp,INF)\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n \n ans[v] = bisect_left(dp,INF)\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n \n \ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n \n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n \n dp[i] = old\ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n dic[u].append(v)\n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n \n dp[i] = old\ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n dic[u].append(v)\n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n for u in dic[v]:\n \n dp[i] = old\ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n dic[u].append(v)\n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n for u in dic[v]:\n \n dfs(u,v)\n dp[i] = old\ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**6)\nN,*L = map(int, open(0).read().split())\nA = [0]+L[:N]\ndic = [[] for i in range(N+1)]\nINF = 10**20\ndp = [INF]*N\nans = [0]*(N+1)\nfor u,v in zip(*[iter(L[N:])]*2):\n dic[u].append(v)\n dic[v].append(u)\ndef dfs(v,p):\n i = bisect_left(dp,A[v])\n old = dp[i]\n dp[i] = A[v]\n ans[v] = bisect_left(dp,INF)\n for u in dic[v]:\n if u==p:\n continue\n dfs(u,v)\n dp[i] = old\ndfs(1,-1)\nfor i in range(1,N+1):\n print(ans[i])\n" ]
30
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dp = [INF] * N\n", "sys.setrecursionlimit(10**9)\n\n\ndp = [INF] * N\n", "sys.setrecursionlimit(10**9)\n\n\ndp = [INF] * N\n\n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\n\nA = list(map(int, input().split()))\n\n\ndp = [INF] * N\n\n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\n\nA = list(map(int, input().split()))\n\n\ndp = [INF] * N\ndp[0] = A[0]\n\n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\n\nA = list(map(int, input().split()))\n\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\n\n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\n\nA = list(map(int, input().split()))\n\n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\n\n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\n\nA = list(map(int, input().split()))\n\n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\n", "sys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\n\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\n\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor i in :\n \n\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\n\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor i in :\n \n\nans = [0] * N\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor i in :\n \n\nans = [0] * N\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in :\n \n\nans = [0] * N\nans[0] = 1\n\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in :\n \n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n \n global dp\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n \n global dp\n global stack\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n \n for child in children:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n \n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n ; \n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n ; tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n \n # 巻き戻し\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n \n \n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n \n \n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n \n \n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n \n \n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n \n \n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n idx, num = stack.pop()\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n \n stack.append([idx, dp[idx]])\n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n idx, num = stack.pop()\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n idx = bisect.bisect_left(dp, num)\n stack.append([idx, dp[idx]])\n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n idx, num = stack.pop()\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n idx = bisect.bisect_left(dp, num)\n stack.append([idx, dp[idx]])\n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n \n # 巻き戻し\n idx, num = stack.pop()\n dp[idx] = num\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if :\n continue\n num = A[child]\n idx = bisect.bisect_left(dp, num)\n stack.append([idx, dp[idx]])\n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n dfs(child, node)\n # 巻き戻し\n idx, num = stack.pop()\n dp[idx] = num\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**9)\n\nN = int(input())\nA = list(map(int, input().split()))\n\ntree = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = map(int, input().split())\n tree[u-1].append(v-1); tree[v-1].append(u-1)\n\n\nans = [0] * N\nans[0] = 1\nINF = 10**10\ndp = [INF] * N\ndp[0] = A[0]\nstack = []\ndef dfs(node, par):\n global ans\n global dp\n global stack\n children = tree[node]\n for child in children:\n if child == par:\n continue\n num = A[child]\n idx = bisect.bisect_left(dp, num)\n stack.append([idx, dp[idx]])\n dp[idx] = num\n ans[child] = bisect.bisect_left(dp, INF)\n dfs(child, node)\n # 巻き戻し\n idx, num = stack.pop()\n dp[idx] = num\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n" ]
40
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "print(f_lis_on_tree())\n", "def f_lis_on_tree:\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree:\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n # 以下、1-origin で考える\n \n\n # 根は訪問済\n \n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n # 以下、1-origin で考える\n \n\n # 根は訪問済\n \n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n # 以下、1-origin で考える\n \n\n # 根は訪問済\n \n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n # 以下、1-origin で考える\n \n\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n # 以下、1-origin で考える\n \n\n ans = [0] * (N + 1)\n \n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n \n N = int(input())\n # 以下、1-origin で考える\n \n\n ans = [0] * (N + 1)\n \n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n ans = [0] * (N + 1)\n \n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n \n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n \n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n \n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n # 以下、1-origin で考える\n \n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n \n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n \n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n \n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n \n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n # 更新した要素とその値を記録しておく\n \n # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n \n \n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n \n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n \n # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n \n \n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n \n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n \n \n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n \n \n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n \n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n changes.append((pos, lis[pos])) # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n changes.append((pos, lis[pos])) # 更新した要素とその値を記録しておく\n \n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n for child in graph[v]:\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n \n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n changes.append((pos, lis[pos])) # 更新した要素とその値を記録しておく\n lis[pos] = A[v]\n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n for child in graph[v]:\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n graph[b].append(a)\n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n changes.append((pos, lis[pos])) # 更新した要素とその値を記録しておく\n lis[pos] = A[v]\n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n for child in graph[v]:\n \n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n", "def f_lis_on_tree(INF=float('inf')):\n # 参考: https://note.com/tanon_cp/n/n51ee6db8f5b2\n import sys\n sys.setrecursionlimit(10**7)\n import bisect\n N = int(input())\n A = [0] + [int(i) for i in input().split()] # 以下、1-origin で考える\n Edges = [[int(i) for i in input().split()] for j in range(N - 1)]\n\n graph = [[] for _ in range(N + 1)]\n for a, b in Edges:\n graph[a].append(b)\n graph[b].append(a)\n\n ans = [0] * (N + 1)\n visited = [False] * (N + 1)\n visited[1] = True # 根は訪問済\n lis = [INF] * (N + 1)\n changes = []\n\n def dfs(v):\n # 行きがけの処理\n # LIS の更新する場所を二分探索で求める\n pos = bisect.bisect_left(lis, A[v])\n changes.append((pos, lis[pos])) # 更新した要素とその値を記録しておく\n lis[pos] = A[v]\n ans[v] = bisect.bisect_left(lis, INF) # INF が現れるまでの要素数が v での解\n\n # 次の頂点へ\n for child in graph[v]:\n if not visited[child]:\n visited[child] = True\n dfs(child)\n\n # 帰りがけの処理 (頂点 v で更新した LIS の値を復元)\n pos, val = changes.pop()\n lis[pos] = val\n\n dfs(1)\n return ' '.join(map(str, ans[1:]))\n\nprint(f_lis_on_tree())\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "G = [[] for _ in range(MAXN)]\n", "import sys\n\n\nG = [[] for _ in range(MAXN)]\n", "import sys\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\n\nstack = []\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n\n\ndef main():\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n\n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\n\n\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n\n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \n\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n\n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\n\n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\n\n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs:\n \n\ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs:\n \n \ndef main():\n \nif :\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs:\n \n \ndef main():\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs:\n \n \ndef main():\n \n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import \ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \ndef main():\n \n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \ndef main():\n \n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n \n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n \n A = list(map(int,input().split()))\n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n \n stack.append((idx,dp[idx]))\n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n \nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n \n ans[v] = bisect_left(dp,INF)\n \n \ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n \n ans[v] = bisect_left(dp,INF)\n \n idx,p = stack.pop()\n \n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n \n idx,p = stack.pop()\n \n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n \n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in :\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n \n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n \n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n a -= 1\n b -= 1\n \n \n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n \n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n a -= 1\n b -= 1\n \n G[b].append(a)\n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n if e == p:\n continue\n \n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n a -= 1\n b -= 1\n \n G[b].append(a)\n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n if e == p:\n continue\n dfs(e,A,v)\n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n a -= 1\n b -= 1\n \n G[b].append(a)\n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n if e == p:\n continue\n dfs(e,A,v)\n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n \n a -= 1\n b -= 1\n G[a].append(b)\n G[b].append(a)\n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n", "import sys\nsys.setrecursionlimit(100000000)\nfrom bisect import bisect_left\ninput = sys.stdin.readline\nINF = 1 << 30\n\nMAXN = 200005\nG = [[] for _ in range(MAXN)]\ndp = [INF] * MAXN\nstack = []\nans = [None] * MAXN\ndef dfs(v,A,p = -1):\n idx = bisect_left(dp,A[v])\n stack.append((idx,dp[idx]))\n dp[idx] = A[v]\n ans[v] = bisect_left(dp,INF)\n for e in G[v]:\n if e == p:\n continue\n dfs(e,A,v)\n idx,p = stack.pop()\n dp[idx] = p\n\ndef main():\n N = int(input())\n A = list(map(int,input().split()))\n for _ in range(N - 1):\n a,b = map(int,input().split())\n a -= 1\n b -= 1\n G[a].append(b)\n G[b].append(a)\n dfs(0,A)\n print('\\n'.join(map(str,ans[:N])))\nif __name__ == '__main__':\n main()\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "def dfs:\n", "sys.setrecursionlimit(1000000)\n\n\ndef dfs:\n", "from bisect import \n\nsys.setrecursionlimit(1000000)\n\n\ndef dfs:\n", "from bisect import \nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs:\n", "from bisect import \nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs:\n \n\nif :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs:\n \n\nif :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n \n\nif :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n \n \nif :\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n \n \nif __name__ == \"__main__\":\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n \n \nif __name__ == \"__main__\":\n \n \n dfs(1, -1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n \n \nif __name__ == \"__main__\":\n \n \n dfs(1, -1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n \n dp[index] = a[j-1]\n \n \nif __name__ == \"__main__\":\n \n \n dfs(1, -1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n \n dp[index] = a[j-1]\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n \n dfs(1, -1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n \n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n \n dfs(1, -1)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n \n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n for _ in :\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n for _ in :\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n \nif __name__ == \"__main__\":\n \n a = list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n \nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n \n for _ in :\n \n INF = 10**20\n \n \n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n \n \n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n \n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n \n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in :\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n \n \n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n \n to[v].append(u)\n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(1000000)\n\n\ndef dfs(j, parent):\n index = bisect_left(dp, a[j-1])\n old = dp[index]\n dp[index] = a[j-1]\n ans[j-1] = bisect_left(dp, INF)-1\n for child in to[j]:\n if child != parent:\n dfs(child, j)\n dp[index] = old\n\nif __name__ == \"__main__\":\n n = int(input())\n a = list(map(int, input().split()))\n to = [[] for _ in range(n+1)]\n for _ in range(n-1):\n u, v = map(int, input().split())\n to[u].append(v)\n to[v].append(u)\n INF = 10**20\n dp = [INF]*(n+1)\n dp[0] = -INF\n ans = [None]*n\n dfs(1, -1)\n print(\"\\n\".join(list(map(str, ans))))\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# 再帰回数の上限!!\n\n\n# 0-indexedの場合\n\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\n\n\ndes(1)\n", "# 再帰回数の上限!!\n\n\n# 0-indexedの場合\n\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "# 再帰回数の上限!!\n\n\n# 0-indexedの場合\n\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\n # 再帰回数の上限!!\n\n\n# 0-indexedの場合\n\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\n # 再帰回数の上限!!\n\n\n# 0-indexedの場合\n\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\n # 再帰回数の上限!!\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\nn = int(input())\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\nn = int(input())\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n", "import sys\n\n\nn = int(input())\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\n\n\nn = int(input())\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\n\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\n\nimport bisect\n\n\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\n\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n \n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in :\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n \n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in range(1, len(ANS)):\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in :\n \n \n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n \n \n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n \n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n \n \n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n V[x] = 1\n # print(R[:10])\n\n\n # if end == 1:\n # print(R)\n # ANS[x] = bisect.bisect_right(R, 10**10-1)\n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n \n M[C[i][1]].append(C[i][0])\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n V[x] = 1\n # print(R[:10])\n\n\n # if end == 1:\n # print(R)\n # ANS[x] = bisect.bisect_right(R, 10**10-1)\n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n \n M[C[i][1]].append(C[i][0])\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n V[x] = 1\n # print(R[:10])\n\n\n for i in M[x]:\n \n\n # if end == 1:\n # print(R)\n # ANS[x] = bisect.bisect_right(R, 10**10-1)\n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n M[C[i][0]].append(C[i][1])\n M[C[i][1]].append(C[i][0])\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n V[x] = 1\n # print(R[:10])\n\n\n for i in M[x]:\n \n\n # if end == 1:\n # print(R)\n # ANS[x] = bisect.bisect_right(R, 10**10-1)\n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = [0] + list(map(int,input().split()))\nC = [list(map(int,input().split())) for i in range(n-1)]\n\n\nsys.setrecursionlimit(10**5 + 5) # 再帰回数の上限!!\n\n\nM = [[] for i in range(n+1)]\nfor i in range(n-1):\n M[C[i][0]].append(C[i][1])\n M[C[i][1]].append(C[i][0])\n\n\n# 0-indexedの場合\nV = [0] * (n+1)\n# D = [-1] * (n+1) # 自分を含む、子孫のノード数\nANS = [0] * (n+1)\n\nR = [10**10] * (n+5)\n\nimport bisect\n\nR[0] = A[1]\nANS[1] = 1\n\ndef des(x):\n # end = 1\n V[x] = 1\n # print(R[:10])\n\n\n for i in M[x]:\n if V[i] == 0:\n # print(i)\n # end = 0\n V[i] = 1\n ind = bisect.bisect_left(R, A[i])\n ma = R[ind]\n R[ind] = A[i]\n ANS[i] = bisect.bisect_left(R, 10**10-1)\n des(i)\n R[ind] = ma\n\n # if end == 1:\n # print(R)\n # ANS[x] = bisect.bisect_right(R, 10**10-1)\n\ndes(1)\n\nfor i in range(1, len(ANS)):\n print(ANS[i])\n" ]
27
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "def dfs(node):\n \n\ndfs(0)\n", "ans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "DP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "import sys\n\n\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nedges = [[] for _ in range(n)]\n\n\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\n\n\nedges = [[] for _ in range(n)]\n\n\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\n\n\nedges = [[] for _ in range(n)]\n\n\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\n\n\nedges = [[] for _ in range(n)]\n\n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\n\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\n\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n \ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in :\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n \ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n \ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n \n prev = DP[update_idx]\n \n \ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n \n prev = DP[update_idx]\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n num = A[node]\n \n prev = DP[update_idx]\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n \n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n lis = bisect.bisect_left(DP, 10**9+1) - 1\n \n \n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n \n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n \n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in :\n \n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n \n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n DP[update_idx] = num\n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in :\n \n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n from_, to = map(int, input().split())\n edges[from_-1].append(to-1)\n \n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n DP[update_idx] = num\n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in :\n \n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n from_, to = map(int, input().split())\n edges[from_-1].append(to-1)\n edges[to-1].append(from_-1)\n\n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n DP[update_idx] = num\n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in :\n \n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n from_, to = map(int, input().split())\n edges[from_-1].append(to-1)\n edges[to-1].append(from_-1)\n\n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n DP[update_idx] = num\n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in :\n if not ans[nex]:\n dfs(nex)\n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**8)\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(n)]\nfor _ in range(n-1):\n from_, to = map(int, input().split())\n edges[from_-1].append(to-1)\n edges[to-1].append(from_-1)\n\n\nDP = [10**9+7] * (n+1)\nDP[0] = 0\nans = [0] * n\n\n\ndef dfs(node):\n node = node\n num = A[node]\n update_idx = bisect.bisect_left(DP, num)\n prev = DP[update_idx]\n DP[update_idx] = num\n lis = bisect.bisect_left(DP, 10**9+1) - 1\n ans[node] = lis\n for nex in edges[node]:\n if not ans[nex]:\n dfs(nex)\n\n DP[update_idx] = prev\n\n\ndfs(0)\nfor res in ans:\n print(res)\n" ]
32
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "for n in :\n", "lis = [INF] * len(A)\n\nfor n in :\n", "import bisect\n\n\nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nA = [0] + list(map(int,input().split()))\n\n\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nA = [0] + list(map(int,input().split()))\n\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\n\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\n\n\nans= [0 for i in range(N+1)]\n\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\n\n\nans= [0 for i in range(N+1)]\n\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\n\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\n\n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\n\n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in :\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\n\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in :\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs: # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in :\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n idx = bisect.bisect_left(lis,A[s])\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n \n \nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n idx = bisect.bisect_left(lis,A[s])\n \n ans[s] = bisect.bisect_left(lis, INF)\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n idx = bisect.bisect_left(lis,A[s])\n \n ans[s] = bisect.bisect_left(lis, INF)\n \n \nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n idx = bisect.bisect_left(lis,A[s])\n \n ans[s] = bisect.bisect_left(lis, INF)\n \n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n \n idx = bisect.bisect_left(lis,A[s])\n \n ans[s] = bisect.bisect_left(lis, INF)\n for i in adj[s]:\n \n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n depth[s] = d\n idx = bisect.bisect_left(lis,A[s])\n \n ans[s] = bisect.bisect_left(lis, INF)\n for i in adj[s]:\n \n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n \n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n depth[s] = d\n idx = bisect.bisect_left(lis,A[s])\n lis[idx], lis_c = A[s], lis[idx]\n ans[s] = bisect.bisect_left(lis, INF)\n for i in adj[s]:\n \n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n adj[v].append(u)\n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n depth[s] = d\n idx = bisect.bisect_left(lis,A[s])\n lis[idx], lis_c = A[s], lis[idx]\n ans[s] = bisect.bisect_left(lis, INF)\n for i in adj[s]:\n \n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n", "import bisect\nimport sys\nsys.setrecursionlimit(10**6)\n\nN = int(input())\nA = [0] + list(map(int,input().split()))\n\nadj = [[] for n in range(N+1)]\nfor n in range(N-1):\n u, v = map(int,input().split())\n adj[u].append(v)\n adj[v].append(u)\n\nans= [0 for i in range(N+1)]\n\nINF = 10**10\n\ndepth = [-1 for n in range(N+1)]\ndef dfs(s, d, lis): # 頂点番号、深さ、LIS\n depth[s] = d\n idx = bisect.bisect_left(lis,A[s])\n lis[idx], lis_c = A[s], lis[idx]\n ans[s] = bisect.bisect_left(lis, INF)\n for i in adj[s]:\n if depth[i]==-1:\n dfs(i, d+1, lis)\n lis[idx] = lis_c\nlis = [INF] * len(A)\ndfs(1, 0, lis)\nfor n in range(1,N+1):\n print(ans[n])\n" ]
31
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#print(edge)\n\ndfs(0)\n#print(lis)\n", "edge=[[] for _ in range(n)]\n\n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "a=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "sys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "sys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\n\n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "sys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\n\n\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "sys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\n\n\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\n\n\nsys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\n\n\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\n\nimport sys\nsys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\n\n\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\n\nimport sys\nsys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\n\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\n\nimport sys\nsys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\n\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\nfor i in range(n):\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in :\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\n\ndfs(0)\n#print(lis)\nfor i in range(n):\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in :\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n", "from import deque\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n \n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n \n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n \n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n \nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \n ans[s]=bisect_left(lis,inf)\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \n ans[s]=bisect_left(lis,inf)\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n \n \n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n \n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n u,v=map(int,input().split())\n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n \n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n u,v=map(int,input().split())\n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n \n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \n lis[idx]=val\ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n u,v=map(int,input().split())\n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n stack.append((idx,lis[idx]))\n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n \n lis[idx]=val\ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n u,v=map(int,input().split())\n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n stack.append((idx,lis[idx]))\n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n \n idx,val=stack.pop()\n lis[idx]=val\ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\nn=int(input())\na=list(map(int,input().split()))\nedge=[[] for _ in range(n)]\nfor _ in range(n-1):\n u,v=map(int,input().split())\n u-=1\n v-=1\n edge[u].append(v)\n edge[v].append(u)\nstack=deque([])\ninf=10**18\nlis=[inf]*(n+1)\nans=[0 for _ in range(n)]\nvisited=[True]*n\n#print(edge)\ndef dfs(s):\n visited[s]=False\n idx=bisect_left(lis,a[s])\n stack.append((idx,lis[idx]))\n lis[idx]=a[s]\n ans[s]=bisect_left(lis,inf)\n for x in edge[s]:\n if visited[x]:\n dfs(x)\n idx,val=stack.pop()\n lis[idx]=val\ndfs(0)\n#print(lis)\nfor i in range(n):\n print(ans[i])\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# dp[i] = (長さi+1の増加部分列の最終項のmin)\n", "import sys\n\n\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n", "import sys\n\n\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\n\n\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\n\n\nans = [0] * n\n\n\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\n\n\nn = int(input())\n\n\nans = [0] * n\n\n\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\n\n\nn = int(input())\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\nfrom bisect import , \n\n\nn = int(input())\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\nfrom bisect import , \n\n\nn = int(input())\n\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\nfrom bisect import , \n\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\nfrom bisect import , \n\nsys.setrecursionlimit(10**9)\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n", "import sys\nfrom copy import copy\nfrom bisect import , \n\nsys.setrecursionlimit(10**9)\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\n\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in :\n \n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in :\n \n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , \ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import , bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in :\n \n u -= 1\n v -= 1\n \n \nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n \n u -= 1\n v -= 1\n \n \nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n \n\n for v_next in graph[v]:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n \n\n dp[idx] = a[v_next]\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n \n\n dp[idx] = a[v_next]\n \n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n if :\n continue\n\n \n dp[idx] = a[v_next]\n \n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n if :\n continue\n\n \n dp[idx] = a[v_next]\n dfs(v_next, v)\n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n if :\n continue\n\n \n past = dp[idx]\n dp[idx] = a[v_next]\n dfs(v_next, v)\n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n if :\n continue\n\n idx = bisect_left(dp, a[v_next])\n past = dp[idx]\n dp[idx] = a[v_next]\n dfs(v_next, v)\n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "import sys\nfrom copy import copy\nfrom bisect import bisect_left, bisect_right\ninput = sys.stdin.readline\nsys.setrecursionlimit(10**9)\nINF = float('inf')\n\nn = int(input())\na = list(map(int, input().split()))\n\ngraph = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n graph[u].append(v)\n graph[v].append(u)\n\nans = [0] * n\ndp = [INF] * n\ndp[0] = a[0]\n# dp[i] = (長さi+1の増加部分列の最終項のmin)\n\n\ndef dfs(v, v_p):\n ans[v] = bisect_left(dp, INF)\n\n for v_next in graph[v]:\n if v_next == v_p:\n continue\n\n idx = bisect_left(dp, a[v_next])\n past = dp[idx]\n dp[idx] = a[v_next]\n dfs(v_next, v)\n dp[idx] = past\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n" ]
34
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "N = II()\n\n\nMP = {}\n", "N = II()\n\n\nMP = {}\n\n\ndef dfs:\n", "def FLIST(n):\n \n\nN = II()\n\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\ndef FLIST(n):\n \n\nN = II()\n\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\n\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\ndef DIV: \n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\ndef POW(x, y): \n\ndef DIV: \n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\n\ndef POW(x, y): \n\ndef DIV: \n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\n\ndef POW(x, y): \n\ndef DIV: \n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\n\nDVSR = 1000000007\ndef POW(x, y): \n\ndef DIV: \n\n\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\n\nDVSR = 1000000007\ndef POW(x, y): \n\ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \n\ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \n\ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \n\ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\n\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\n\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\n\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\n\ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \n\ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\n\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\n\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\n\n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\n\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in :\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): \ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in :\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: \ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in :\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in :\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): \ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): \ndef LF(): \ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): \ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs:\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): \ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV: \ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): \ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV: return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n\ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n a -= 1\n b -= 1\n \n \ndef dfs(v, mp, lis, p):\n \n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): \n\n\ndef FLIST(n):\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n a -= 1\n b -= 1\n \n \ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n a -= 1\n b -= 1\n \n \ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n a -= 1\n b -= 1\n \n \ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n \n a -= 1\n b -= 1\n if :\n \n \ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n \ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n \n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n \n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n \n \nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n if :\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n \n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n if :\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n if :\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n \n if not b in MP:\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if :\n MP[a] = []\n if not b in MP:\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if not a in MP:\n MP[a] = []\n if not b in MP:\n \n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in :\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if not a in MP:\n MP[a] = []\n if not b in MP:\n MP[b] = []\n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n", "import sys\nimport math\nimport heapq\nimport bisect\nsys.setrecursionlimit(10**7)\nINTMAX = 9223372036854775807\nINTMIN = -9223372036854775808\nDVSR = 1000000007\ndef POW(x, y): return pow(x, y, DVSR)\ndef INV(x, m=DVSR): return pow(x, m - 2, m)\ndef DIV(x, y, m=DVSR): return (x * INV(y, m)) % m\ndef LI(): return map(int, sys.stdin.readline().split())\ndef LF(): return [float(x) for x in sys.stdin.readline().split()]\ndef LS(): return sys.stdin.readline().split()\ndef II(): return int(sys.stdin.readline())\n\n\ndef FLIST(n):\n res = [1]\n for i in range(1, n+1):\n res.append(res[i-1]*i % DVSR)\n return res\n\n\nN = II()\nAS = list(LI())\n\nMP = {}\n\nMX = 10**10\nLIS = [10**10]*N\nRES = [1]*N\nfor i in range(N-1):\n a, b = LI()\n a -= 1\n b -= 1\n if not a in MP:\n MP[a] = []\n if not b in MP:\n MP[b] = []\n MP[a].append(b)\n MP[b].append(a)\n\n\ndef dfs(v, mp, lis, p):\n for u in mp[v]:\n if u != p:\n i = bisect.bisect_left(lis, AS[u])\n bef = lis[i]\n lis[i] = AS[u]\n longest = bisect.bisect_left(lis, MX)\n RES[u] = longest\n dfs(u, mp, lis, v)\n lis[i] = bef\n\n\nLIS[0] = AS[0]\ndfs(0, MP, LIS, -1)\n\nprint(*RES, sep='\\n')\n" ]
55
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "print(\"\\n\".join(map(str,ans)))\n", "ans=[0]*n\n\n\nprint(\"\\n\".join(map(str,ans)))\n", "for _ in :\n \n\nans=[0]*n\n\n\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\n\n\nfor _ in :\n \n\nans=[0]*n\n\n\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\n\n\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\n\n\n*a,=map(int,input().split())\n\n\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\n\n\n*a,=map(int,input().split())\n\n\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\n\nfrom bisect import \n\n*a,=map(int,input().split())\n\n\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\n\nfrom bisect import \n\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\n\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\n\nfrom bisect import \n\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import \n\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in :\n \n\nans=[0]*n\n\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import \n\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in :\n \n\nans=[0]*n\ndef dfs:\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import \nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in :\n \n\nans=[0]*n\ndef dfs:\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import \nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n\nans=[0]*n\ndef dfs:\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n\nans=[0]*n\ndef dfs:\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nans=[0]*n\ndef dfs:\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nans=[0]*n\ndef dfs(cur,pre):\n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nans=[0]*n\ndef dfs(cur,pre):\n \n \ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nans=[0]*n\ndef dfs(cur,pre):\n \n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n \n \nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n \n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n \n \nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n \n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n \n \nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n \n dp[idx]=min(bef,a[cur])\n \n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n \n \nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n \n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n \n \nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n ans[cur]=bisect_left(dp,float(\"inf\"))\n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n \n con[t-1].append(s-1)\n\nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n ans[cur]=bisect_left(dp,float(\"inf\"))\n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n con[s-1].append(t-1)\n con[t-1].append(s-1)\n\nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n ans[cur]=bisect_left(dp,float(\"inf\"))\n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n con[s-1].append(t-1)\n con[t-1].append(s-1)\n\nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n ans[cur]=bisect_left(dp,float(\"inf\"))\n for nxt in con[cur]:\n \n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n", "import sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.buffer.readline\nfrom bisect import bisect_left\nn=int(input())\n*a,=map(int,input().split())\ndp=[float(\"inf\")]*n\ncon=[[] for _ in range(n)]\nfor _ in range(n-1):\n s,t=map(int,input().split())\n con[s-1].append(t-1)\n con[t-1].append(s-1)\n\nans=[0]*n\ndef dfs(cur,pre):\n idx=bisect_left(dp,a[cur])\n bef=dp[idx]\n dp[idx]=min(bef,a[cur])\n ans[cur]=bisect_left(dp,float(\"inf\"))\n for nxt in con[cur]:\n if pre!=nxt:\n dfs(nxt,cur)\n dp[idx]=bef\ndfs(0,-1)\nprint(\"\\n\".join(map(str,ans)))\n" ]
29
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\n\nimport sys\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import , \nimport sys\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import , \nimport sys\n\n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import , \nimport sys\n\ndef resolve():\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, \nimport sys\n\ndef resolve():\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n \n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n \n \n for _ in :\n \n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n \n \n for _ in :\n \n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n \n \n for _ in :\n \n\n anss = [0] * N\n \n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n \n \n for _ in :\n \n\n anss = [0] * N\n \n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n \n \n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n \n\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n \n \n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n \n\n dfs(0, -1)\n\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n \n \n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n \n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n \nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n \n for _ in :\n \n\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in :\n \n\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in :\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs:\n \n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n \n \n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n \n \n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n \n \n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n \n \n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n \n adjL[u].append(v)\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n \n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n \n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if :\n \n \n anss[vNow] = len(dp) - 1\n\n \n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if :\n \n \n anss[vNow] = len(dp) - 1\n\n for v2 in :\n \n\n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if :\n \n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n\n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if :\n \n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n\n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n \n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n\n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n \n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n \n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n \n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n \n if tp == 0:\n dp.pop()\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n \n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n \n if tp == 0:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n \n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n \n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if : continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if : continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n \n tp = 1\n \n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if : continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n \n tp = 1\n \n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if v2 == vPar: continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n i = bisect_left(dp, A)\n tp = 1\n \n \n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if v2 == vPar: continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n i = bisect_left(dp, A)\n tp = 1\n \n dp[i] = A\n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if v2 == vPar: continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n", "# 写経\n# https://atcoder.jp/contests/abc165/submissions/12655073\nfrom bisect import bisect_left, bisect_right\nimport sys\n\ndef resolve():\n input = sys.stdin.readline\n sys.setrecursionlimit(10**9)\n INF = float('inf')\n N = int(input())\n As = list(map(int, input().split()))\n adjL = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u, v = u-1, v-1\n adjL[u].append(v)\n adjL[v].append(u)\n\n dp = [-INF]\n anss = [0] * N\n def dfs(vNow, vPar):\n A = As[vNow]\n if dp[-1] < A:\n dp.append(A)\n tp = 0\n else:\n i = bisect_left(dp, A)\n tp = 1\n iOld, AOld, = i, dp[i]\n dp[i] = A\n anss[vNow] = len(dp) - 1\n\n for v2 in adjL[vNow]:\n if v2 == vPar: continue\n dfs(v2, vNow)\n\n if tp == 0:\n dp.pop()\n else:\n dp[iOld] = AOld\n\n dfs(0, -1)\n\n print('\\n'.join(map(str, anss)))\nresolve()\n" ]
49
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "print(*ans, sep = '\\n')\n", "As = list(map(int, input().split()))\n\n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\n\nstack = [0]\n\n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\n\n\nstack = [0]\n\n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\n\n\nLIS = [INF] * (N+1)\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\n\n\nLIS = [INF] * (N+1)\nrewinder = []\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n\nLIS = [INF] * (N+1)\nrewinder = []\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "INF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import \n\nINF = 10 ** 9\n\n\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import \n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\n\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import \n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import \n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n \nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n \nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in :\n \n \nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n \nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n \nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n \nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n \n \nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n \n LIS[index] = As[node]\n\n \nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n \n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n \n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n \n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in :\n \n\n while :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in :\n \n\n while rewinder and :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in :\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and :\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and :\n \n \n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and :\n _, index, prev_value = rewinder.pop()\n \n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and :\n _, index, prev_value = rewinder.pop()\n LIS[index] = prev_value\n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and != :\n _, index, prev_value = rewinder.pop()\n LIS[index] = prev_value\n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and rewinder[-1][0] != :\n _, index, prev_value = rewinder.pop()\n LIS[index] = prev_value\n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n", "from bisect import bisect_left\n\nINF = 10 ** 9\n\nN = int(input())\nAs = list(map(int, input().split()))\n\nadj = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n adj[u-1].append(v-1)\n adj[v-1].append(u-1)\n\nans = [0] * N\nLIS = [INF] * (N+1)\nrewinder = []\n\nparent = [-1] * N\nstack = [0]\nwhile stack:\n node = stack.pop()\n for next_node in adj[node]:\n if ans[next_node] == 0:\n parent[next_node] = node\n stack.append(next_node)\n\n while rewinder and rewinder[-1][0] != parent[node]:\n _, index, prev_value = rewinder.pop()\n LIS[index] = prev_value\n\n index = bisect_left(LIS, As[node])\n rewinder.append((node, index, LIS[index]))\n LIS[index] = As[node]\n\n ans[node] = bisect_left(LIS, INF)\n\nprint(*ans, sep = '\\n')\n" ]
37
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "N = NI()\na = LI()\n\n\nq = []\n", "N = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n", "N = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\n\nprint(*ans,sep='\\n')\n", "NI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\n\nprint(*ans,sep='\\n')\n", "NI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\n\n\nprint(*ans,sep='\\n')\n", "LI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\n\n\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\n\n\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\n\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\n\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in :\n \n\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in :\n \n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in :\n \n \nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in :\n \n \nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n \n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n \n else:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n \n \n else:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n \n \n for d in root[p]:\n \n else:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n \n for d in root[p]:\n \n else:\n \nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n \n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n \n ans[p] = v\n \n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n \n if y > a[p]: \n ans[p] = v\n \n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n \n if y > a[p]: \n ans[p] = v\n q.append((1,x,y))\n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n \n if y == INF: v +=1\n if y > a[p]: \n ans[p] = v\n q.append((1,x,y))\n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n y = lis[x]\n if y == INF: v +=1\n if y > a[p]: \n ans[p] = v\n q.append((1,x,y))\n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n y = lis[x]\n if y == INF: v +=1\n if y > a[p]: lis[x] = a[p]\n ans[p] = v\n q.append((1,x,y))\n for d in root[p]:\n \n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n", "import sys,math,copy,queue,itertools,bisect,collections,heapq\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\nINF = 10**9+1\n\nN = NI()\na = LI()\n\nroot = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = LI()\n root[u-1].append(v-1)\n root[v-1].append(u-1)\n\nlis = [INF for _ in range(N)]\nq = []\n\nq.append((0,0,0))\nans = [-1 for _ in range(N)]\nwhile q:\n c,p,v = q.pop()\n if c == 0:\n x = bisect.bisect_left(lis,a[p])\n y = lis[x]\n if y == INF: v +=1\n if y > a[p]: lis[x] = a[p]\n ans[p] = v\n q.append((1,x,y))\n for d in root[p]:\n if ans[d] < 0: q.append((0,d,v))\n else:\n lis[p] = v\nprint(*ans,sep='\\n')\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\n\ndfs(0)\n", "# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n", "# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n", "from bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n", "from bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n", "from bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n", "from bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\n\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\n\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\n\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \n\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef longest_subsequence:\n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\n\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef longest_subsequence:\n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef longest_subsequence:\n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, \ndef longest_subsequence:\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence:\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence:\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in :\n \n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence:\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n \n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n for node in :\n \n \n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n \n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n \n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n \n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n \n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n \n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if : # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n \n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in :\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n \n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n \n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n if : # strict increasing\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n if : # strict increasing\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if subsequence[j-1] != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n if != value: # strict increasing\n \n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if subsequence[j-1] != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n if != value: # strict increasing\n subsequence[j] = value\n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if subsequence[j-1] != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n", "import sys\nsys.setrecursionlimit(1000000)\nfrom bisect import bisect, bisect_left\ndef longest_subsequence(sequence):\n subsequence = [float(\"inf\") for _ in range(len(sequence)+1)]\n subsequence[0] = float(\"-inf\")\n for value in sequence:\n j = bisect(subsequence, value)\n if subsequence[j-1] != value: # strict increasing\n subsequence[j] = value\n return bisect_left(dp, float(\"inf\"))-1\n# print(longest_subsequence([9, 13, 2, 10, 4, 13, 11, 13]))\n# sys.exit()\ndef dfs(vertex):\n visited[vertex] = True\n value = a[vertex]\n j = bisect(subsequence, value)\n previous = subsequence[j]\n if subsequence[j-1] != value: # strict increasing\n subsequence[j] = value\n ans[vertex] = bisect_left(subsequence, float(\"inf\"))-1\n for node in adjacent[vertex]:\n if not visited[node]:\n dfs(node)\n subsequence[j] = previous\n return\nn = int(input())\na = list(map(int, input().split()))\nadjacent = {i: [] for i in range(n)}\nfor _ in range(n-1):\n node1, node2 = map(int, input().split())\n node1 -= 1\n node2 -= 1\n adjacent[node1].append(node2)\n adjacent[node2].append(node1)\nvisited = [False]*n\nans = [0]*n\nsubsequence = [float(\"inf\") for _ in range(n+1)]\nsubsequence[0] = float(\"-inf\")\ndfs(0)\n[print(value) for value in ans]\n" ]
50
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "if :\n solve()\n", "from bisect import \n\n\nif :\n solve()\n", "from bisect import \n\n\nfor _ in :\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \n\n\nfor _ in :\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \n\n\nfor _ in :\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \n\n\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\n\n\nN = int(input())\n\n\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\n\nN = int(input())\n\n\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\n\ninput = sys.stdin.readline\nN = int(input())\n\n\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\n\ninput = sys.stdin.readline\nN = int(input())\n\nEdge = [[] for _ in range(N)]\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\n\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\n\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n\ndef solve():\n \n\nif :\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n\ndef solve():\n \n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in :\n \nLIS = [INF] * N\n\ndef dfs:\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \nLIS = [INF] * N\n\ndef dfs:\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n \n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n \n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n \n \n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n \n \n LIS[backID] = backV\n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n \n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n \n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n dfs(0, 0, Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n dfs(0, 0, Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n dfs(0, 0, Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n dfs(0, 0, Ans)\n \n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n \n dfs(0, 0, Ans)\n print(\"\\n\".join(map(str, Ans)))\n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n \n \nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n Ans = [1] * N\n dfs(0, 0, Ans)\n print(\"\\n\".join(map(str, Ans)))\n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n \n Edge[v-1].append(u-1)\nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n Ans = [1] * N\n dfs(0, 0, Ans)\n print(\"\\n\".join(map(str, Ans)))\n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n \n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n Ans = [1] * N\n dfs(0, 0, Ans)\n print(\"\\n\".join(map(str, Ans)))\n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(1000000)\nINF = pow(10, 10)\n\nchanged = []\ninput = sys.stdin.readline\nN = int(input())\nA = [int(a) for a in input().split()]\nEdge = [[] for _ in range(N)]\nfor _ in range(N-1):\n u, v = map(int, input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\nLIS = [INF] * N\n\ndef dfs(i, pre, Ans):\n changeID = bisect_left(LIS, A[i])\n changed.append((changeID, LIS[changeID]))\n LIS[changeID] = min(A[i], LIS[changeID])\n #print(i, LIS)\n #print(changed)\n Ans[i] = bisect_left(LIS, INF)\n for nextN in Edge[i]:\n if nextN != pre: dfs(nextN, i, Ans)\n backID, backV = changed.pop()\n LIS[backID] = backV\n return 0\n\ndef solve():\n Ans = [1] * N\n dfs(0, 0, Ans)\n print(\"\\n\".join(map(str, Ans)))\n\n return 0\n\nif __name__ == \"__main__\":\n solve()\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "import sys\n", "import sys\ndef main():\n", "import sys\ndef main():\n \n\nif :\n main()\n", "from bisect import \nimport sys\ndef main():\n \n\nif :\n main()\n", "from bisect import \nimport sys\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "from bisect import \nimport sys\ndef main():\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n \n \n G=[[] for _ in range(N)]\n \n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n \n \n G=[[] for _ in range(N)]\n \n\n stk=[(0,0,0)]\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n \n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n \n\n stk=[(0,0,0)]\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n \n\n stk=[(0,0,0)]\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n \n\n ans=[0]*N\n \n stk=[(0,0,0)]\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n ans=[0]*N\n \n stk=[(0,0,0)]\n \n \nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n ans=[0]*N\n \n stk=[(0,0,0)]\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n \n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in :\n \n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n \n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n \n \n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n \n \n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n \n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n \n \n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n \n \n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n \n \n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n \n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n \n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n \n ans[a]=bisect_left(l,INF)\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n \n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n \n \n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n \n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n stk.append((1,i,l[i]))\n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n stk.append((1,i,l[i]))\n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n \n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n stk.append((1,i,l[i]))\n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n \n stk.append((0,to,0))\n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n stk.append((1,i,l[i]))\n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n if : continue\n stk.append((0,to,0))\n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n", "from bisect import bisect_left\nimport sys\ndef main():\n input = sys.stdin.readline\n N=int(input())\n *A,=map(int, input().split())\n G=[[] for _ in range(N)]\n for _ in range(N-1):\n u,v=map(int, input().split())\n u,v=u-1,v-1\n G[u].append(v)\n G[v].append(u)\n\n INF=10**10\n ans=[0]*N\n l=[INF]*(N+1)\n stk=[(0,0,0)]\n while stk:\n s,a,b=stk.pop()\n if s==0:\n i=bisect_left(l,A[a])\n stk.append((1,i,l[i]))\n l[i]=A[a]\n ans[a]=bisect_left(l,INF)\n for to in G[a]:\n if ans[to]>0: continue\n stk.append((0,to,0))\n else:\n l[a]=b\n for a in ans:\n print(a)\n\nif __name__ == '__main__':\n main()\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n", "from bisect import \n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n", "from bisect import \nimport sys\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n", "from bisect import \nimport sys\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n", "from bisect import \nimport sys\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\n\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\n\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): \n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\n\ndef input(): return sys.stdin.readline().strip()\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\n# log(n)\n# log(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n# for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n # log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
42
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "s = [0]\n", "n = int(input())\n\n\ns = [0]\n", "n = int(input())\n\n\ns = [0]\nwhile s:\n", "n = int(input())\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "INF = 10 ** 12\nn = int(input())\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "INF = 10 ** 12\nn = int(input())\n\n\ndp = [INF] * n\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\n\n\ndp = [INF] * n\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\n\ng = [[] for _ in range(n)]\n\ndp = [INF] * n\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\n\ng = [[] for _ in range(n)]\nfor _ in :\n \ndp = [INF] * n\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \ndp = [INF] * n\n\n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \ndp = [INF] * n\n\nans = [0] * n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n \nfor x in ans:\n print(x)\n", "from bisect import \nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in :\n \n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n \n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n \n \ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n if :\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n \n \n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n if :\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n \n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n if :\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n \n if :\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if :\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n \n else:\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n \n dp[idx] = a[p]\n \n \n else:\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n idx = bisect_left(dp, a[p])\n \n dp[idx] = a[p]\n \n \n else:\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n idx = bisect_left(dp, a[p])\n \n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n \n else:\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n idx = bisect_left(dp, a[p])\n \n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n \n else:\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n idx = bisect_left(dp, a[p])\n \n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n \n else:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n \n idx = bisect_left(dp, a[p])\n k[p] = (idx, dp[idx])\n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n \n else:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n s.append(p)\n idx = bisect_left(dp, a[p])\n k[p] = (idx, dp[idx])\n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n \n else:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n s.append(p)\n idx = bisect_left(dp, a[p])\n k[p] = (idx, dp[idx])\n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n if k[node] == None:\n s.append(node)\n else:\n \n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n s.append(p)\n idx = bisect_left(dp, a[p])\n k[p] = (idx, dp[idx])\n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n if k[node] == None:\n s.append(node)\n else:\n idx, x = k[p]\n \nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nINF = 10 ** 12\nn = int(input())\na = list(map(int, input().split()))\ng = [[] for _ in range(n)]\nfor _ in range(n - 1):\n u, v = map(int, input().split())\n g[u - 1].append(v - 1)\n g[v - 1].append(u - 1)\ndp = [INF] * n\nk = [None] * n\nans = [0] * n\ns = [0]\nwhile s:\n p = s.pop()\n if k[p] == None:\n s.append(p)\n idx = bisect_left(dp, a[p])\n k[p] = (idx, dp[idx])\n dp[idx] = a[p]\n ans[p] = bisect_left(dp, INF)\n for node in g[p]:\n if k[node] == None:\n s.append(node)\n else:\n idx, x = k[p]\n dp[idx] = x\nfor x in ans:\n print(x)\n" ]
35
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "lis = [float('inf')] * n\n", "n = int(input())\n\n\nlis = [float('inf')] * n\n", "n = int(input())\n\n\nlis = [float('inf')] * n\nans = [0] * n\n", "n = int(input())\n\n\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n", "n = int(input())\n\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n", "n = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n", "n = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\n\ndp(0, -1)\n", "sys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\n\ndp(0, -1)\n", "from bisect import \n\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\n\ndp(0, -1)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\n\ndp(0, -1)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\n\ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp:\n \n\ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in :\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n \n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n \n tmp = lis[i]\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n \n tmp = lis[i]\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n \n \n for u in G[v]:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n \nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n \n for u in G[v]:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n G[v].append(u)\n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n \n for u in G[v]:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n G[v].append(u)\n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for u in G[v]:\n \n \ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n \n G[v].append(u)\n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for u in G[v]:\n \n lis[i] = tmp\n\ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for u in G[v]:\n \n lis[i] = tmp\n\ndp(0, -1)\nfor l in ans:\n print(l)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn = int(input())\na = list(map(int, input().split()))\nG = [[] for _ in range(n)]\nfor i in range(n - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\nlis = [float('inf')] * n\nans = [0] * n\n\ndef dp(v, prev):\n i = bisect_left(lis, a[v])\n tmp = lis[i]\n lis[i] = a[v]\n ans[v] = bisect_left(lis, float('inf'))\n for u in G[v]:\n if u != prev:\n dp(u, v)\n lis[i] = tmp\n\ndp(0, -1)\nfor l in ans:\n print(l)\n" ]
28
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "b=[0]*n\n\n\nf(0,-1)\n", "for i in :\n \nb=[0]*n\n\n\nf(0,-1)\n", "t=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\n\nf(0,-1)\n", "t=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\n", "a=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\n", "a=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "import sys\n\n\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "import sys\nsys.setrecursionlimit(10**6)\n\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "import sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "import sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in :\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n \n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \n t[u-1].append(v-1)\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n \n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \n t[u-1].append(v-1)\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n dp[h]=min(dp[h],a[c])\n \n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n \n t[u-1].append(v-1)\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n dp[h]=min(dp[h],a[c])\n \n for i in t[c]:\n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n t[u-1].append(v-1)\n \nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n dp[h]=min(dp[h],a[c])\n \n for i in t[c]:\n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n t[u-1].append(v-1)\n t[v-1].append(u-1)\nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n \n g=dp[h]\n dp[h]=min(dp[h],a[c])\n \n for i in t[c]:\n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n t[u-1].append(v-1)\n t[v-1].append(u-1)\nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n h=bl(dp,a[c])\n g=dp[h]\n dp[h]=min(dp[h],a[c])\n \n for i in t[c]:\n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n t[u-1].append(v-1)\n t[v-1].append(u-1)\nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n h=bl(dp,a[c])\n g=dp[h]\n dp[h]=min(dp[h],a[c])\n b[c]=bl(dp,float(\"INF\"))\n for i in t[c]:\n \n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n", "from bisect import bisect_left as bl\nimport sys\nsys.setrecursionlimit(10**6)\nn=int(input())\na=list(map(int,input().split()))\nt=[[]for i in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n t[u-1].append(v-1)\n t[v-1].append(u-1)\nb=[0]*n\ndp=[float(\"inf\")]*n\ndef f(c,d):\n h=bl(dp,a[c])\n g=dp[h]\n dp[h]=min(dp[h],a[c])\n b[c]=bl(dp,float(\"INF\"))\n for i in t[c]:\n if i!=d:f(i,c)\n dp[h]=g\nf(0,-1)\nfor i in b:\n print(i)\n" ]
24
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#!/usr/bin/python3\n\n\ndp = []\n", "#!/usr/bin/python3\n\n\nfor _ in :\n \n\ndp = []\n", "#!/usr/bin/python3\n\n\nfor _ in :\n \n\ndp = []\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\n\nfor _ in :\n \n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\n\na = [int(i) for i in input().split()]\n\n\nfor _ in :\n \n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\n\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\n\ndp = []\ndp.append(a[0])\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\n\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n \n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n nbs[u - 1].append(v - 1)\n \n\nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n \n\nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n nbs[v - 1].append(u - 1)\n\n\nmlen = [ 0 ] * n\n\ndef getmlen(cur, p):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n if a[ch] > dp[-1]:\n dp.append(a[ch])\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp.pop(-1)\n else:\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n dp[idx] = a[ch]\n mlen[ch] = len(dp)\n getmlen(ch, cur)\n dp[idx] = ov\n\n\ndp = []\ndp.append(a[0])\nmlen[0] = 1\ngetmlen(0, -1)\n\nfor i in range(n):\n print(mlen[i])\n" ]
23
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "v=[0]*N\n\nstk=[]\n\n\nv[0]=1\ndfs(0,0)\n", "for i,j in UV:\n \nv=[0]*N\n\nstk=[]\n\n\nv[0]=1\ndfs(0,0)\n", "for i,j in UV:\n \nv=[0]*N\n\nstk=[]\n\n\nimport sys\n\n\nv[0]=1\ndfs(0,0)\n", "for i,j in UV:\n \nv=[0]*N\n\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\n\nv[0]=1\ndfs(0,0)\n", "c=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\n\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\n\nv[0]=1\ndfs(0,0)\n", "c=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\n\nv[0]=1\ndfs(0,0)\n", "c=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\n", "c=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "UV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\n\n\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "UV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\n\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "UV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "A=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import \nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n \n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n \nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n \n if i==l:\n l+=1\n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n \n if i==l:\n l+=1\n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n \n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n \n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n c[i-1].append(j-1)\n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n c[i-1].append(j-1)\n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n for n in c[p]:\n \n \n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n c[i-1].append(j-1)\n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n \n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n for n in c[p]:\n \n i,x=stk.pop()\n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n c[i-1].append(j-1)\n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n i=bisect_left(d,A[p])\n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n for n in c[p]:\n \n i,x=stk.pop()\n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n", "N=int(input())\nA=list(map(int,input().split()))\nUV=[list(map(int,input().split())) for i in range(N-1)]\nc=[[] for i in range(N)]\nfor i,j in UV:\n c[i-1].append(j-1)\n c[j-1].append(i-1)\nv=[0]*N\nd=[10**9+1]*N\nstk=[]\nans=[0]*N\nfrom bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**9)\ndef dfs(p,l):\n i=bisect_left(d,A[p])\n stk.append((i,d[i]))\n d[i]=A[p]\n if i==l:\n l+=1\n ans[p]=l\n for n in c[p]:\n if v[n]==0:\n v[n]=1\n dfs(n,l)\n i,x=stk.pop()\n d[i]=x\nv[0]=1\ndfs(0,0)\nprint(*ans,sep='\\n')\n" ]
26
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "loute=[str(0)]*N\n", "loute=[str(0)]*N\n\n\nlabel=[False]*N\n", "loute=[str(0)]*N\n\n\nLIS=[10**18]*N\nlabel=[False]*N\n", "from import deque\n\n\nloute=[str(0)]*N\n\n\nLIS=[10**18]*N\nlabel=[False]*N\n", "from import deque\n\n\nloute=[str(0)]*N\n\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\n\n\nans=[0]*N\n\nloute=[str(0)]*N\n\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\n\n\nN=int(input())\n\nans=[0]*N\n\nloute=[str(0)]*N\n\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\n\n\nN=int(input())\n\nans=[0]*N\n\nloute=[str(0)]*N\nfor i in :\n \n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\n\nans=[0]*N\n\nloute=[str(0)]*N\nfor i in :\n \n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\n\nans=[0]*N\n\nloute=[str(0)]*N\nfor i in :\n \n\ntmp=deque(str(0))\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\n\nloute=[str(0)]*N\nfor i in :\n \n\ntmp=deque(str(0))\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in :\n \n\ntmp=deque(str(0))\n\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in :\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\n\n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in :\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n\nfor i in range(N):\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n\nfor i in range(N):\n print(ans[i])\n", "from import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n \ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n CHN.append((pos,LIS[pos]))\n \n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n CHN.append((pos,LIS[pos]))\n \n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n \n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n \n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n \n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n \n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n \n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if :\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n \n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n \n \n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n \n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n \n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n \n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n \n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n pos,Val=CHN.pop()\n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n \n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n pos,Val=CHN.pop()\n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n label[T0]=True\n else:\n \n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n \n pos,Val=CHN.pop()\n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n label[T0]=True\n else:\n label[T0]=True\n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n tmp.pop()\n pos,Val=CHN.pop()\n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n \n label[T0]=True\n else:\n label[T0]=True\n\nfor i in range(N):\n print(ans[i])\n", "from collections import deque\nimport bisect\n\nN=int(input())\nA=list(map(int,input().split()))\nans=[0]*N\nEdge=[[] for _ in range(N)]\nloute=[str(0)]*N\nfor i in range(N-1):\n u,v=map(int,input().split())\n Edge[u-1].append(v-1)\n Edge[v-1].append(u-1)\n\ntmp=deque(str(0))\nCHN=deque()\nLIS=[10**18]*N\nlabel=[False]*N\nwhile tmp:\n T0=int(tmp[-1])\n if label[T0]:\n tmp.pop()\n pos,Val=CHN.pop()\n LIS[pos]=Val\n continue\n\n pos=bisect.bisect_left(LIS,A[T0])\n CHN.append((pos,LIS[pos]))\n LIS[pos]=A[T0]\n ans[T0]=bisect.bisect_left(LIS,10**18)\n\n if Edge[T0]:\n for i in Edge[T0]:\n if label[i]==False:\n tmp.append(i)\n label[T0]=True\n else:\n label[T0]=True\n\nfor i in range(N):\n print(ans[i])\n" ]
41
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "gr = []\n\n\nkek = 1\n\n\ndfs(0)\n", "n = int(input())\n\ngr = []\n\n\nkek = 1\n\n\ndfs(0)\n", "n = int(input())\n\ngr = []\n\n\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from sys import \n\n\nn = int(input())\n\ngr = []\n\n\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from sys import \n\n\nn = int(input())\n\ngr = []\n\n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\n\ngr = []\n\n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndef dfs(v):\n \n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\n\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndef dfs(v):\n \n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\nfor i in :\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\n\n\ndef dfs(v):\n \n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\nfor i in :\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n\ndfs(0)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\n\nfor i in :\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n \nfor i in :\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n \nfor i in range(n - 1):\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n \nfor i in range(n - 1):\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import \nfrom sys import \n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import \nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \n for u in gr[v]:\n \n \ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n \n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n j = bisect_right(dp, A[v] - 1)\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n \n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n \n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n \n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n \nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n ans[v] = kek - 1\n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n ans[v] = kek - 1\n for u in gr[v]:\n \n dp[j] = old\n \n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n \n ans[v] = kek - 1\n for u in gr[v]:\n \n dp[j] = old\n if :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if :\n \n ans[v] = kek - 1\n for u in gr[v]:\n \n dp[j] = old\n if :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if :\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if < A[v] < dp[j]:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if < A[v] < dp[j]:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if < A[v] < dp[j]:\n \n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if < A[v] < dp[j]:\n old = dp[j]\n \n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n \n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and :\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n \n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n \n if kek == j:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n for h in :\n \n if kek == j:\n \n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n for h in :\n \n if kek == j:\n kek = n + 1\n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n for h in range(kek + 1, 1 + n):\n \n if kek == j:\n kek = n + 1\n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n", "from bisect import bisect_right\nfrom sys import setrecursionlimit\n\nsetrecursionlimit(10**8)\nn = int(input())\nA = list(map(int, input().split()))\ngr = []\nfor i in range(n):\n gr.append([])\nfor i in range(n - 1):\n a, b = map(int, input().split())\n a -= 1\n b -= 1\n gr[a].append(b)\n gr[b].append(a)\nans = [0] * n\ndp = [10 ** 10 for i in range(1 + n)]\ndp[0] = -10 ** 10\nkek = 1\nused = {0}\n\n\ndef dfs(v):\n global kek\n j = bisect_right(dp, A[v] - 1)\n old = dp[j]\n if dp[j - 1] < A[v] < dp[j]:\n old = dp[j]\n dp[j] = A[v]\n if kek == j:\n for h in range(kek + 1, 1 + n):\n if dp[h] == 10 ** 10:\n kek = h\n break\n if kek == j:\n kek = n + 1\n ans[v] = kek - 1\n for u in gr[v]:\n if u not in used:\n used.add(u)\n dfs(u)\n dp[j] = old\n if kek > j and old == 10 ** 10:\n kek = j\n\n\ndfs(0)\nprint(*ans)\n" ]
47
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "sys.setrecursionlimit(10**6)\n", "sys.setrecursionlimit(10**6)\n\n\ng = [[]for _ in range(n)]\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\ng = [[]for _ in range(n)]\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\ng = [[]for _ in range(n)]\n\n\nfor x in ans:\n print(x)\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\n\n\nfor x in ans:\n print(x)\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\n\n\nfor x in ans:\n print(x)\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\n\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "import sys\nsys.setrecursionlimit(10**6)\n\n\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\nans = [0]*n\n\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\n\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\nans = [0]*n\n\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\n\n\nlis = [float('inf')]*n\nans = [0]*n\n\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')]*n\nans = [0]*n\n\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in :\n \n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs:\n \n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs:\n \n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs:\n \n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs:\n \n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n \ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n \n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n tmp = lis[idx]\n \n \n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n tmp = lis[idx]\n lis[idx] = a[now]\n \n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n \n tmp = lis[idx]\n lis[idx] = a[now]\n \n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n \n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n \nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n \n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n \n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n if :\n continue\n \n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n if :\n continue\n dfs(to, now)\n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**6)\n\nn=int(input())\na=list(map(int,input().split()))\ng = [[]for _ in range(n)]\nfor i in range(n-1):\n u,v=map(int,input().split())\n g[u-1].append(v-1)\n g[v-1].append(u-1)\n\nlis = [float('inf')]*n\nans = [0]*n\n\ndef dfs(now, pre):\n idx = bisect_left(lis, a[now])\n tmp = lis[idx]\n lis[idx] = a[now]\n ans[now] = bisect_left(lis, float('inf'))\n for to in g[now]:\n if to == pre:\n continue\n dfs(to, now)\n lis[idx] = tmp\n\ndfs(0,-1)\nfor x in ans:\n print(x)\n" ]
31
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "stack = []\n\n\ndfs(0)\n", "import sys\n\n\nstack = []\n\n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\nstack = []\n\n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\nstack = []\nans = [1] * N\n\n\ndfs(0)\n", "import sys\n\n\nfrom bisect import \n\nstack = []\nans = [1] * N\n\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\n\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\n\n\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\n\n\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\n\n\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\n\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\n\n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n \n\nfrom bisect import \nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n \n\nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n \n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n \n\nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n for to in es[v]:\n if to==p: continue\n i = bisect_left(lis, A[to])\n if i == len(lis):\n stack.append((i,-1))\n lis.append(A[to])\n else:\n stack.append((i,lis[i]))\n lis[i] = A[to]\n ans[to] = len(lis)\n\n dfs(to,v)\n\n i,a = stack.pop()\n if a < 0:\n lis.pop()\n else:\n lis[i] = a\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n \n \nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n for to in es[v]:\n if to==p: continue\n i = bisect_left(lis, A[to])\n if i == len(lis):\n stack.append((i,-1))\n lis.append(A[to])\n else:\n stack.append((i,lis[i]))\n lis[i] = A[to]\n ans[to] = len(lis)\n\n dfs(to,v)\n\n i,a = stack.pop()\n if a < 0:\n lis.pop()\n else:\n lis[i] = a\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n u,v = u-1,v-1\n \n \nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n for to in es[v]:\n if to==p: continue\n i = bisect_left(lis, A[to])\n if i == len(lis):\n stack.append((i,-1))\n lis.append(A[to])\n else:\n stack.append((i,lis[i]))\n lis[i] = A[to]\n ans[to] = len(lis)\n\n dfs(to,v)\n\n i,a = stack.pop()\n if a < 0:\n lis.pop()\n else:\n lis[i] = a\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n u,v = u-1,v-1\n \n es[v].append(u)\n\nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n for to in es[v]:\n if to==p: continue\n i = bisect_left(lis, A[to])\n if i == len(lis):\n stack.append((i,-1))\n lis.append(A[to])\n else:\n stack.append((i,lis[i]))\n lis[i] = A[to]\n ans[to] = len(lis)\n\n dfs(to,v)\n\n i,a = stack.pop()\n if a < 0:\n lis.pop()\n else:\n lis[i] = a\n\ndfs(0)\nprint(*ans, sep='\\n')\n", "import sys\nsys.setrecursionlimit(10**8)\nN = int(input())\nA = list(map(int,input().split()))\nUV = [tuple(map(int,input().split())) for i in range(N-1)]\nes = [[] for _ in range(N)]\nfor u,v in UV:\n u,v = u-1,v-1\n es[u].append(v)\n es[v].append(u)\n\nfrom bisect import bisect_left\nlis = [A[0]]\nstack = []\nans = [1] * N\ndef dfs(v,p=-1):\n for to in es[v]:\n if to==p: continue\n i = bisect_left(lis, A[to])\n if i == len(lis):\n stack.append((i,-1))\n lis.append(A[to])\n else:\n stack.append((i,lis[i]))\n lis[i] = A[to]\n ans[to] = len(lis)\n\n dfs(to,v)\n\n i,a = stack.pop()\n if a < 0:\n lis.pop()\n else:\n lis[i] = a\n\ndfs(0)\nprint(*ans, sep='\\n')\n" ]
21
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "USE[1]=1\n\nDP=[]\n\n\ndfs(1)\n", "N=int(input())\n\n\nUSE[1]=1\n\nDP=[]\n\n\ndfs(1)\n", "import bisect\n\n\nN=int(input())\n\n\nUSE[1]=1\n\nDP=[]\n\n\ndfs(1)\n", "import bisect\n\n\nN=int(input())\n\n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n", "import bisect\n\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n", "import bisect\n\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\n\nimport bisect\n\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\n\nimport bisect\n\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\n\nfor i in :\n \n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\n\nimport bisect\n\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\n\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n\nUSE[1]=1\n\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\n\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in :\n \n \nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n \n \nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n \n \n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n \n \n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n \n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \n ANS[x]=len(DP)\n\n \ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \n ANS[x]=len(DP)\n\n \n if old==-1:\n DP.pop()\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n \n\n if old==-1:\n DP.pop()\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if :\n \n \n ANS[x]=len(DP)\n\n for to in E[x]:\n \n\n if old==-1:\n DP.pop()\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if :\n \n else:\n \n\n ANS[x]=len(DP)\n\n for to in E[x]:\n \n\n if old==-1:\n DP.pop()\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if :\n \n else:\n \n\n ANS[x]=len(DP)\n\n for to in E[x]:\n \n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if :\n \n else:\n \n\n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n \n else:\n \n\n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n \n \n else:\n \n\n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n \n \n else:\n \n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n \n old=DP[pos]\n\n \n else:\n \n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n changepos=pos\n old=DP[pos]\n\n \n else:\n \n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n changepos=pos\n old=DP[pos]\n\n DP[pos]=A[x]\n else:\n \n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n \n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n changepos=pos\n old=DP[pos]\n\n DP[pos]=A[x]\n else:\n \n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n DP[changepos]=old\n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n changepos=pos\n old=DP[pos]\n\n DP[pos]=A[x]\n else:\n changepos=pos\n old=-1\n\n \n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n DP[changepos]=old\n\ndfs(1)\n\nprint(*ANS[1:])\n", "import sys\ninput = sys.stdin.readline\nimport bisect\nsys.setrecursionlimit(10**6)\n\nN=int(input())\nA=[0]+list(map(int,input().split()))\n\nE=[[] for i in range(N+1)]\nfor i in range(N-1):\n x,y=map(int,input().split())\n E[x].append(y)\n E[y].append(x)\n\nUSE=[0]*(N+1)\nUSE[1]=1\nANS=[0]*(N+1)\nDP=[]\n\ndef dfs(x):\n pos=bisect.bisect_left(DP,A[x])\n\n if pos<len(DP):\n changepos=pos\n old=DP[pos]\n\n DP[pos]=A[x]\n else:\n changepos=pos\n old=-1\n\n DP.append(A[x])\n\n ANS[x]=len(DP)\n\n for to in E[x]:\n if USE[to]==0:\n USE[to]=1\n dfs(to)\n\n if old==-1:\n DP.pop()\n else:\n DP[changepos]=old\n\ndfs(1)\n\nprint(*ANS[1:])\n" ]
36
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "dfs(0)\n", "sys.setrecursionlimit(10**9)\n\n\ndfs(0)\n", "sys.setrecursionlimit(10**9)\n\n\nans = [0] * N\n\ndfs(0)\n", "sys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\n\nans = [0] * N\n\ndfs(0)\n", "sys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n", "import sys\n\nsys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n", "import sys\n\nsys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n", "import sys\n\nsys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\n\nINF = 10**9 + 1\n\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\n\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\n\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in :\n \n\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import \nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in :\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in :\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in :\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in :\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n \n \nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n \n \n LIS[idx] = a\n\n \nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n \n \n LIS[idx] = a\n\n \nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n \n \n LIS[idx] = a\n\n \n for u in G[v]:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n \n LIS[idx] = a\n\n \n for u in G[v]:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n \n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n \n \nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n \n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n \n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n\n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n old_val = LIS[idx]\n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n\n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n \n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n old_val = LIS[idx]\n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n\n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n old_val = LIS[idx]\n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n \n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n old_val = LIS[idx]\n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n \n dfs(u, v)\n\n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n", "from collections import deque\nfrom bisect import bisect_left\nimport sys\n\nsys.setrecursionlimit(10**9)\n\ndef dfs(v, p=-1):\n a = A[v]\n idx = bisect_left(LIS, a)\n old_val = LIS[idx]\n LIS[idx] = a\n\n ans[v] = bisect_left(LIS, INF)\n\n for u in G[v]:\n if u == p:\n continue\n dfs(u, v)\n\n LIS[idx] = old_val\n\nINF = 10**9 + 1\nN = int(input())\nA = list(map(int, input().split()))\nG = [[] for i in range(N)]\nfor i in range(N-1):\n u, v = list(map(int, input().split()))\n G[u-1].append(v-1)\n G[v-1].append(u-1)\n\nLIS = [INF] * N\nans = [0] * N\n\ndfs(0)\n\nprint(*ans, sep='\\n')\n" ]
33
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "st = [1]\n", "N = int(input())\n\n\nst = [1]\n", "N = int(input())\n\n\nst = [1]\nwhile st:\n", "N = int(input())\n\n\norder = []\n\nst = [1]\nwhile st:\n", "N = int(input())\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n", "N = int(input())\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n \n\nst = [(-1, -1)] * (N + 1)\n", "N = int(input())\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n \n\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n \n\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n \n\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\norder = []\n\nst = [1]\nwhile st:\n \n\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in :\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in :\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in :\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in :\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n \norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n \n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n \n edges[fr].append(to)\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n \n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n \n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n \n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n \n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n \n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n \n \nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n L.append(a)\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n L.append(a)\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if :\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n \n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n \n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n if :\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n if :\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n \n if :\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if :\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n \n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n \n \n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n \n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in :\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in edges[now]:\n \n \nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in edges[now]:\n \n st.append(to)\n \n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in edges[now]:\n \n st.append(to)\n parent[to] = now\n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in edges[now]:\n if :\n continue\n st.append(to)\n parent[to] = now\n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n", "from bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nedges = [[] for _ in range(N + 1)]\nfor _ in range(N - 1):\n fr, to = map(int, input().split())\n edges[fr].append(to)\n edges[to].append(fr)\n\norder = []\nparent = [-1] * (N + 1)\nst = [1]\nwhile st:\n now = st.pop()\n order.append(now)\n if now > 0:\n st.append(-now)\n for to in edges[now]:\n if to == parent[now]:\n continue\n st.append(to)\n parent[to] = now\n\nL = [-10**18]\nans = [-1] * (N + 1)\nst = [(-1, -1)] * (N + 1)\n\nfor now in order:\n if now < 0:\n val, idx = st[-now]\n if val == -1:\n L.pop()\n if val > 0:\n L[idx] = val\n continue\n\n a = A[now - 1]\n i = bisect_left(L, a)\n\n if len(L) == i:\n L.append(a)\n else:\n st[now] = (L[i], i)\n if L[i] > a:\n L[i] = a\n\n ans[now] = len(L) - 1\n\nprint(*ans[1:], sep='\\n')\n" ]
51
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n", "# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "input = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \n\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\n\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \n\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\n\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\n\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\n\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\n\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\n\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n \n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n", "from bisect import \nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n \n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in :\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs:\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in :\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n \n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n \n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n \n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n \n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n \n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n \n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n \n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n \n \n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n \n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n", "from bisect import bisect_left\nimport sys\nsys.setrecursionlimit(10**7)\ninput = sys.stdin.readline\n\n# スペース区切りの入力を読み込んで数値リストにして返します。\ndef get_nums_l():\n return [ int(s) for s in input().split(\" \")]\n\ndef log(*args):\n print(\"DEBUG:\", *args, file=sys.stderr)\n\nINF = 999999999999999999999999\n\nn = int(input())\nA = [-INF] + get_nums_l()\n\nlog(n)\nlog(A)\n\nedges = [ [] for _ in range(n+1) ]\nfor _ in range(n-1):\n#for line in map(lambda s: s.strip(), sys.stdin.readlines()):\n line = input()\n log(line)\n u,v = map(int, line.split())\n edges[u].append(v)\n edges[v].append(u)\n\ndef dfs(dp, u, p=None):\n\n # log(u)\n # log(dp)\n\n # dpの中でA[u]以上の値が入っている最小のindex\n i = bisect_left(dp, A[u])\n\n old = dp[i]\n dp[i] = A[u]\n\n # 有効値(INF以外)が入っている最大のindex\n ans[u] = bisect_left(dp, INF) - 1\n\n for v in edges[u]:\n if v == p:\n continue\n dfs(dp, v, u)\n\n # 巻き戻し\n dp[i] = old\n\n# ans[i] = ノード1からノードiへの経路中の最長増加部分列長\nans = [0] * (n+1)\n\n# dp[i] = 最長増加部分列長がiの場合の末尾ノード値の最小\n# dp[0]は使用しないので負の無限大を入れておく\ndp = [INF] * (n+1)\ndp[0] = -INF\n\ndfs(dp, 1, None)\n\nfor i in range(1, n+1):\n print(ans[i])\n" ]
42
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# F - LIS on Tree\n\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\n", "# F - LIS on Tree\n\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nn = int(input())\n\n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n", "# F - LIS on Tree\n\n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\n # (parent, child)\nwhile :\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\n\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile :\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile :\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile :\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n \n\nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in :\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n \n \nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import \n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n \n \nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n \n \nfor u in range(n):\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n \n \nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n \n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n adj[u - 1].append(v - 1)\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n adj[u - 1].append(v - 1)\n \n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if : # 帰りがけ\n \n \nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n \n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if : # 帰りがけ\n \n \nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if : # 帰りがけ\n \n \nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if : # 帰りがけ\n \n # 復元\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if : # 帰りがけ\n \n # 復元\n else: # 行きがけ\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n \n # 復元\n else: # 行きがけ\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n \n lis[l] = x # 復元\n else: # 行きがけ\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n \n lis[l] = x # 復元\n else: # 行きがけ\n # a[u]を使って長さl+1のLISを作れる\n # 後で復元するために保存\n # 更新\n # 現時点のLISの長さ\n # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n # a[u]を使って長さl+1のLISを作れる\n # 後で復元するために保存\n # 更新\n # 現時点のLISの長さ\n # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n # 更新\n # 現時点のLISの長さ\n # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n # 更新\n # 現時点のLISの長さ\n # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n # 更新\n # 現時点のLISの長さ\n stack.append((None, u)) # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n # 更新\n lislen[u] = bisect_left(lis, float('inf')) # 現時点のLISの長さ\n stack.append((None, u)) # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n lis[l] = a[u] # 更新\n lislen[u] = bisect_left(lis, float('inf')) # 現時点のLISの長さ\n stack.append((None, u)) # 帰りがけタスクをpush\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n lis[l] = a[u] # 更新\n lislen[u] = bisect_left(lis, float('inf')) # 現時点のLISの長さ\n stack.append((None, u)) # 帰りがけタスクをpush\n for v in adj[u]:\n \n\nfor u in range(n):\n print(lislen[u])\n", "# F - LIS on Tree\n\nfrom bisect import bisect_left\n\nn = int(input())\na = list(map(int, input().split()))\nassert len(a) == n\nadj = {u: [] for u in range(n)}\nfor i in range(n - 1):\n u, v = map(int, input().split())\n adj[u - 1].append(v - 1)\n adj[v - 1].append(u - 1)\n\n# lis[i] == 長さi+1の増加列の末尾の最小値\nlis = [float('inf')] * n\n\nlislen = [0] * n # lislen[u] == 頂点uまでのLISの長さ\nbackup = [None] * n\n\n# DFS (with an explicit stack)\nstack = [(0, 0)] # (parent, child)\nwhile len(stack) > 0:\n p, u = stack.pop()\n if p == None: # 帰りがけ\n l, x = backup[u]\n lis[l] = x # 復元\n else: # 行きがけ\n l = bisect_left(lis, a[u]) # a[u]を使って長さl+1のLISを作れる\n backup[u] = (l, lis[l]) # 後で復元するために保存\n lis[l] = a[u] # 更新\n lislen[u] = bisect_left(lis, float('inf')) # 現時点のLISの長さ\n stack.append((None, u)) # 帰りがけタスクをpush\n for v in adj[u]:\n if v != p:\n stack.append((u, v))\n\nfor u in range(n):\n print(lislen[u])\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#F\n\n\n#DFS\n", "#F\n\n\nDP = [inf]*(N+1)\n\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\n\nDP = [inf]*(N+1)\n\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\n\nDP = [inf]*(N+1)\nstack = []\n\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\n\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\n\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\n\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\n", "#F\n\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\n\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\n\n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\n\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\n\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\n\n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\n\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\n\n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\n\n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\n\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs: #v = start\n \n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in :\n \n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in :\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n stack.append([ind,mae])\n\n \n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n ind = bisect.bisect_left(DP,A[v])\n \n \n stack.append([ind,mae])\n\n \n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \n\n ind = bisect.bisect_left(DP,A[v])\n \n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n \n ind = bisect.bisect_left(DP,A[v])\n \n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n \n ind = bisect.bisect_left(DP,A[v])\n \n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n \n ind = bisect.bisect_left(DP,A[v])\n \n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n \n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n \n \nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n \n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n \n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n \n\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n \n\n ind,mae = stack.pop()\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n if :\n continue\n\n \n ind,mae = stack.pop()\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n if :\n continue\n\n dfs(gragh,next_v)\n\n ind,mae = stack.pop()\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n if seen[next_v]:\n continue\n\n dfs(gragh,next_v)\n\n ind,mae = stack.pop()\n DP[ind] = mae\n\n return\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n", "#F\nimport bisect\nimport sys\n\nsys.setrecursionlimit(202020)\n\ninf = float(\"inf\")\nN = int(input())\nA = list(map(int,input().split()))\n\non = [[] for _ in range(N)]\nfor _ in range(N-1):\n u,v = map(int,input().split())\n on[u-1].append(v-1)\n on[v-1].append(u-1)\n\n\n\nDP = [inf]*(N+1)\nstack = []\nans = [-1]*N\nseen = [False]*N\n\n#DFS\ndef dfs(gragh, v): #v = start\n \"\"\"\n global A\n global DP\n global ans\n global stack\n global seen\n \"\"\"\n\n seen[v] = True\n ind = bisect.bisect_left(DP,A[v])\n mae = DP[ind]\n DP[ind] = A[v]\n stack.append([ind,mae])\n\n ans[v] = bisect.bisect_left(DP,inf)\n\n for next_v in gragh[v]:\n if seen[next_v]:\n continue\n\n dfs(gragh,next_v)\n\n ind,mae = stack.pop()\n DP[ind] = mae\n\n return\n\n\n\ndfs(on,0)\nfor a in ans:\n print(a)\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# DFS\n # (current, parent)\n", "A = list(map(int, input().split()))\n\n\n# DFS\n # (current, parent)\n", "A = list(map(int, input().split()))\n\n\nINF = 10 ** 9 + 7\n\n\n# DFS\n # (current, parent)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\nINF = 10 ** 9 + 7\n\n\n# DFS\n # (current, parent)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\nINF = 10 ** 9 + 7\n\n\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\ngraph = [[] for _ in range(N)]\n\n\nINF = 10 ** 9 + 7\n\n\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\ngraph = [[] for _ in range(N)]\n\n\nINF = 10 ** 9 + 7\n\n\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\n\n\ngraph = [[] for _ in range(N)]\n\n\nINF = 10 ** 9 + 7\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\n\n\nINF = 10 ** 9 + 7\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\n\n\n# DFS\n # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\n\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\n\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n", "from import deque\n\n\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n", "from import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n", "from import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import \nfrom import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import \nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n \n # Calc ans\n \n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n \n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n \n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n \n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n \n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n \n \nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n \n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n \n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n \n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if :\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n \n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n \n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n \n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n \nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n \n q.append((v, u))\n\nprint(*ans)\n", "from bisect import bisect_left\nfrom collections import deque\n\nN = int(input())\nA = list(map(int, input().split()))\nX = [list(map(int, input().split())) for _ in range(N - 1)]\n\ngraph = [[] for _ in range(N)]\nfor u, v in X:\n graph[u - 1].append(v - 1)\n graph[v - 1].append(u - 1)\n\nINF = 10 ** 9 + 7\ndp = [INF] * (N + 1)\ndp[0] = -INF\nrb = [[] for _ in range(N)]\nans = [0] * N\n\n# DFS\nq = deque([(0, 0)]) # (current, parent)\nwhile q:\n u, p = q.pop()\n\n # Roll back\n if p is None:\n i, x = rb[u].pop()\n dp[i] = x\n continue\n\n # Update dp\n i = bisect_left(dp, A[u])\n rb[u].append((i, dp[i]))\n dp[i] = A[u]\n\n # Calc ans\n ans[u] = max(i, ans[p])\n\n # Go to next\n q.append((u, None))\n for v in graph[u]:\n if v == p:\n continue\n q.append((v, u))\n\nprint(*ans)\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "root = 0\n", "root = 0\n\nans = [0] * N\n", "A = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\ndef dfs(x):\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\ndef dfs(x):\n \n\nprint (*ans, sep = '\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "from bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\n\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\n\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in :\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import \n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n \n memo[x] = (tmp, dp[tmp])\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n \n ans[x] = bisect_left(dp, INF)\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n \ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n \nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n j, a = memo[x]\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n \n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n j, a = memo[x]\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n j, a = memo[x]\n \n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n \n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n \n \n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n if :\n continue\n \n \n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n if :\n continue\n check[next_] = True\n \n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n if :\n continue\n check[next_] = True\n dfs(next_)\n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n", "import sys\nsys.setrecursionlimit(10 ** 9)\n\nfrom bisect import bisect_left\n\nN = int(input())\nA = list(map(int, input().split()))\n\nG = [[] for _ in range(N)]\n\nfor _ in range(N - 1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n G[u].append(v)\n G[v].append(u)\n\n\nroot = 0\n\nans = [0] * N\ncheck = [False] * N\ncheck[root] = True\n\nmemo = [None] * N\n\nINF = 10 ** 10\ndp = [INF] * N\n\ndef dfs(x):\n tmp = bisect_left(dp, A[x])\n memo[x] = (tmp, dp[tmp])\n dp[tmp] = A[x]\n ans[x] = bisect_left(dp, INF)\n for next_ in G[x]:\n if check[next_]:\n continue\n check[next_] = True\n dfs(next_)\n j, a = memo[x]\n dp[j] = a\n\ndfs(root)\n\nprint (*ans, sep = '\\n')\n" ]
37
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "#!/usr/bin/python3\n", "#!/usr/bin/python3\n\n\nnbs = [ [] for _ in range(n) ]\n", "#!/usr/bin/python3\n\nimport sys\n\n\nnbs = [ [] for _ in range(n) ]\n", "#!/usr/bin/python3\n\nimport sys\n\n\nnbs = [ [] for _ in range(n) ]\n\n\ndp = [ float('inf') ] * n\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\nnbs = [ [] for _ in range(n) ]\n\n\ndp = [ float('inf') ] * n\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\n\ndp[0] = a[0]\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\n\ndp[0] = a[0]\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\n\ndp[0] = a[0]\nmlen[0] = 1\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\n\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in :\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import \n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen:\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n \n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n \nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n\n ntail = max(ctail, idx)\n dp[idx] = a[ch]\n mlen[ch] = ntail + 1\n getmlen(ch, cur, ntail)\n dp[idx] = ov\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n \n nbs[u - 1].append(v - 1)\n \n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n\n ntail = max(ctail, idx)\n dp[idx] = a[ch]\n mlen[ch] = ntail + 1\n getmlen(ch, cur, ntail)\n dp[idx] = ov\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n \n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n\n ntail = max(ctail, idx)\n dp[idx] = a[ch]\n mlen[ch] = ntail + 1\n getmlen(ch, cur, ntail)\n dp[idx] = ov\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n nbs[v - 1].append(u - 1)\n\n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n\n ntail = max(ctail, idx)\n dp[idx] = a[ch]\n mlen[ch] = ntail + 1\n getmlen(ch, cur, ntail)\n dp[idx] = ov\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n", "#!/usr/bin/python3\n\nimport sys\nfrom bisect import bisect_left\n\nsys.setrecursionlimit(1000000)\n\nn = int(input())\na = [int(i) for i in input().split()]\n\nnbs = [ [] for _ in range(n) ]\n\nfor _ in range(n - 1):\n (u, v) = map(int, input().split())\n nbs[u - 1].append(v - 1)\n nbs[v - 1].append(u - 1)\n\n\nmlen = [ 0 ] * n\ndp = [ float('inf') ] * n\n\ndef getmlen(cur, p, ctail):\n for ch in nbs[cur]:\n if ch == p:\n continue\n\n idx = bisect_left(dp, a[ch])\n ov = dp[idx]\n\n ntail = max(ctail, idx)\n dp[idx] = a[ch]\n mlen[ch] = ntail + 1\n getmlen(ch, cur, ntail)\n dp[idx] = ov\n\n\n\ndp[0] = a[0]\nmlen[0] = 1\ngetmlen(0, -1, 0)\n\nfor i in range(n):\n print(mlen[i])\n" ]
26
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "def main():\n", "def main():\n \n\nif :\n", "from bisect import \n\n\ndef main():\n \n\nif :\n", "from bisect import bisect_left\n\n\ndef main():\n \n\nif :\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n \n\nif :\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n \n\nif __name__ == '__main__':\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n def dfs(u, par):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n def dfs(u, par):\n \n\n dfs(0, -1)\n\n \nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n # dfs\n def dfs(u, par):\n \n\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n \n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n A = [int(x) for x in input().split()]\n \n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n \n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n \n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n import sys\n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n import sys\n \n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n \n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in :\n \n u -= 1\n v -= 1\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n \n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n \n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n \n \n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n \n \n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n \n \n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n \n \n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n \n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n pos = bisect_left(dp, A[u])\n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n u, v = [int(x) for x in input().split()]\n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n pos = bisect_left(dp, A[u])\n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n u, v = [int(x) for x in input().split()]\n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n pos = bisect_left(dp, A[u])\n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n \n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n u, v = [int(x) for x in input().split()]\n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n pos = bisect_left(dp, A[u])\n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n \n dfs(v, u)\n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n", "from bisect import bisect_left\n\n\ndef main():\n N = int(input())\n A = [int(x) for x in input().split()]\n tree = [list() for _ in range(N)]\n for _ in range(N-1):\n u, v = [int(x) for x in input().split()]\n u -= 1\n v -= 1\n tree[u].append(v)\n tree[v].append(u)\n\n ans = [1] * N\n\n # dfs\n def dfs(u, par):\n nonlocal ans\n nonlocal dp\n pos = bisect_left(dp, A[u])\n old = dp[pos]\n dp[pos] = A[u]\n\n ans[u] = bisect_left(dp, float(\"inf\")) - 1\n\n for v in tree[u]:\n if v == par:\n continue\n dfs(v, u)\n\n dp[pos] = old\n\n dp = [float(\"inf\")] * (N+1)\n dp[0] = float(\"-inf\")\n dfs(0, -1)\n\n for i in range(N):\n print(ans[i])\n\n\nif __name__ == '__main__':\n import sys\n sys.setrecursionlimit(10**6)\n main()\n" ]
38
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\n\nLIS = []\n # 各ノードのlen(LIS)を記録\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\n\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\n\n\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\n\nread = sys.stdin.readline\n\n\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\n\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\n\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\nN = read_a_int()\n\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\nfrom bisect import , \nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\n\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\ndef read_a_int():\n \n\nfrom bisect import , \nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints:\n \n\ndef read_a_int():\n \n\nfrom bisect import , \nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n \n\nfrom bisect import , \nfrom import \nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n \n\nfrom bisect import , \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import , \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import , \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in :\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n \n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, \nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n \n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n \n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n \n # LISの更新\n idx = bisect_left(LIS, a)\n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n \n \nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n \n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n \n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n \n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n \n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if :\n \n \n # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if :\n \n \n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in :\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n \ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n\n # 抜けるときにLISを復元\n if is_append:\n \n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n \n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n \n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n \n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n \n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n # なんの値だったか持っておく\n # aに更新\n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n \n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n # なんの値だったか持っておく\n # aに更新\n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n \n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n LIS[idx] = old\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n # なんの値だったか持っておく\n # aに更新\n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n if to == p:\n continue\n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n LIS[idx] = old\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n # なんの値だったか持っておく\n LIS[idx] = a # aに更新\n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n if to == p:\n continue\n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n LIS[idx] = old\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n", "# 木によってLISを作り、dfsで抜けるときにLISをその前の状態まで復元する\n\nimport sys\nsys.setrecursionlimit(1 << 25)\nread = sys.stdin.readline\nra = range\nenu = enumerate\n\n\ndef mina1(x):\n return int(x) - 1\n\n\ndef read_ints(mina=False):\n if mina:\n return list(map(mina1, read().split()))\n else:\n return list(map(int, read().split()))\n\n\ndef read_a_int():\n return int(read())\n\n\nfrom bisect import bisect_left, bisect_right\nfrom collections import defaultdict\nN = read_a_int()\nA = read_ints()\ntree = defaultdict(lambda: [])\nfor _ in ra(N - 1):\n u, v = read_ints(mina=True)\n tree[u].append(v)\n tree[v].append(u)\n\nLIS = []\nans = [0] * N # 各ノードのlen(LIS)を記録\n\n\ndef dfs(now, p): # 現在のノード、親\n a = A[now]\n # LISの更新\n idx = bisect_left(LIS, a)\n is_append = False\n if idx == len(LIS):\n LIS.append(a)\n is_append = True\n else:\n old = LIS[idx] # なんの値だったか持っておく\n LIS[idx] = a # aに更新\n\n ans[now] = len(LIS) # 答えを記録\n # 次のノードを探索\n for to in tree[now]:\n if to == p:\n continue\n dfs(to, now)\n\n # 抜けるときにLISを復元\n if is_append:\n del LIS[idx]\n else:\n LIS[idx] = old\n\n\ndfs(0, -1)\nprint(*ans, sep='\\n')\n" ]
56
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "his = {}\ndfs(0)\n", "lis = [INF]*N\n\nhis = {}\ndfs(0)\n", "*A,=map(int,input().split())\n\n\nlis = [INF]*N\n\nhis = {}\ndfs(0)\n", "*A,=map(int,input().split())\n\n\nfor a,b in ab:\n \n\nlis = [INF]*N\n\nhis = {}\ndfs(0)\n", "*A,=map(int,input().split())\n\n\nfor a,b in ab:\n \n\nlis = [INF]*N\n\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "*A,=map(int,input().split())\n\n\nfor a,b in ab:\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "*A,=map(int,input().split())\n\nG=[[] for _ in range(N)]\n\nfor a,b in ab:\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "*A,=map(int,input().split())\n\nG=[[] for _ in range(N)]\n\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\n\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import \n\n\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\n\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import \n\n\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import \n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n\ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n \ndef dfs(a0):\n \n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n \ndef dfs(a0):\n \n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n \n \ndef dfs(a0):\n \n \n while todo:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n \n\ndef dfs(a0):\n \n \n while todo:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n \n\ndef dfs(a0):\n \n todo = [~a0, a0]\n while todo:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n \n todo = [~a0, a0]\n while todo:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n \n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n \n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n \n his[a] = (idx,lis[idx])\n \n \n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n \n \n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n \n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n \n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n \n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n idx,val = his[~a]\n \n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n else:\n idx,val = his[~a]\n lis[idx] = val\n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n \n \n else:\n idx,val = his[~a]\n lis[idx] = val\n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n if seen[b]: continue\n \n \n else:\n idx,val = his[~a]\n lis[idx] = val\n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n if seen[b]: continue\n todo.append(~b)\n \n else:\n idx,val = his[~a]\n lis[idx] = val\n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n", "from bisect import bisect_left\n\nN=int(input())\n*A,=map(int,input().split())\nINF=10**20\nG=[[] for _ in range(N)]\nab = [tuple(map(int,input().split())) for _ in range(N-1)]\nfor a,b in ab:\n G[a-1].append(b-1)\n G[b-1].append(a-1)\n\ndef dfs(a0):\n seen =[0]*len(G)\n todo = [~a0, a0]\n while todo:\n a = todo.pop()\n if a >= 0:\n seen[a] = 1\n idx = bisect_left(lis,A[a])\n his[a] = (idx,lis[idx])\n lis[idx] = A[a]\n dp[a] = bisect_left(lis,INF)\n for b in G[a]:\n if seen[b]: continue\n todo.append(~b)\n todo.append(b)\n else:\n idx,val = his[~a]\n lis[idx] = val\n return\n\nlis = [INF]*N\ndp = [0]*N\nhis = {}\ndfs(0)\nprint(*dp,sep=\"\\n\")\n" ]
39
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]
0/::0
We have a tree with N vertices, whose i-th edge connects Vertex u_i and Vertex v_i. Vertex i has an integer a_i written on it. For every integer k from 1 through N, solve the following problem: * We will make a sequence by lining up the integers written on the vertices along the shortest path from Vertex 1 to Vertex k, in the order they appear. Find the length of the longest increasing subsequence of this sequence. Here, the longest increasing subsequence of a sequence A of length L is the subsequence A_{i_1} , A_{i_2} , ... , A_{i_M} with the greatest possible value of M such that 1 \leq i_1 < i_2 < ... < i_M \leq L and A_{i_1} < A_{i_2} < ... < A_{i_M}. Constraints * 2 \leq N \leq 2 \times 10^5 * 1 \leq a_i \leq 10^9 * 1 \leq u_i , v_i \leq N * u_i \neq v_i * The given graph is a tree. * All values in input are integers. Input Input is given from Standard Input in the following format: N a_1 a_2 ... a_N u_1 v_1 u_2 v_2 : u_{N-1} v_{N-1} Output Print N lines. The k-th line, print the length of the longest increasing subsequence of the sequence obtained from the shortest path from Vertex 1 to Vertex k. Example Input 10 1 2 5 3 4 6 7 3 2 4 1 2 2 3 3 4 4 5 3 6 6 7 1 8 8 9 9 10 Output 1 2 3 3 4 4 5 2 2 3
[ "\n", "from bisect import\n", "from bisect import \n\n\ndef main():\n", "from bisect import \nsys.setrecursionlimit(10**7)\n\n\ndef main():\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\n\n\ndef main():\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n \n \n dp = []\n \n\nif :\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():\n\ndef main():\n \n \n dp = []\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import \nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n \n dp = []\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n \n dp = []\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n \n to = [[] for _ in range(N)]\n \n\n dp = []\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n \n to = [[] for _ in range(N)]\n \n\n dp = []\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n dp = []\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n ans = [0] * N\n dp = []\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n \n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n ans = [0] * N\n dp = []\n def dfs:\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n ans = [0] * N\n dp = []\n def dfs:\n \n\n dfs(0, -1)\n\n \nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n \n\n ans = [0] * N\n dp = []\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n\n ans = [0] * N\n dp = []\n def dfs:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n\n ans = [0] * N\n dp = []\n def dfs:\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in :\n \n u -= 1\n v -= 1\n \n \n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n \n \n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n \n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n \n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n \n idx = bisect_left(dp, a)\n\n \n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n \n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n \n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n \n \n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n \n \n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n \n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n \n \n for nv in to[now]:\n \n\n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n \n \n for nv in to[now]:\n \n\n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n \n\n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n old = -1\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n \n\n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n old = -1\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if :\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n old = -1\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n old = -1\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if :\n old = -1\n \n else:\n \n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n \n else:\n \n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n \n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n \n else:\n \n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n dp[idx] = old\n\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n dp.append(a)\n else:\n \n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n dp[idx] = old\n\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n dp.append(a)\n else:\n \n \n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n dp[idx] = old\n\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n dp.append(a)\n else:\n \n dp[idx] = a\n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n dp[idx] = old\n\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n", "import sys\nfrom bisect import bisect_left\nsys.setrecursionlimit(10**7)\ndef input():return sys.stdin.readline().strip()\n\ndef main():\n N = int(input())\n A = tuple(map(int, input().split()))\n\n to = [[] for _ in range(N)]\n for _ in range(N-1):\n u, v = map(int, input().split())\n u -= 1\n v -= 1\n to[u].append(v)\n to[v].append(u)\n\n ans = [0] * N\n dp = []\n def dfs(now, pre):\n a = A[now]\n idx = bisect_left(dp, a)\n\n if idx == len(dp):\n old = -1\n dp.append(a)\n else:\n old = dp[idx]\n dp[idx] = a\n\n ans[now] = len(dp)\n\n\n for nv in to[now]:\n if nv != pre:\n dfs(nv, now)\n\n\n if old == -1:\n dp.pop()\n else:\n dp[idx] = old\n\n\n dfs(0, -1)\n\n print(*ans, sep=\"\\n\")\n\n\nif __name__ == \"__main__\":\n main()\n" ]
43
[ { "input": "10\n1 2 5 3 4 6 7 3 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3" } ]
[ { "input": "10\n1 2 5 3 4 6 7 6 2 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 3 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 4\n1 4\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n2 10", "output": "1\n3\n3\n2\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n3\n" }, { "input": "10\n1 3 0 2 7 1 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n1\n2\n2\n2\n2\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n3\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n3\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 7 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 1 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 11 1 7 11 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n3\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n4\n2\n4\n4\n" }, { "input": "10\n1 2 5 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n3\n3\n3\n2\n2\n3\n" }, { "input": "10\n0 2 9 1 7 8 7 0 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n1 3 5 2 7 1 7 4 0 4\n1 6\n2 3\n2 4\n7 5\n4 6\n6 7\n1 8\n2 9\n4 10", "output": "1\n3\n4\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 3 8 4 0 3\n1 6\n2 3\n3 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n3\n2\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n2\n4\n" }, { "input": "10\n0 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n1 5\n2 7\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n10 5\n2 6\n4 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n4\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 6\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n2 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n1\n2\n2\n2\n1\n2\n2\n1\n2\n" }, { "input": "10\n1 3 2 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n3\n4\n" }, { "input": "10\n2 2 6 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n3\n3\n" }, { "input": "10\n2 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n2\n1\n2\n3\n1\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 0 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 2 6 7 6 0 4\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n2\n" }, { "input": "10\n2 2 0 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n4\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n2\n2\n2\n1\n2\n2\n2\n2\n" }, { "input": "10\n2 2 7 2 7 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n2 6\n6 7\n2 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n2\n2\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 0 5 3 4 6 7 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n3\n4\n4\n3\n2\n4\n4\n" }, { "input": "10\n1 0 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n3 10", "output": "1\n1\n2\n2\n2\n2\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 7 6 7 1 0 4\n1 2\n2 5\n3 4\n4 5\n4 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 4 0 12 1 7 11 0 4\n1 5\n2 3\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n3\n3\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n2 2 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n1\n2\n2\n3\n3\n4\n2\n4\n4\n" }, { "input": "10\n1 2 6 2 7 1 2 10 0 4\n1 3\n2 3\n3 4\n10 5\n2 6\n6 7\n1 8\n2 9\n2 10", "output": "1\n2\n2\n2\n4\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 3 1 7 3 0 4\n1 3\n2 3\n3 4\n7 5\n1 6\n3 7\n2 8\n2 9\n8 10", "output": "1\n2\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 3 3 2 7 0 7 4 1 3\n1 4\n2 3\n3 4\n6 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n3\n3\n3\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n1 5\n2 3\n3 4\n7 5\n4 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n2\n2\n2\n2\n2\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n9 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n3\n" }, { "input": "10\n1 3 2 2 7 1 7 4 0 3\n1 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n4 9\n9 10", "output": "1\n3\n2\n2\n3\n1\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 6 12 3 2 1\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n2\n" }, { "input": "10\n0 2 5 2 7 6 7 1 0 8\n1 2\n2 3\n3 5\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n4\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n2 2 0 2 7 6 2 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n1\n1\n2\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n3 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 4 2 7 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n2\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n3\n2\n2\n3\n2\n3\n4\n" }, { "input": "10\n1 2 5 2 7 6 4 3 0 4\n1 2\n2 4\n3 4\n4 5\n3 6\n3 7\n1 8\n5 9\n9 10", "output": "1\n2\n3\n2\n3\n4\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n0 2 9 1 6 8 7 0 0 4\n1 2\n2 3\n1 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n1\n1\n2\n" }, { "input": "10\n2 3 5 3 7 6 7 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 7\n1 8\n10 9\n7 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n5\n5\n" }, { "input": "10\n2 2 6 3 7 6 8 3 0 4\n1 2\n2 3\n3 4\n3 5\n3 6\n6 10\n2 8\n5 9\n7 10", "output": "1\n1\n2\n2\n3\n2\n3\n2\n3\n2\n" }, { "input": "10\n1 3 2 2 7 1 7 4 1 3\n2 6\n2 3\n3 1\n7 5\n4 7\n6 4\n1 8\n2 9\n5 10", "output": "1\n3\n2\n3\n4\n3\n4\n2\n3\n4\n" }, { "input": "10\n1 2 5 3 0 6 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n4\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n4\n2\n4\n3\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n2 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 4 2 14 1 7 3 0 4\n1 2\n2 3\n3 4\n7 5\n1 6\n6 7\n1 8\n4 9\n3 10", "output": "1\n2\n3\n3\n3\n1\n2\n2\n3\n3\n" }, { "input": "10\n1 2 0 2 7 2 8 4 -1 5\n1 6\n2 3\n3 4\n1 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n2\n2\n2\n2\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n2\n3\n3\n3\n2\n2\n2\n" }, { "input": "10\n1 4 9 2 7 0 3 3 0 4\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 2\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 3 5 2 7 2 7 4 0 4\n1 6\n2 4\n3 4\n7 5\n2 6\n6 7\n1 8\n1 9\n6 10", "output": "1\n3\n4\n3\n3\n2\n3\n2\n1\n3\n" }, { "input": "10\n1 2 5 3 7 6 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n3\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 0 11 7 0 0 0\n1 3\n2 3\n3 4\n4 5\n2 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n3\n1\n1\n1\n" }, { "input": "10\n1 2 5 2 0 6 7 3 1 4\n1 2\n1 3\n3 6\n8 5\n4 6\n2 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n2\n3\n3\n2\n2\n3\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 8\n8 9\n9 10", "output": "1\n2\n4\n3\n3\n2\n4\n2\n2\n2\n" }, { "input": "10\n1 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n8 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n4\n2\n4\n3\n2\n2\n" }, { "input": "10\n0 2 5 3 7 1 4 5 0 4\n1 2\n2 4\n3 4\n3 5\n2 6\n3 7\n1 10\n8 9\n9 10", "output": "1\n2\n4\n3\n5\n2\n4\n3\n2\n2\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n2 5\n3 6\n6 7\n1 8\n8 9\n9 10", "output": "1\n2\n3\n3\n3\n4\n5\n2\n2\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n4 5\n3 6\n6 7\n1 8\n5 9\n1 10", "output": "1\n2\n3\n3\n4\n4\n5\n2\n4\n2\n" }, { "input": "10\n1 2 2 2 7 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n6 7\n1 5\n8 9\n9 10", "output": "1\n2\n2\n2\n2\n3\n4\n2\n2\n3\n" }, { "input": "10\n1 2 0 3 7 6 7 3 0 0\n1 2\n2 3\n3 4\n4 5\n3 6\n9 7\n1 8\n8 9\n9 10", "output": "1\n2\n2\n3\n4\n3\n3\n2\n2\n2\n" }, { "input": "10\n2 2 5 2 0 6 7 3 0 4\n1 2\n2 3\n3 4\n8 5\n2 6\n1 7\n1 8\n8 9\n9 10", "output": "1\n1\n2\n2\n2\n2\n2\n2\n2\n3\n" }, { "input": "10\n1 3 5 2 7 1 7 0 1 3\n1 6\n2 3\n3 4\n7 5\n2 7\n6 7\n1 8\n2 9\n9 10", "output": "1\n2\n3\n3\n2\n1\n2\n1\n2\n2\n" }, { "input": "10\n1 3 0 2 7 2 8 4 -1 3\n1 6\n2 3\n1 4\n2 5\n2 6\n6 7\n1 8\n2 9\n9 10", "output": "1\n3\n3\n2\n4\n2\n3\n2\n3\n3\n" }, { "input": "10\n1 2 5 2 7 6 7 3 0 4\n1 2\n2 3\n3 5\n4 5\n3 6\n6 7\n1 10\n8 9\n9 10", "output": "1\n2\n3\n4\n4\n4\n5\n2\n2\n2\n" } ]