id
stringclasses 1
value | instruction
stringclasses 206
values | trajectory
listlengths 2
297
| length
int64 2
297
| public_tests
listlengths 1
6
| generated_tests
listlengths 4
100
|
|---|---|---|---|---|---|
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t = 0\n",
"C = collections.Counter(A)\n\nt = 0\n",
"A = list(map(int, input().split()))\n\n\nC = collections.Counter(A)\n\nt = 0\n",
"A = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n\n\nfor i in A:\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n\nfor i in :\n \n\nfor i in A:\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n\nfor i in :\n t += i * (i - 1) //2\n\nfor i in A:\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n\nfor i in C.values():\n t += i * (i - 1) //2\n\nfor i in A:\n",
"n = int(input())\n\nA = list(map(int, input().split()))\n\nimport collections\n\nC = collections.Counter(A)\n\nt = 0\n\nfor i in C.values():\n t += i * (i - 1) //2\n\nfor i in A:\n print(t - C[i] + 1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t = 0\n",
"nums = [0]*(n+1)\n\n\nt = 0\n",
"nums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\n",
"a = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\n",
"a = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\nfor j in nums:\n",
"a = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\nfor j in nums:\n \n\nfor k in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\nfor j in nums:\n \n\nfor k in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\nfor j in nums:\n t += j*(j-1)//2\n\nfor k in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n \n\nt = 0\nfor j in nums:\n t += j*(j-1)//2\n\nfor k in a:\n print(t+1-nums[k])\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a:\n nums[i] += 1\n\nt = 0\nfor j in nums:\n t += j*(j-1)//2\n\nfor k in a:\n print(t+1-nums[k])\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b = [0 for _ in range(max(a)+1)]\n",
"n = int(input())\n\nb = [0 for _ in range(max(a)+1)]\n",
"n = int(input())\n\nb = [0 for _ in range(max(a)+1)]\n\n\nfor i in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nb = [0 for _ in range(max(a)+1)]\n\n\nfor i in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nb = [0 for _ in range(max(a)+1)]\n\nc = sum([x*(x-1)//2 for x in b])\nfor i in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nb = [0 for _ in range(max(a)+1)]\nfor x in a:\n \nc = sum([x*(x-1)//2 for x in b])\nfor i in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nb = [0 for _ in range(max(a)+1)]\nfor x in a:\n b[x] += 1\nc = sum([x*(x-1)//2 for x in b])\nfor i in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nb = [0 for _ in range(max(a)+1)]\nfor x in a:\n b[x] += 1\nc = sum([x*(x-1)//2 for x in b])\nfor i in range(n):\n print(c-b[a[i]]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"X = 0\n",
"N = int(input())\n\n\nX = 0\n",
"N = int(input())\n\n\nfor a in A:\n \nX = 0\n",
"N = int(input())\n\n\nfor a in A:\n \nX = 0\n\nfor a in A:\n",
"N = int(input())\n\nd = [0]*(N+1)\nfor a in A:\n \nX = 0\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = [0]*(N+1)\nfor a in A:\n \nX = 0\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = [0]*(N+1)\nfor a in A:\n \nX = 0\nfor a in set(A):\n \nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = [0]*(N+1)\nfor a in A:\n \nX = 0\nfor a in set(A):\n \nfor a in A:\n print(X-(d[a]-1))\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = [0]*(N+1)\nfor a in A:\n d[a] += 1\nX = 0\nfor a in set(A):\n \nfor a in A:\n print(X-(d[a]-1))\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = [0]*(N+1)\nfor a in A:\n d[a] += 1\nX = 0\nfor a in set(A):\n X += d[a]*(d[a]-1)//2\nfor a in A:\n print(X-(d[a]-1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"res = 0\n",
"res = 0\n\n\nfor i in a:\n",
"res = 0\n\n\nfor i in range(n):\n \n\nfor i in a:\n",
"c = [0] * n\nres = 0\n\n\nfor i in range(n):\n \n\nfor i in a:\n",
"n = int(input())\n\nc = [0] * n\nres = 0\n\n\nfor i in range(n):\n \n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nc = [0] * n\nres = 0\n\n\nfor i in range(n):\n \n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nc = [0] * n\nres = 0\n\nfor i in a:\n \n\nfor i in range(n):\n \n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nc = [0] * n\nres = 0\n\nfor i in a:\n \n\nfor i in range(n):\n res += c[i] * (c[i] - 1) // 2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nc = [0] * n\nres = 0\n\nfor i in a:\n c[i-1] += 1\n\nfor i in range(n):\n res += c[i] * (c[i] - 1) // 2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nc = [0] * n\nres = 0\n\nfor i in a:\n c[i-1] += 1\n\nfor i in range(n):\n res += c[i] * (c[i] - 1) // 2\n\nfor i in a:\n print(res - c[i-1] + 1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ttl = 0\n",
"from import Counter\n\n\nttl = 0\n",
"from import Counter\n\n\nttl = 0\nfor v in :\n",
"from import Counter\n\n\nttl = 0\nfor v in :\n \nfor a in A:\n",
"from import Counter\n\n*A, = map(int, input().split())\n\nttl = 0\nfor v in :\n \nfor a in A:\n",
"from import Counter\n\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in :\n \nfor a in A:\n",
"from import Counter\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in :\n \nfor a in A:\n",
"from import Counter\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in cnt.values():\n \nfor a in A:\n",
"from collections import Counter\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in cnt.values():\n \nfor a in A:\n",
"from collections import Counter\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in cnt.values():\n ttl += v*(v-1)//2\nfor a in A:\n",
"from collections import Counter\nN = int(input())\n*A, = map(int, input().split())\ncnt = Counter(A)\nttl = 0\nfor v in cnt.values():\n ttl += v*(v-1)//2\nfor a in A:\n print(ttl - (cnt[a] - 1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"sumC = sum([n*(n-1)//2 for n in cn.values()])\n",
"cn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\n",
"N = int(input())\n\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\n",
"import collections\nN = int(input())\n\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\n",
"import collections\nN = int(input())\n\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n",
"import collections\nN = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n",
"import collections\nN = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n print(sumC-cn[li[k]] + 1)\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"from import Counter\n",
"from import Counter\n\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\n",
"from import Counter\n\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n",
"from import Counter\n\nl = [int(i) for i in input().split()]\n\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n",
"from import Counter\nn = int(input())\nl = [int(i) for i in input().split()]\n\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n",
"from import Counter\nn = int(input())\nl = [int(i) for i in input().split()]\n\nc = Counter(l)\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n",
"from collections import Counter\nn = int(input())\nl = [int(i) for i in input().split()]\n\nc = Counter(l)\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n",
"from collections import Counter\nn = int(input())\nl = [int(i) for i in input().split()]\n\nc = Counter(l)\n\ntotal = sum([v * (v-1) // 2 for v in c.values()])\nfor i in l:\n print(total - c[i] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for i in range(n):\n",
"ans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n",
"n,*a=map(int,open(0).read().split())\n\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n",
"n,*a=map(int,open(0).read().split())\n\nb=Counter(a)\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n",
"from import*\nn,*a=map(int,open(0).read().split())\n\nb=Counter(a)\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n",
"from collections import*\nn,*a=map(int,open(0).read().split())\n\nb=Counter(a)\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n",
"from collections import*\nn,*a=map(int,open(0).read().split())\n\nb=Counter(a)\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n \n print(ans-x*(x-1)//2+(x-1)*(x-2)//2)\n",
"from collections import*\nn,*a=map(int,open(0).read().split())\n\nb=Counter(a)\n\nans=sum(v*(v-1)//2 for k,v in b.items())\n\nfor i in range(n):\n x=b[a[i]]\n print(ans-x*(x-1)//2+(x-1)*(x-2)//2)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"#abc159d\n",
"#abc159d\nimport collections\n",
"#abc159d\nimport collections\n\na=list(map(int,input().split()))\n",
"#abc159d\nimport collections\nn=int(input())\na=list(map(int,input().split()))\n",
"#abc159d\nimport collections\nn=int(input())\na=list(map(int,input().split()))\nc=collections.Counter(a)\n",
"#abc159d\nimport collections\nn=int(input())\na=list(map(int,input().split()))\nc=collections.Counter(a)\nres=sum([v*(v-1)//2 for v in c.values()])\n",
"#abc159d\nimport collections\nn=int(input())\na=list(map(int,input().split()))\nc=collections.Counter(a)\nres=sum([v*(v-1)//2 for v in c.values()])\nfor x in a:\n",
"#abc159d\nimport collections\nn=int(input())\na=list(map(int,input().split()))\nc=collections.Counter(a)\nres=sum([v*(v-1)//2 for v in c.values()])\nfor x in a:\n print(res-c[x]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"cnt = 0\n",
"import collections\n\n\ncnt = 0\n",
"import collections\n\n\ncnt = 0\nc = collections.Counter(a)\n",
"import collections\n\n\ncnt = 0\nc = collections.Counter(a)\n\nfor j in range(n):\n",
"import collections\n\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\n\nfor j in range(n):\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\n\nfor j in range(n):\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\nfor i in :\n \nfor j in range(n):\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\nfor i in c.values():\n \nfor j in range(n):\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\nfor i in c.values():\n cnt += i*(i-1) // 2\nfor j in range(n):\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\ncnt = 0\nc = collections.Counter(a)\nfor i in c.values():\n cnt += i*(i-1) // 2\nfor j in range(n):\n print(cnt - c[a[j]] + 1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=set(a)\n\nsm=0\n",
"s=set(a)\n\nsm=0\nfor i in s:\n",
"s=set(a)\n\nsm=0\nfor i in s:\n \nfor i in a:\n",
"s=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n \nfor i in a:\n",
"from import *\n\ns=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n \nfor i in a:\n",
"from import *\nn,*a=map(int,open(0).read().split())\ns=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n \nfor i in a:\n",
"from import *\nn,*a=map(int,open(0).read().split())\ns=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n sm+=c[i]*(c[i]-1)//2\nfor i in a:\n",
"from import *\nn,*a=map(int,open(0).read().split())\ns=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n sm+=c[i]*(c[i]-1)//2\nfor i in a:\n print(sm-(c[i]*(c[i]-1)//2)+((c[i]-1)*(c[i]-2)//2))\n",
"from collections import *\nn,*a=map(int,open(0).read().split())\ns=set(a)\nc=Counter(a)\nsm=0\nfor i in s:\n sm+=c[i]*(c[i]-1)//2\nfor i in a:\n print(sm-(c[i]*(c[i]-1)//2)+((c[i]-1)*(c[i]-2)//2))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b=[0]*n\n",
"b=[0]*n\n\nc=sum([i*(i-1)//2 for i in b])\n",
"n=int(input())\n\nb=[0]*n\n\nc=sum([i*(i-1)//2 for i in b])\n",
"n=int(input())\na=list(map(int, input().split()))\nb=[0]*n\n\nc=sum([i*(i-1)//2 for i in b])\n",
"n=int(input())\na=list(map(int, input().split()))\nb=[0]*n\n\nc=sum([i*(i-1)//2 for i in b])\nfor i in a:\n",
"n=int(input())\na=list(map(int, input().split()))\nb=[0]*n\nfor i in range(n):\n \nc=sum([i*(i-1)//2 for i in b])\nfor i in a:\n",
"n=int(input())\na=list(map(int, input().split()))\nb=[0]*n\nfor i in range(n):\n b[a[i]-1]+=1\nc=sum([i*(i-1)//2 for i in b])\nfor i in a:\n",
"n=int(input())\na=list(map(int, input().split()))\nb=[0]*n\nfor i in range(n):\n b[a[i]-1]+=1\nc=sum([i*(i-1)//2 for i in b])\nfor i in a:\n print(c-(b[i-1]-1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c = [0] * (N + 1)\n",
"c = [0] * (N + 1)\n\n\nfor a in A:\n",
"c = [0] * (N + 1)\nfor a in A:\n \n\nfor a in A:\n",
"N = int(input())\n\nc = [0] * (N + 1)\nfor a in A:\n \n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nc = [0] * (N + 1)\nfor a in A:\n \n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nc = [0] * (N + 1)\nfor a in A:\n \ntotal = sum([n * (n - 1) // 2 for n in c])\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nc = [0] * (N + 1)\nfor a in A:\n c[a] += 1\ntotal = sum([n * (n - 1) // 2 for n in c])\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nc = [0] * (N + 1)\nfor a in A:\n c[a] += 1\ntotal = sum([n * (n - 1) // 2 for n in c])\nfor a in A:\n print(total - (c[a] - 1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"N=int(input())\n",
"N=int(input())\n\ncn = collections.Counter(A)\n",
"import collections\nN=int(input())\n\ncn = collections.Counter(A)\n",
"import collections\nN=int(input())\nA = list(map(int,input().split()))\ncn = collections.Counter(A)\n",
"import collections\nN=int(input())\nA = list(map(int,input().split()))\ncn = collections.Counter(A)\nsumC=sum([n*(n-1)//2 for n in cn.values()])\n",
"import collections\nN=int(input())\nA = list(map(int,input().split()))\ncn = collections.Counter(A)\nsumC=sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n",
"import collections\nN=int(input())\nA = list(map(int,input().split()))\ncn = collections.Counter(A)\nsumC=sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n print(sumC-cn[A[k]]+1)\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans=0\n",
"c=collections.Counter(l)\nans=0\n",
"c=collections.Counter(l)\nans=0\n\nfor i in l:\n",
"c=collections.Counter(l)\nans=0\nfor v in :\n \nfor i in l:\n",
"n=int(input())\n\n\nc=collections.Counter(l)\nans=0\nfor v in :\n \nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\n\nc=collections.Counter(l)\nans=0\nfor v in :\n \nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nimport collections\nc=collections.Counter(l)\nans=0\nfor v in :\n \nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nimport collections\nc=collections.Counter(l)\nans=0\nfor v in :\n ans+=v*(v-1)//2\nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nimport collections\nc=collections.Counter(l)\nans=0\nfor v in c.values():\n ans+=v*(v-1)//2\nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nimport collections\nc=collections.Counter(l)\nans=0\nfor v in c.values():\n ans+=v*(v-1)//2\nfor i in l:\n v=c[i]\n",
"n=int(input())\nl=list(map(int,input().split()))\nimport collections\nc=collections.Counter(l)\nans=0\nfor v in c.values():\n ans+=v*(v-1)//2\nfor i in l:\n v=c[i]\n print(ans-c[i]+1)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"cn = collections.Counter(li)\n",
"li = list(map(int, input().split()))\ncn = collections.Counter(li)\n",
"N = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\n",
"N = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\n\nfor k in range(N):\n",
"N = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n",
"import collections\nN = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n",
"import collections\nN = int(input())\nli = list(map(int, input().split()))\ncn = collections.Counter(li)\nsumC = sum([n*(n-1)//2 for n in cn.values()])\nfor k in range(N):\n print(sumC - (cn[li[k]]-1))\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"al = 0\n",
"n = int(input())\n\n\nal = 0\n",
"n = int(input())\n\n\nal = 0\n\n\nfor aa in a:\n",
"n = int(input())\n\nimport collections\n\n\nal = 0\n\n\nfor aa in a:\n",
"n = int(input())\n\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\n\n\nfor aa in a:\n",
"n = int(input())\n\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\nfor v in :\n \n\nfor aa in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\nfor v in :\n \n\nfor aa in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\nfor v in c.values():\n \n\nfor aa in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\nfor v in c.values():\n al += v*(v-1)/2\n\n\nfor aa in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nimport collections\nc = collections.Counter(a)\n\n\nal = 0\nfor v in c.values():\n al += v*(v-1)/2\n\n\nfor aa in a:\n print(int(al - c[aa]+1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t=0\n\nt/=2\n",
"for i in a:\n \nt=0\n\nt/=2\n",
"cnt = [0] * n\nfor i in a:\n \nt=0\n\nt/=2\n",
"n = int(input())\n\n\ncnt = [0] * n\nfor i in a:\n \nt=0\n\nt/=2\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n \nt=0\n\nt/=2\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n \nt=0\nfor i in cnt:\n \nt/=2\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n \nt=0\nfor i in cnt:\n \nt/=2\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n \nt=0\nfor i in cnt:\n \nt/=2\nfor i in a:\n print(int(t-(cnt[i-1]-1)))\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n \nt=0\nfor i in cnt:\n t += i * (i-1)\nt/=2\nfor i in a:\n print(int(t-(cnt[i-1]-1)))\n",
"n = int(input())\na = list(map(int, input().split()))\n\ncnt = [0] * n\nfor i in a:\n cnt[i-1] += 1\nt=0\nfor i in cnt:\n t += i * (i-1)\nt/=2\nfor i in a:\n print(int(t-(cnt[i-1]-1)))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"input()\n",
"input()\n\nc = Counter(a)\n",
"from import Counter\n\ninput()\n\nc = Counter(a)\n",
"from import Counter\n\ninput()\n\nc = Counter(a)\n\nfor x in a:\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\n\nfor x in a:\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values())\nfor x in a:\n",
"from collections import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values())\nfor x in a:\n",
"from collections import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values())\nfor x in a:\n print(s - c[x] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"B={}\n\nc=0\n",
"B={}\nfor i in A:\n \nc=0\n",
"N=int(input())\n\nB={}\nfor i in A:\n \nc=0\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \nc=0\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \nc=0\nfor v in :\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \nc=0\nfor v in :\n \nfor i in range(N):\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \nc=0\nfor v in :\n \nfor i in range(N):\n print(int(c-B[A[i]]+1))\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \n B[i]+=1\nc=0\nfor v in :\n \nfor i in range(N):\n print(int(c-B[A[i]]+1))\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \n B[i]+=1\nc=0\nfor v in :\n c+=v*(v-1)/2\nfor i in range(N):\n print(int(c-B[A[i]]+1))\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n \n B[i]+=1\nc=0\nfor v in B.values():\n c+=v*(v-1)/2\nfor i in range(N):\n print(int(c-B[A[i]]+1))\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n if :\n B[i]=0\n B[i]+=1\nc=0\nfor v in B.values():\n c+=v*(v-1)/2\nfor i in range(N):\n print(int(c-B[A[i]]+1))\n",
"N=int(input())\nA=list(map(int,input().split()))\nB={}\nfor i in A:\n if i not in B:\n B[i]=0\n B[i]+=1\nc=0\nfor v in B.values():\n c+=v*(v-1)/2\nfor i in range(N):\n print(int(c-B[A[i]]+1))\n"
] | 13
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=0\n",
"D = collections.Counter(A)\ns=0\n",
"import collections\n\n\nD = collections.Counter(A)\ns=0\n",
"import collections\n\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\n",
"import collections\n\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\n\n\nfor i in range(N):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\n\n\nfor i in range(N):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\nfor i in D:\n \n\nfor i in range(N):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\nfor i in D:\n s+=D[i]*(D[i]-1)//2\n\nfor i in range(N):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\n\nD = collections.Counter(A)\ns=0\nfor i in D:\n s+=D[i]*(D[i]-1)//2\n\nfor i in range(N):\n print(s-(D[A[i]]-1))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"input()\n",
"input()\na = list(map(int, input().split()))\n",
"input()\na = list(map(int, input().split()))\n\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\n\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\n\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\nfor x in a:\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\nfor x in a:\n",
"from import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\nfor x in a:\n print(s - c[x])\n",
"from collections import Counter\n\ninput()\na = list(map(int, input().split()))\nc = Counter(a)\ns = sum(k * (k - 1) // 2 for k in c.values()) + 1\nfor x in a:\n print(s - c[x])\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"import collections\n",
"import collections\n\nN=int(input())\n",
"import collections\n\nN=int(input())\n\n\nT=sum(A[i]*~-A[i] for i in A)//2\n",
"import collections\n\nN=int(input())\n\nA=collections.Counter(a)\n\nT=sum(A[i]*~-A[i] for i in A)//2\n",
"import collections\n\nN=int(input())\n\nA=collections.Counter(a)\n\nT=sum(A[i]*~-A[i] for i in A)//2\nfor i in a:\n",
"import collections\n\nN=int(input())\na=[int(x) for x in input().split()]\nA=collections.Counter(a)\n\nT=sum(A[i]*~-A[i] for i in A)//2\nfor i in a:\n",
"import collections\n\nN=int(input())\na=[int(x) for x in input().split()]\nA=collections.Counter(a)\n\nT=sum(A[i]*~-A[i] for i in A)//2\nfor i in a:\n print(T-~-A[i])\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = 0\n",
"from import Counter\n\n\nans = 0\n",
"from import Counter\n\n\nans = 0\n\nfor i in :\n",
"from import Counter\n\n\nans = 0\n\nfor i in :\n \n\nfor i in a:\n",
"from import Counter\n\nn = int(input())\n\n\nans = 0\n\nfor i in :\n \n\nfor i in a:\n",
"from import Counter\n\nn = int(input())\na = list(map(int, input().split()))\n\nans = 0\n\nfor i in :\n \n\nfor i in a:\n",
"from import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\nans = 0\n\nfor i in :\n \n\nfor i in a:\n",
"from import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\nans = 0\n\nfor i in :\n \n\nfor i in a:\n print(ans - (b[i] - 1))\n",
"from import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\nans = 0\n\nfor i in :\n ans += i*(i - 1)//2\n\nfor i in a:\n print(ans - (b[i] - 1))\n",
"from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\nans = 0\n\nfor i in :\n ans += i*(i - 1)//2\n\nfor i in a:\n print(ans - (b[i] - 1))\n",
"from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\nans = 0\n\nfor i in b.values():\n ans += i*(i - 1)//2\n\nfor i in a:\n print(ans - (b[i] - 1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"sum=0\n",
"sum=0\nfor i in :\n",
"sum=0\nfor i in :\n \nfor i in list(A):\n",
"N=int(input())\n\n\nsum=0\nfor i in :\n \nfor i in list(A):\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nsum=0\nfor i in :\n \nfor i in list(A):\n",
"N=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in :\n \nfor i in list(A):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in :\n \nfor i in list(A):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in :\n sum+=i*(i-1)/2\nfor i in list(A):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in list(B.values()):\n sum+=i*(i-1)/2\nfor i in list(A):\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in list(B.values()):\n sum+=i*(i-1)/2\nfor i in list(A):\n \n print(ans)\n",
"import collections\nN=int(input())\nA=list(map(int,input().split()))\nB=collections.Counter(A)\nsum=0\nfor i in list(B.values()):\n sum+=i*(i-1)/2\nfor i in list(A):\n ans=int(sum-(B[i]-1))\n print(ans)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"input();\n;\n",
"input();\n;\n\nfor i in l:\n",
"input();\n;c=Counter(l)\n\nfor i in l:\n",
"input();l=list(map(int,input().split()))\n;c=Counter(l)\n\nfor i in l:\n",
"input();l=list(map(int,input().split()))\n;c=Counter(l)\nt=sum(i*~-i//2 for i in c.values())\nfor i in l:\n",
"input();l=list(map(int,input().split()))\nfrom import*;c=Counter(l)\nt=sum(i*~-i//2 for i in c.values())\nfor i in l:\n",
"input();l=list(map(int,input().split()))\nfrom collections import*;c=Counter(l)\nt=sum(i*~-i//2 for i in c.values())\nfor i in l:\n",
"input();l=list(map(int,input().split()))\nfrom collections import*;c=Counter(l)\nt=sum(i*~-i//2 for i in c.values())\nfor i in l:print(t-c[i]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"e=0\n",
"e=0\n\nfor x in a:\n",
"n=int(input())\n\n\ne=0\n\nfor x in a:\n",
"n=int(input())\n\nb=collections.Counter(a)\ne=0\n\nfor x in a:\n",
"n=int(input())\n\nb=collections.Counter(a)\ne=0\nfor x in :\n \nfor x in a:\n",
"import collections\nn=int(input())\n\nb=collections.Counter(a)\ne=0\nfor x in :\n \nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in :\n \nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in :\n e+=x*(x-1)\nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in :\n e+=x*(x-1)\nfor x in a:\n t=b[x]\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in b.values():\n e+=x*(x-1)\nfor x in a:\n t=b[x]\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in b.values():\n e+=x*(x-1)\nfor x in a:\n t=b[x]\n \n print(p//2)\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nb=collections.Counter(a)\ne=0\nfor x in b.values():\n e+=x*(x-1)\nfor x in a:\n t=b[x]\n p=e-t*(t-1)+(t-1)*(t-2)\n print(p//2)\n"
] | 13
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for a in A:\n",
"from import*\n\n\nfor a in A:\n",
"*A,=map(int,input().split())\nfrom import*\n\n\nfor a in A:\n",
"*A,=map(int,input().split())\nfrom import*\n\nS=sum(v*(v-1)//2 for v in C.values())\nfor a in A:\n",
"N=int(input())\n*A,=map(int,input().split())\nfrom import*\n\nS=sum(v*(v-1)//2 for v in C.values())\nfor a in A:\n",
"N=int(input())\n*A,=map(int,input().split())\nfrom import*\nC=Counter(A)\nS=sum(v*(v-1)//2 for v in C.values())\nfor a in A:\n",
"N=int(input())\n*A,=map(int,input().split())\nfrom collections import*\nC=Counter(A)\nS=sum(v*(v-1)//2 for v in C.values())\nfor a in A:\n",
"N=int(input())\n*A,=map(int,input().split())\nfrom collections import*\nC=Counter(A)\nS=sum(v*(v-1)//2 for v in C.values())\nfor a in A:\n print(S-C[a]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"n=int(input())\n",
"n=int(input())\n\nfrom import *\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom import *\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom import *\nc=Counter(l)\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom import *\nc=Counter(l)\na=sum(i*(i-1)//2 for i in c.values())\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom import *\nc=Counter(l)\na=sum(i*(i-1)//2 for i in c.values())\nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom collections import *\nc=Counter(l)\na=sum(i*(i-1)//2 for i in c.values())\nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nfrom collections import *\nc=Counter(l)\na=sum(i*(i-1)//2 for i in c.values())\nfor i in l: print(a-c[i]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c = collections.Counter(a)\n",
"n = int(input())\n\nc = collections.Counter(a)\n",
"n = int(input())\na = list(map(int,input().split()))\nc = collections.Counter(a)\n",
"n = int(input())\na = list(map(int,input().split()))\nc = collections.Counter(a)\n\n[print(ans-c[i]+1) for i in a]\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\nc = collections.Counter(a)\n\n[print(ans-c[i]+1) for i in a]\n",
"import collections\nn = int(input())\na = list(map(int,input().split()))\nc = collections.Counter(a)\nans = sum(i*(i-1)//2 for i in c.values())\n[print(ans-c[i]+1) for i in a]\n"
] | 7
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"from import Counter\n",
"from import Counter\n\n\nc = Counter(A)\n",
"from import Counter\n\n\nc = Counter(A)\n\nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\n\n\nc = Counter(A)\n\nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\n\nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\nS = sum([n * (n - 1) // 2 for n in c.values()])\nfor i in range(N):\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\nS = sum([n * (n - 1) // 2 for n in c.values()])\nfor i in range(N):\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nc = Counter(A)\nS = sum([n * (n - 1) // 2 for n in c.values()])\nfor i in range(N):\n print(S - (c[A[i]] - 1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"al = sum([x*(x-1)//2 for x in l.values()])\n",
"A = list(map(int, input().split()))\n\nal = sum([x*(x-1)//2 for x in l.values()])\n",
"A = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\n",
"from import Counter\n\n\nA = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\n",
"from import Counter\n\n\nA = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\nfor i in range(N):\n print(al - (l[A[i]]-1))\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = sum([x*(x-1)//2 for x in l.values()])\nfor i in range(N):\n print(al - (l[A[i]]-1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"a=list(map(int,input().split()))\n",
"n=int(input())\na=list(map(int,input().split()))\n",
"n=int(input())\na=list(map(int,input().split()))\n\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n",
"n=int(input())\na=list(map(int,input().split()))\n\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfrom import Counter\n\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfrom import Counter\nc = Counter(a)\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfrom collections import Counter\nc = Counter(a)\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfrom collections import Counter\nc = Counter(a)\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n \n print(ans0-m+1)\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfrom collections import Counter\nc = Counter(a)\n\nans0 = sum(cc*(cc-1)//2 for cc in c.values())\n\nfor k in range(n):\n m = c[a[k]]\n print(ans0-m+1)\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"al=0\n",
"c=Counter(a)\n\nal=0\n",
"c=Counter(a)\n\nal=0\n\nfor i in range(n):\n",
"n=int(input())\n\n\nc=Counter(a)\n\nal=0\n\nfor i in range(n):\n",
"from import Counter\nn=int(input())\n\n\nc=Counter(a)\n\nal=0\n\nfor i in range(n):\n",
"from import Counter\nn=int(input())\n\n\nc=Counter(a)\n\nal=0\nfor i in :\n \nfor i in range(n):\n",
"from import Counter\nn=int(input())\na=list(map(int,input().split()))\n\nc=Counter(a)\n\nal=0\nfor i in :\n \nfor i in range(n):\n",
"from import Counter\nn=int(input())\na=list(map(int,input().split()))\n\nc=Counter(a)\n\nal=0\nfor i in :\n al+=(i*(i-1))//2\nfor i in range(n):\n",
"from collections import Counter\nn=int(input())\na=list(map(int,input().split()))\n\nc=Counter(a)\n\nal=0\nfor i in :\n al+=(i*(i-1))//2\nfor i in range(n):\n",
"from collections import Counter\nn=int(input())\na=list(map(int,input().split()))\n\nc=Counter(a)\n\nal=0\nfor i in c.values():\n al+=(i*(i-1))//2\nfor i in range(n):\n",
"from collections import Counter\nn=int(input())\na=list(map(int,input().split()))\n\nc=Counter(a)\n\nal=0\nfor i in c.values():\n al+=(i*(i-1))//2\nfor i in range(n):\n print(al - (c[a[i]]-1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t = 0\n",
"n = int(input())\n\n\nt = 0\n",
"n = int(input())\n\n\nt = 0\nfor i in nums:\n",
"n = int(input())\n\n\nfor i in a: \n\nt = 0\nfor i in nums:\n",
"n = int(input())\n\n\nnums = [0]*(n+1)\nfor i in a: \n\nt = 0\nfor i in nums:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a: \n\nt = 0\nfor i in nums:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a: \n\nt = 0\nfor i in nums: \n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a: \n\nt = 0\nfor i in nums: t += i*(i-1)//2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a: nums[i] += 1\n\nt = 0\nfor i in nums: t += i*(i-1)//2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nnums = [0]*(n+1)\nfor i in a: nums[i] += 1\n\nt = 0\nfor i in nums: t += i*(i-1)//2\n\nfor i in a: print(t+1-nums[i])\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"S = 0\n",
"N = int(input())\n\n\nS = 0\n",
"import collections\n\nN = int(input())\n\n\nS = 0\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\n\nfor v in :\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in :\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in :\n \nfor i in :\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in :\n S = S + v*(v-1)//2\nfor i in :\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in :\n S = S + v*(v-1)//2\nfor i in range(len(A)):\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in :\n S = S + v*(v-1)//2\nfor i in range(len(A)):\n print(S-c[A[i]]+1)\n",
"import collections\n\nN = int(input())\nA = list(map(int, input().split()))\n\nS = 0\nc = collections.Counter(A)\nfor v in c.values():\n S = S + v*(v-1)//2\nfor i in range(len(A)):\n print(S-c[A[i]]+1)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for i in a:\n",
"total = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from import Counter\n\n\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from import Counter\n\n\nb = Counter(a)\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from import Counter\n\n\na = list(map(int, input().split()))\nb = Counter(a)\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n",
"from collections import Counter\n\nn = int(input())\na = list(map(int, input().split()))\nb = Counter(a)\ntotal = sum(i*(i - 1)//2 for i in b.values())\n\nfor i in a:\n\n print(total - (b[i] - 1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for a in A:\n",
"Li = [0] * max(A)\n\n\nfor a in A:\n",
"Li = [0] * max(A)\nfor a in A:\n \n\nfor a in A:\n",
"A = list(map(int, input().split()))\n\nLi = [0] * max(A)\nfor a in A:\n \n\nfor a in A:\n",
"A = list(map(int, input().split()))\n\nLi = [0] * max(A)\nfor a in A:\n \n\nans = sum(a*(a-1)//2 for a in Li)\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nLi = [0] * max(A)\nfor a in A:\n \n\nans = sum(a*(a-1)//2 for a in Li)\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nLi = [0] * max(A)\nfor a in A:\n Li[a-1] += 1\n\nans = sum(a*(a-1)//2 for a in Li)\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nLi = [0] * max(A)\nfor a in A:\n Li[a-1] += 1\n\nans = sum(a*(a-1)//2 for a in Li)\n\nfor a in A:\n print(ans - (Li[a-1]-1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t = 0\n",
"t = 0\nfor e in C:\n",
"t = 0\nfor e in C:\n \n\nfor e in A:\n",
"A = list(map(int,input().split()))\n\nt = 0\nfor e in C:\n \n\nfor e in A:\n",
"A = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n \n\nfor e in A:\n",
"N = int(input())\nA = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n \n\nfor e in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n \n\nfor e in A:\n",
"from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n \n\nfor e in A:\n",
"from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n t += C[e]*(C[e]-1)//2\n\nfor e in A:\n",
"from collections import Counter\nN = int(input())\nA = list(map(int,input().split()))\nC = Counter(A)\nt = 0\nfor e in C:\n t += C[e]*(C[e]-1)//2\n\nfor e in A:\n print(t-C[e]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b = list(map(int, input().split()))\n",
"b = list(map(int, input().split()))\nl = [0]*n\n",
"b = list(map(int, input().split()))\nl = [0]*n\n\n\nfor i in b:\n",
"b = list(map(int, input().split()))\nl = [0]*n\n\nl2 = sum([i*(i-1)//2 for i in l])\nfor i in b:\n",
"b = list(map(int, input().split()))\nl = [0]*n\nfor i in range(n):\n \nl2 = sum([i*(i-1)//2 for i in l])\nfor i in b:\n",
"n = int(input())\nb = list(map(int, input().split()))\nl = [0]*n\nfor i in range(n):\n \nl2 = sum([i*(i-1)//2 for i in l])\nfor i in b:\n",
"n = int(input())\nb = list(map(int, input().split()))\nl = [0]*n\nfor i in range(n):\n l[b[i]-1] += 1\nl2 = sum([i*(i-1)//2 for i in l])\nfor i in b:\n",
"n = int(input())\nb = list(map(int, input().split()))\nl = [0]*n\nfor i in range(n):\n l[b[i]-1] += 1\nl2 = sum([i*(i-1)//2 for i in l])\nfor i in b:\n print(l2-(l[i-1]-1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for i in range(N):\n",
"for a in A:\n \n\nfor i in range(N):\n",
"li = [0] * N\nfor a in A:\n \n\nfor i in range(N):\n",
"A = list(map(int, input().split()))\nli = [0] * N\nfor a in A:\n \n\nfor i in range(N):\n",
"A = list(map(int, input().split()))\nli = [0] * N\nfor a in A:\n \nans = sum([x*(x-1)//2 for x in li])\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\nli = [0] * N\nfor a in A:\n \nans = sum([x*(x-1)//2 for x in li])\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\nli = [0] * N\nfor a in A:\n \nans = sum([x*(x-1)//2 for x in li])\nfor i in range(N):\n print(ans-li[A[i]-1]+1)\n",
"N = int(input())\nA = list(map(int, input().split()))\nli = [0] * N\nfor a in A:\n li[a-1] += 1\nans = sum([x*(x-1)//2 for x in li])\nfor i in range(N):\n print(ans-li[A[i]-1]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"z=[0]*n\ncnt=0\n",
"n=int(input())\n\nz=[0]*n\ncnt=0\n",
"n=int(input())\n\nz=[0]*n\ncnt=0\nfor i in range(n):\n",
"n=int(input())\n\nz=[0]*n\ncnt=0\nfor i in range(n):\n \n\nfor j in range(n):\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n \n\nfor j in range(n):\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n \nfor m in range(n):\n \nfor j in range(n):\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n \nfor m in range(n):\n \nfor j in range(n):\n a=k[j]-1\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n z[k[i]-1]+=1\nfor m in range(n):\n \nfor j in range(n):\n a=k[j]-1\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n z[k[i]-1]+=1\nfor m in range(n):\n cnt+=z[m]*(z[m]-1)//2\nfor j in range(n):\n a=k[j]-1\n",
"n=int(input())\nk= list(map(int, input().split()))\nz=[0]*n\ncnt=0\nfor i in range(n):\n z[k[i]-1]+=1\nfor m in range(n):\n cnt+=z[m]*(z[m]-1)//2\nfor j in range(n):\n a=k[j]-1\n print(cnt-z[a]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"t = 0\n",
"t = 0\n\n\nfor i in a:\n",
"t = 0\n\nfor v in :\n \nfor i in a:\n",
"c = collections.Counter(a)\nt = 0\n\nfor v in :\n \nfor i in a:\n",
"a = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in :\n \nfor i in a:\n",
"import collections\n\na = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in :\n \nfor i in a:\n",
"import collections\nn = int(input())\na = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in :\n \nfor i in a:\n",
"import collections\nn = int(input())\na = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in :\n t += v * (v-1) // 2\nfor i in a:\n",
"import collections\nn = int(input())\na = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in :\n t += v * (v-1) // 2\nfor i in a:\n print(t - (c[i]-1))\n",
"import collections\nn = int(input())\na = list(map(int, input().split()))\nc = collections.Counter(a)\nt = 0\n\nfor v in c.values():\n t += v * (v-1) // 2\nfor i in a:\n print(t - (c[i]-1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"L=0\nC=[0]*N\n",
"N=int(input())\n\n\nL=0\nC=[0]*N\n",
"N=int(input())\n\n\nL=0\nC=[0]*N\n\n\nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\n\nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\nfor i in range(N):\n \n\nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\nfor i in range(N):\n \n\nfor i in range(N):\n \n\nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\nfor i in range(N):\n \n\nfor i in range(N):\n L+=int(C[i]*(C[i]-1)/2)\n\nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\nfor i in range(N):\n \n\nfor i in range(N):\n L+=int(C[i]*(C[i]-1)/2)\n\nfor i in A:\n print(L-C[i-1]+1)\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nL=0\nC=[0]*N\n\nfor i in range(N):\n C[A[i]-1]+=1\n\nfor i in range(N):\n L+=int(C[i]*(C[i]-1)/2)\n\nfor i in A:\n print(L-C[i-1]+1)\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"res = 0\n",
"An = list(map(int, input().split()))\n\n\nres = 0\n",
"An = list(map(int, input().split()))\n\n\nres = 0\n\n\nfor a in An:\n",
"An = list(map(int, input().split()))\n\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n",
"N = int(input())\nAn = list(map(int, input().split()))\n\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n",
"N = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n",
"from import Counter\n\nN = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n",
"from import Counter\n\nN = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n print(res - (c[a]-1))\n",
"from collections import Counter\n\nN = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in :\n \n\nfor a in An:\n print(res - (c[a]-1))\n",
"from collections import Counter\n\nN = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in :\n res += v*(v-1)//2\n\nfor a in An:\n print(res - (c[a]-1))\n",
"from collections import Counter\n\nN = int(input())\nAn = list(map(int, input().split()))\n\nc = Counter(An)\n\nres = 0\nfor k,v in c.items():\n res += v*(v-1)//2\n\nfor a in An:\n print(res - (c[a]-1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"x=[0]*n\n\nd=0\n",
"x=[0]*n\n\nd=0\nfor i in range(n):\n",
"l=list(map(int,input().split()))\nx=[0]*n\n\nd=0\nfor i in range(n):\n",
"l=list(map(int,input().split()))\nx=[0]*n\n\nd=0\nfor i in range(n):\n \n\nfor i in range(n):\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\n\nd=0\nfor i in range(n):\n \n\nfor i in range(n):\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\nfor i in range(n):\n \nd=0\nfor i in range(n):\n \n\nfor i in range(n):\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\nfor i in range(n):\n \nd=0\nfor i in range(n):\n d=d+x[i]*(x[i]-1)//2\n\nfor i in range(n):\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\nfor i in range(n):\n x[l[i]-1]+=1\nd=0\nfor i in range(n):\n d=d+x[i]*(x[i]-1)//2\n\nfor i in range(n):\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\nfor i in range(n):\n x[l[i]-1]+=1\nd=0\nfor i in range(n):\n d=d+x[i]*(x[i]-1)//2\n\nfor i in range(n):\n \n print(b)\n",
"n=int(input())\nl=list(map(int,input().split()))\nx=[0]*n\nfor i in range(n):\n x[l[i]-1]+=1\nd=0\nfor i in range(n):\n d=d+x[i]*(x[i]-1)//2\n\nfor i in range(n):\n b=d-(x[l[i]-1]-1)\n print(b)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=[0]*n\n\n\ncnt=0\n",
"s=[0]*n\nfor i in a:\n \n\ncnt=0\n",
"s=[0]*n\nfor i in a:\n \n\ncnt=0\n\n\nfor i in a:\n",
"n=int(input())\n\ns=[0]*n\nfor i in a:\n \n\ncnt=0\n\n\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n \n\ncnt=0\n\n\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n \n\ncnt=0\nfor i in s:\n \n\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n s[i-1]+=1\n\ncnt=0\nfor i in s:\n \n\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n s[i-1]+=1\n\ncnt=0\nfor i in s:\n \n\nfor i in a:\n ans=cnt\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n s[i-1]+=1\n\ncnt=0\nfor i in s:\n cnt+=i*(i-1)//2\n\nfor i in a:\n ans=cnt\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n s[i-1]+=1\n\ncnt=0\nfor i in s:\n cnt+=i*(i-1)//2\n\nfor i in a:\n ans=cnt\n ans-=s[i-1]-1\n",
"n=int(input())\na=list(map(int,input().split()))\ns=[0]*n\nfor i in a:\n s[i-1]+=1\n\ncnt=0\nfor i in s:\n cnt+=i*(i-1)//2\n\nfor i in a:\n ans=cnt\n ans-=s[i-1]-1\n print(ans)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b=[0]*n\ncnt=0\n",
"b=[0]*n\ncnt=0\nfor i in a:\n",
"a=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n \n\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n \nfor i in b:\n \nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n \nfor i in b:\n cnt+=i*(i-1)//2\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n \nfor i in b:\n cnt+=i*(i-1)//2\nfor i in a:\n print(cnt+(1-b[i-1]))\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\ncnt=0\nfor i in a:\n b[i-1]+=1\nfor i in b:\n cnt+=i*(i-1)//2\nfor i in a:\n print(cnt+(1-b[i-1]))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"N=int(input())\n",
"N=int(input())\n\n\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\n",
"N=int(input())\nA=list(map(int,input().split()))\n\n\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nfrom import Counter\n\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nfrom import Counter\nAC=Counter(A)\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nfrom import Counter\nAC=Counter(A)\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\nfor a in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nfrom collections import Counter\nAC=Counter(A)\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\nfor a in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\n\nfrom collections import Counter\nAC=Counter(A)\nans=int(sum(map(lambda x: x*(x-1)/2, AC.values())))\nfor a in A:\n print(max(ans-AC[a]+1,0))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"cmb = 0\n",
"cnt = [0] * (n + 1)\ncmb = 0\n",
"cnt = [0] * (n + 1)\ncmb = 0\n\n\nfor ai in a:\n",
"cnt = [0] * (n + 1)\ncmb = 0\n\n\nfor ai in a:\n \n\nfor ai in a:\n",
"cnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n \n\nfor ai in a:\n",
"n = int(input())\ncnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n \n\nfor ai in a:\n",
"n = int(input())\ncnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n \n\nfor ai in a:\n print(cmb - cnt[ai] + 1)\n",
"n = int(input())\ncnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n \n \nfor ai in a:\n print(cmb - cnt[ai] + 1)\n",
"n = int(input())\ncnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n cnt[ai] += 1\n \n\nfor ai in a:\n print(cmb - cnt[ai] + 1)\n",
"n = int(input())\ncnt = [0] * (n + 1)\ncmb = 0\na = list(map(int, input().split()))\n\nfor ai in a:\n cnt[ai] += 1\n cmb += cnt[ai] - 1\n\nfor ai in a:\n print(cmb - cnt[ai] + 1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = sum([v * (v-1)//2 for v in c.values()])\n",
"ans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"n = int(input())\n\n\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"n = int(input())\n\nc = Counter(a)\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"from import Counter\nn = int(input())\n\nc = Counter(a)\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"from import Counter\nn = int(input())\na = list(map(int, input().split()))\nc = Counter(a)\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\nc = Counter(a)\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n",
"from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\nc = Counter(a)\nans = sum([v * (v-1)//2 for v in c.values()])\nfor x in a:\n print(ans - c[x] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d={}\n\nb=0\n",
"d={}\nfor i in a:\n \nb=0\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n \nb=0\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n \nb=0\nfor i in :\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n \nb=0\nfor i in :\n \nfor i in a:\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n \nb=0\nfor i in d.values():\n \nfor i in a:\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n \nb=0\nfor i in d.values():\n \nfor i in a:\n print(b-d[i]+1)\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n d[i]=d.get(i,0)+1\nb=0\nfor i in d.values():\n \nfor i in a:\n print(b-d[i]+1)\n",
"n,*a,=map(int,open(0).read().split())\nd={}\nfor i in a:\n d[i]=d.get(i,0)+1\nb=0\nfor i in d.values():\n b+=i*(i-1)//2\nfor i in a:\n print(b-d[i]+1)\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b = {}\n\nans = 0\n",
"n = int(input())\n\nb = {}\n\nans = 0\n",
"n = int(input())\n\nb = {}\n\nans = 0\n\nfor x in a:\n",
"n = int(input())\n\nb = {}\n\nans = 0\nfor x in :\n \nfor x in a:\n",
"n = int(input())\n\nb = {}\nfor x in a:\n \nans = 0\nfor x in :\n \nfor x in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \nans = 0\nfor x in :\n \nfor x in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \nans = 0\nfor x in b.values():\n \nfor x in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \nans = 0\nfor x in b.values():\n \nfor x in a:\n print(ans - b[x] + 1)\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \n \nans = 0\nfor x in b.values():\n \nfor x in a:\n print(ans - b[x] + 1)\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \n \nans = 0\nfor x in b.values():\n ans += x * (x - 1) // 2\nfor x in a:\n print(ans - b[x] + 1)\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n \n b[x] += 1\nans = 0\nfor x in b.values():\n ans += x * (x - 1) // 2\nfor x in a:\n print(ans - b[x] + 1)\n",
"n = int(input())\na = list(map(int, input().split()))\nb = {}\nfor x in a:\n b.setdefault(x, 0)\n b[x] += 1\nans = 0\nfor x in b.values():\n ans += x * (x - 1) // 2\nfor x in a:\n print(ans - b[x] + 1)\n"
] | 13
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"C = Counter(A)\n",
"N, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n",
"N, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n\n\nfor a in A:\n",
"N, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n\nfull = sum(n * (n - 1) // 2 for n in C.values())\nfor a in A:\n",
"from import Counter\n\nN, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n\nfull = sum(n * (n - 1) // 2 for n in C.values())\nfor a in A:\n",
"from collections import Counter\n\nN, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n\nfull = sum(n * (n - 1) // 2 for n in C.values())\nfor a in A:\n",
"from collections import Counter\n\nN, *A = map(int, open(0).read().split())\n\nC = Counter(A)\n\nfull = sum(n * (n - 1) // 2 for n in C.values())\nfor a in A:\n print(full - (C[a] - 1))\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"a = int(input())\n",
"a = int(input())\n\n\nfor i in range(a):\n",
"a = int(input())\nb = list(map(int, input().split()))\n\nfor i in range(a):\n",
"a = int(input())\nb = list(map(int, input().split()))\n\nfor i in range(a):\n \ns = sum([i*(i-1)//2 for i in c])\n",
"a = int(input())\nb = list(map(int, input().split()))\n\nfor i in range(a):\n \ns = sum([i*(i-1)//2 for i in c])\nfor i in b:\n",
"a = int(input())\nb = list(map(int, input().split()))\nc = [0]*a\nfor i in range(a):\n \ns = sum([i*(i-1)//2 for i in c])\nfor i in b:\n",
"a = int(input())\nb = list(map(int, input().split()))\nc = [0]*a\nfor i in range(a):\n \ns = sum([i*(i-1)//2 for i in c])\nfor i in b:\n print(s-(c[i-1]-1))\n",
"a = int(input())\nb = list(map(int, input().split()))\nc = [0]*a\nfor i in range(a):\n c[b[i]-1] += 1\ns = sum([i*(i-1)//2 for i in c])\nfor i in b:\n print(s-(c[i-1]-1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d = {}\n",
"d = {}\n\nsum = sum([v*(v-1)/2 for v in d.values()])\n",
"d = {}\n\nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n",
"A = list(map(int, input().split()))\n\nd = {}\n\nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\n\nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\nfor a in A:\n \nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\nfor a in A:\n \nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n print(int(sum-d[A[i]]+1))\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nd = {}\nfor a in A:\n d[a] = d.get(a, 0) + 1\nsum = sum([v*(v-1)/2 for v in d.values()])\n\nfor i in range(N):\n print(int(sum-d[A[i]]+1))\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans=0\n",
"for i in a :\n x[i]+=1\n\n\nans=0\n",
"for i in a :\n x[i]+=1\n\n\nans=0\n\n\nfor i in a :\n",
"a=list(map(int,input().split()))\n\nfor i in a :\n x[i]+=1\n\n\nans=0\n\n\nfor i in a :\n",
"a=list(map(int,input().split()))\n\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n \n\nfor i in a :\n",
"n=int(input())\na=list(map(int,input().split()))\n\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n \n\nfor i in a :\n",
"n=int(input())\na=list(map(int,input().split()))\nx=[0]*(n+1)\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n \n\nfor i in a :\n",
"n=int(input())\na=list(map(int,input().split()))\nx=[0]*(n+1)\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n n=i\n ans+=n*(n-1)//2\n\nfor i in a :\n",
"n=int(input())\na=list(map(int,input().split()))\nx=[0]*(n+1)\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n n=i\n ans+=n*(n-1)//2\n\nfor i in a :\n n=x[i]\n",
"n=int(input())\na=list(map(int,input().split()))\nx=[0]*(n+1)\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n n=i\n ans+=n*(n-1)//2\n\nfor i in a :\n n=x[i]\n \n print(ans1)\n",
"n=int(input())\na=list(map(int,input().split()))\nx=[0]*(n+1)\nfor i in a :\n x[i]+=1\n\n\nans=0\nfor i in x :\n n=i\n ans+=n*(n-1)//2\n\nfor i in a :\n n=x[i]\n ans1=ans-(n-1)\n print(ans1)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"al = 0\n",
"al = 0\nfor i in l:\n",
"al = 0\nfor i in l:\n \nfor i in range(N):\n",
"N = int(input())\n\n\nal = 0\nfor i in l:\n \nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nal = 0\nfor i in l:\n \nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = 0\nfor i in l:\n \nfor i in range(N):\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = 0\nfor i in l:\n \nfor i in range(N):\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = 0\nfor i in l:\n \nfor i in range(N):\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = 0\nfor i in l:\n \nfor i in range(N):\n print(al - (l[A[i]]-1))\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nl = Counter(A)\nal = 0\nfor i in l:\n al += l[i]*(l[i]-1)//2\nfor i in range(N):\n print(al - (l[A[i]]-1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"for i in range(N):\n",
"m = sum(comb)\nfor i in range(N):\n",
"comb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"A = list(map(int, input().split()))\n\n\ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"A = list(map(int, input().split()))\n\nfor a in A:\n \ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"A = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n \ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n \ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n cnt[a] += 1\ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n cnt[a] += 1\ncomb = [a*(a-1)/2 for a in cnt]\nm = sum(comb)\nfor i in range(N):\n print(int(m - (cnt[A[i]] - 1)))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"#!/usr/bin/env python3\n",
"#!/usr/bin/env python3\nfrom import Counter\n",
"#!/usr/bin/env python3\nfrom import Counter\n\n\nc = Counter(a)\n",
"#!/usr/bin/env python3\nfrom import Counter\n\n\nc = Counter(a)\n\nfor i in a:\n",
"#!/usr/bin/env python3\nfrom import Counter\n\n\nc = Counter(a)\ns = sum(i * (i - 1) // 2 for i in c.values())\nfor i in a:\n",
"#!/usr/bin/env python3\nfrom import Counter\n\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(i * (i - 1) // 2 for i in c.values())\nfor i in a:\n",
"#!/usr/bin/env python3\nfrom collections import Counter\n\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(i * (i - 1) // 2 for i in c.values())\nfor i in a:\n",
"#!/usr/bin/env python3\nfrom collections import Counter\n\n_, *a = map(int, open(0).read().split())\nc = Counter(a)\ns = sum(i * (i - 1) // 2 for i in c.values())\nfor i in a:\n print(s - c[i] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"C=0\n",
"C=0\n\n\nfor i in range(N):\n",
"import collections\n\n\nC=0\n\n\nfor i in range(N):\n",
"import collections\nN= int(input())\n\n\nC=0\n\n\nfor i in range(N):\n",
"import collections\nN= int(input())\n\n\nC=0\nfor i in :\n \n\nfor i in range(N):\n",
"import collections\nN= int(input())\n\nb = collections.Counter(A)\nC=0\nfor i in :\n \n\nfor i in range(N):\n",
"import collections\nN= int(input())\nA = list(map(int, input().split()))\nb = collections.Counter(A)\nC=0\nfor i in :\n \n\nfor i in range(N):\n",
"import collections\nN= int(input())\nA = list(map(int, input().split()))\nb = collections.Counter(A)\nC=0\nfor i in :\n \n\nfor i in range(N):\n print(int(C-(b[A[i]])+1))\n",
"import collections\nN= int(input())\nA = list(map(int, input().split()))\nb = collections.Counter(A)\nC=0\nfor i in :\n C+=i*(i-1)/2\n\nfor i in range(N):\n print(int(C-(b[A[i]])+1))\n",
"import collections\nN= int(input())\nA = list(map(int, input().split()))\nb = collections.Counter(A)\nC=0\nfor i in b.values():\n C+=i*(i-1)/2\n\nfor i in range(N):\n print(int(C-(b[A[i]])+1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"al = 0\n",
"a = list(map(int, input().split()))\n\n\nal = 0\n",
"n = int(input())\na = list(map(int, input().split()))\n\n\nal = 0\n",
"n = int(input())\na = list(map(int, input().split()))\n\n\nal = 0\nfor i in l:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\n\n\nal = 0\nfor i in l:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\nfor i in a:\n \n\nal = 0\nfor i in l:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\nfor i in a:\n \n\nal = 0\nfor i in l:\n \n\nfor k in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\nfor i in a:\n \n\nal = 0\nfor i in l:\n \n\nfor k in range(n):\n print(al - (l[a[k]-1] - 1))\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\nfor i in a:\n \n\nal = 0\nfor i in l:\n al += i*(i-1)//2\n\nfor k in range(n):\n print(al - (l[a[k]-1] - 1))\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0] * n\nfor i in a:\n l[i-1] += 1\n\nal = 0\nfor i in l:\n al += i*(i-1)//2\n\nfor k in range(n):\n print(al - (l[a[k]-1] - 1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s = 0\n",
"cnt = Counter(A)\n\ns = 0\n",
"from import Counter\n\n\ncnt = Counter(A)\n\ns = 0\n",
"from import Counter\n\n\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\n",
"from import Counter\n\n\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n",
"from import Counter\nN = int(input())\n\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n",
"from import Counter\nN = int(input())\n\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n \nfor i in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n \nfor i in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n \nfor i in A:\n print(s-(cnt[i]-1))\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n s += i*(i-1)//2\nfor i in A:\n print(s-(cnt[i]-1))\n",
"from collections import Counter\nN = int(input())\nA = list(map(int, input().split()))\ncnt = Counter(A)\nval = list(cnt.values())\ns = 0\nfor i in val:\n s += i*(i-1)//2\nfor i in A:\n print(s-(cnt[i]-1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=0\n",
"s=0\n\n\nfor j in :\n",
"s=0\n\n\nfor i in range(N):\n \nfor j in :\n",
"s=0\n\n\nfor i in range(N):\n \nfor j in :\n \nfor k in range(N):\n",
"N=int(input())\ns=0\n\n\nfor i in range(N):\n \nfor j in :\n \nfor k in range(N):\n",
"N=int(input())\ns=0\n\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n \nfor j in :\n \nfor k in range(N):\n",
"N=int(input())\ns=0\nA=list(map(int,input().split()))\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n \nfor j in :\n \nfor k in range(N):\n",
"N=int(input())\ns=0\nA=list(map(int,input().split()))\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n \nfor j in :\n s+=li[j]*(li[j]-1)//2\nfor k in range(N):\n",
"N=int(input())\ns=0\nA=list(map(int,input().split()))\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n \nfor j in range(N+1):\n s+=li[j]*(li[j]-1)//2\nfor k in range(N):\n",
"N=int(input())\ns=0\nA=list(map(int,input().split()))\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n li[A[i]]+=1\nfor j in range(N+1):\n s+=li[j]*(li[j]-1)//2\nfor k in range(N):\n",
"N=int(input())\ns=0\nA=list(map(int,input().split()))\nli=[0]*(2*(10**5)+1)\nfor i in range(N):\n li[A[i]]+=1\nfor j in range(N+1):\n s+=li[j]*(li[j]-1)//2\nfor k in range(N):\n print(s-li[A[k]]+1)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans=0\n",
"ans=0\n\n\nfor i in range(n):\n",
"ans=0\nb=[0]*(n+1)\n\n\nfor i in range(n):\n",
"a=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\n\n\nfor i in range(n):\n",
"a=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n \n\nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n \n\nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n \nfor k in b:\n \nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n \nfor k in b:\n \nfor i in range(n):\n print(ans-b[a[i]]+1)\n",
"n=int(input())\na=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n b[a[i]]+=1\nfor k in b:\n \nfor i in range(n):\n print(ans-b[a[i]]+1)\n",
"n=int(input())\na=list(map(int,input().split()))\nans=0\nb=[0]*(n+1)\nfor i in range(n):\n b[a[i]]+=1\nfor k in b:\n ans+=k*(k-1)//2\nfor i in range(n):\n print(ans-b[a[i]]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"sum=0\n",
"for a in al:\n \n\nsum=0\n",
"al=list(map(int,input().split()))\n\n\nfor a in al:\n \n\nsum=0\n",
"al=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n \n\nsum=0\n",
"al=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n \n\nsum=0\n\n\nfor a in al:\n",
"n=int(input())\nal=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n \n\nsum=0\n\n\nfor a in al:\n",
"n=int(input())\nal=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n \n\nsum=0\nfor c in counter:\n \n\nfor a in al:\n",
"n=int(input())\nal=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n counter[a]+=1\n\nsum=0\nfor c in counter:\n \n\nfor a in al:\n",
"n=int(input())\nal=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n counter[a]+=1\n\nsum=0\nfor c in counter:\n sum+=c*(c-1)//2\n\nfor a in al:\n",
"n=int(input())\nal=list(map(int,input().split()))\n\ncounter=[0]*(n+1)\nfor a in al:\n counter[a]+=1\n\nsum=0\nfor c in counter:\n sum+=c*(c-1)//2\n\nfor a in al:\n print(sum-(counter[a]-1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"a = list(map(int, input().split()))\n",
"a = list(map(int, input().split()))\n\nb = sum((v - 1) * v // 2 for v in count.values())\n",
"n = int(input())\na = list(map(int, input().split()))\n\nb = sum((v - 1) * v // 2 for v in count.values())\n",
"n = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\n",
"n = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\nfor i in a:\n",
"from import Counter\n\n\nn = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\nfor i in a:\n",
"from collections import Counter\n\n\nn = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\nfor i in a:\n",
"from collections import Counter\n\n\nn = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\nfor i in a:\n print(b + 1 - count[i])\n",
"from collections import Counter\n\n\n\nn = int(input())\na = list(map(int, input().split()))\ncount = Counter(a)\nb = sum((v - 1) * v // 2 for v in count.values())\nfor i in a:\n print(b + 1 - count[i])\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans1 = 0\n",
"a = list(map(int, input().split()))\n\nans1 = 0\n",
"a = list(map(int, input().split()))\n\nans1 = 0\n\nfor i in l:\n",
"a = list(map(int, input().split()))\n\nans1 = 0\n\nfor i in l:\n \nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nans1 = 0\n\nfor i in l:\n \nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0]*10**6\nans1 = 0\n\nfor i in l:\n \nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0]*10**6\nans1 = 0\nfor i in a:\n \nfor i in l:\n \nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0]*10**6\nans1 = 0\nfor i in a:\n \nfor i in l:\n \nfor i in a:\n print(int(ans1-(l[i]-1)))\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0]*10**6\nans1 = 0\nfor i in a:\n l[i] += 1\nfor i in l:\n \nfor i in a:\n print(int(ans1-(l[i]-1)))\n",
"n = int(input())\na = list(map(int, input().split()))\nl = [0]*10**6\nans1 = 0\nfor i in a:\n l[i] += 1\nfor i in l:\n ans1 += i*(i-1)/2\nfor i in a:\n print(int(ans1-(l[i]-1)))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d = {}\n\n\nans = 0\n",
"n = int(input())\n\n\nd = {}\n\n\nans = 0\n",
"n = int(input())\n\n\nd = {}\n\n\nans = 0\n\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\n\n\nans = 0\n\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n \n\nans = 0\n\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n \n\nans = 0\nfor i in : \n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n \n\nans = 0\nfor i in : ans += i*(i-1)//2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n if i in d: d[i] += 1\n else: d[i] = 1\n\nans = 0\nfor i in : ans += i*(i-1)//2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n if i in d: d[i] += 1\n else: d[i] = 1\n\nans = 0\nfor i in d.values(): ans += i*(i-1)//2\n\nfor i in a:\n",
"n = int(input())\na = list(map(int, input().split()))\n\nd = {}\nfor i in a:\n if i in d: d[i] += 1\n else: d[i] = 1\n\nans = 0\nfor i in d.values(): ans += i*(i-1)//2\n\nfor i in a:\n print(ans - (d[i]-1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = 0\n",
"N = int(input())\n\n\nans = 0\n",
"N = int(input())\n\n\nans = 0\nfor a in A:\n",
"N = int(input())\n\n\nans = 0\nfor a in A:\n \n\nfor k in range(N):\n",
"N = int(input())\nA = [int(x) for x in input().split()]\n\nans = 0\nfor a in A:\n \n\nfor k in range(N):\n",
"N = int(input())\nA = [int(x) for x in input().split()]\n\nans = 0\nfor a in A:\n \nfor j in l:\n \nfor k in range(N):\n",
"N = int(input())\nA = [int(x) for x in input().split()]\nl = [0]*N\nans = 0\nfor a in A:\n \nfor j in l:\n \nfor k in range(N):\n",
"N = int(input())\nA = [int(x) for x in input().split()]\nl = [0]*N\nans = 0\nfor a in A:\n \nfor j in l:\n \nfor k in range(N):\n print(ans - l[A[k]-1] + 1)\n",
"N = int(input())\nA = [int(x) for x in input().split()]\nl = [0]*N\nans = 0\nfor a in A:\n \nfor j in l:\n ans += int(j*(j-1)/2)\nfor k in range(N):\n print(ans - l[A[k]-1] + 1)\n",
"N = int(input())\nA = [int(x) for x in input().split()]\nl = [0]*N\nans = 0\nfor a in A:\n l[a-1] += 1\nfor j in l:\n ans += int(j*(j-1)/2)\nfor k in range(N):\n print(ans - l[A[k]-1] + 1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c=0\n",
"*l,=map(int,input().split())\n\nc=0\n",
"*l,=map(int,input().split())\nA=Counter(l)\nc=0\n",
"*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in :\n",
"from import Counter\n\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in :\n",
"from import Counter\n\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in :\n \nfor j in l:\n",
"from import Counter\nn=input()\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in :\n \nfor j in l:\n",
"from import Counter\nn=input()\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in A.values():\n \nfor j in l:\n",
"from import Counter\nn=input()\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in A.values():\n \nfor j in l:\n print(c-A[j]+1)\n",
"from import Counter\nn=input()\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in A.values():\n c+=i*(i-1)//2\nfor j in l:\n print(c-A[j]+1)\n",
"from collections import Counter\nn=input()\n*l,=map(int,input().split())\nA=Counter(l)\nc=0\nfor i in A.values():\n c+=i*(i-1)//2\nfor j in l:\n print(c-A[j]+1)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c={}\n",
"L=list(map(int,input().split()))\nc={}\n",
"L=list(map(int,input().split()))\nc={}\n\n\ns=sum([(i*(i-1))//2 for i in c.values()])\n",
"L=list(map(int,input().split()))\nc={}\nfor i in set(L):\n c[i]=0\n\ns=sum([(i*(i-1))//2 for i in c.values()])\n",
"N=int(input())\nL=list(map(int,input().split()))\nc={}\nfor i in set(L):\n c[i]=0\n\ns=sum([(i*(i-1))//2 for i in c.values()])\n",
"N=int(input())\nL=list(map(int,input().split()))\nc={}\nfor i in set(L):\n c[i]=0\nfor i in L:\n c[i]+=1\ns=sum([(i*(i-1))//2 for i in c.values()])\n",
"N=int(input())\nL=list(map(int,input().split()))\nc={}\nfor i in set(L):\n c[i]=0\nfor i in L:\n c[i]+=1\ns=sum([(i*(i-1))//2 for i in c.values()])\nfor i in L:\n",
"N=int(input())\nL=list(map(int,input().split()))\nc={}\nfor i in set(L):\n c[i]=0\nfor i in L:\n c[i]+=1\ns=sum([(i*(i-1))//2 for i in c.values()])\nfor i in L:\n print(s-c[i]+1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"N = int(input())\n",
"N = int(input())\n\n\ns = sum(x * (x-1) // 2 for x in Count.values())\n",
"N = int(input())\nA = list(map(int, input().split()))\n\n\ns = sum(x * (x-1) // 2 for x in Count.values())\n",
"N = int(input())\nA = list(map(int, input().split()))\n\n\ns = sum(x * (x-1) // 2 for x in Count.values())\n\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\n\nCount = Counter(A)\ns = sum(x * (x-1) // 2 for x in Count.values())\n\nfor a in A:\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nCount = Counter(A)\ns = sum(x * (x-1) // 2 for x in Count.values())\n\nfor a in A:\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nCount = Counter(A)\ns = sum(x * (x-1) // 2 for x in Count.values())\n\nfor a in A:\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\n\nCount = Counter(A)\ns = sum(x * (x-1) // 2 for x in Count.values())\n\nfor a in A:\n print(s - Count[a] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c = Counter(a)\n",
"n = int(input())\n\n\nc = Counter(a)\n",
"n = int(input())\n\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n",
"n = int(input())\n\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n\nfor k in range(n):\n",
"n = int(input())\na = list(map(int, input().split()))\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n\nfor k in range(n):\n",
"from import Counter\nn = int(input())\na = list(map(int, input().split()))\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n\nfor k in range(n):\n",
"from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n\nfor k in range(n):\n",
"from collections import Counter\nn = int(input())\na = list(map(int, input().split()))\n\nc = Counter(a)\ns = sum([i*(i-1)//2 for i in c.values()])\n\nfor k in range(n):\n print(s-c[a[k]] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=0\n",
"lst=input().split()\ns=0\n",
"lst=input().split()\ns=0\n\nfor i in :\n",
"import collections\n\nlst=input().split()\ns=0\n\nfor i in :\n",
"import collections\n\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in :\n",
"import collections\nN=int(input())\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in :\n",
"import collections\nN=int(input())\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in :\n \nfor i in lst:\n",
"import collections\nN=int(input())\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in :\n \nfor i in lst:\n print(s+1-dic[i])\n",
"import collections\nN=int(input())\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in dic.values():\n \nfor i in lst:\n print(s+1-dic[i])\n",
"import collections\nN=int(input())\nlst=input().split()\ns=0\ndic=collections.Counter(lst)\nfor i in dic.values():\n s+=(i*i-i)//2\nfor i in lst:\n print(s+1-dic[i])\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = 0\n",
"A = list(map(int, input().split()))\n\n\nans = 0\n",
"A = list(map(int, input().split()))\n\n\nans = 0\nfor i in range(n):\n",
"A = list(map(int, input().split()))\n\nfor a in A:\n \nans = 0\nfor i in range(n):\n",
"A = list(map(int, input().split()))\n\nfor a in A:\n \nans = 0\nfor i in range(n):\n \nfor a in A:\n",
"A = list(map(int, input().split()))\ncnt = [0]*n\nfor a in A:\n \nans = 0\nfor i in range(n):\n \nfor a in A:\n",
"n = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*n\nfor a in A:\n \nans = 0\nfor i in range(n):\n \nfor a in A:\n",
"n = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*n\nfor a in A:\n \nans = 0\nfor i in range(n):\n ans += cnt[i] * (cnt[i]-1) // 2\nfor a in A:\n",
"n = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*n\nfor a in A:\n cnt[a-1] += 1\nans = 0\nfor i in range(n):\n ans += cnt[i] * (cnt[i]-1) // 2\nfor a in A:\n",
"n = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*n\nfor a in A:\n cnt[a-1] += 1\nans = 0\nfor i in range(n):\n ans += cnt[i] * (cnt[i]-1) // 2\nfor a in A:\n print(ans-cnt[a-1]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"all = 0\n",
"c = Counter(a)\nall = 0\n",
"a = list(map(int,input().split()))\nc = Counter(a)\nall = 0\n",
"from import Counter\n\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\n",
"from import Counter\n\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n",
"from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n",
"from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n \nfor j in range(n):\n",
"from import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n all += (i*(i-1))//2\nfor j in range(n):\n",
"from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n all += (i*(i-1))//2\nfor j in range(n):\n",
"from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in :\n all += (i*(i-1))//2\nfor j in range(n):\n print(all-(c[a[j]]-1))\n",
"from collections import Counter\nn = int(input())\na = list(map(int,input().split()))\nc = Counter(a)\nall = 0\nfor i in c.values():\n all += (i*(i-1))//2\nfor j in range(n):\n print(all-(c[a[j]]-1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"_,a=open(0)\n",
"c=[0]*8**6\n_,a=open(0)\n",
"c=[0]*8**6\n_,a=open(0)\n\n\ns=sum(i*~-i//2for i in c)\n",
"c=[0]*8**6\n_,a=open(0)\n\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\n",
"c=[0]*8**6\n_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\n",
"c=[0]*8**6\n_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\nfor i in a:\n",
"c=[0]*8**6\n_,a=open(0)\n*a,=map(int,a.split())\nfor i in a:c[i]+=1\ns=sum(i*~-i//2for i in c)\nfor i in a:print(s-c[i]+1)\n"
] | 8
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"cnt = 0\n",
"N = int(input())\n\n\ncnt = 0\n",
"N = int(input())\n\n\ncnt = 0\n\nfor i in A:\n",
"N = int(input())\n\n\nfor i in A:\n \ncnt = 0\n\nfor i in A:\n",
"N = int(input())\nA = [int(a) for a in input().split()]\n\nfor i in A:\n \ncnt = 0\n\nfor i in A:\n",
"N = int(input())\nA = [int(a) for a in input().split()]\n\nfor i in A:\n \ncnt = 0\ncnt += sum([i*(i-1)//2 for i in a])\nfor i in A:\n",
"N = int(input())\nA = [int(a) for a in input().split()]\na = [0] * N\nfor i in A:\n \ncnt = 0\ncnt += sum([i*(i-1)//2 for i in a])\nfor i in A:\n",
"N = int(input())\nA = [int(a) for a in input().split()]\na = [0] * N\nfor i in A:\n \ncnt = 0\ncnt += sum([i*(i-1)//2 for i in a])\nfor i in A:\n print(cnt - (a[i-1]-1))\n",
"N = int(input())\nA = [int(a) for a in input().split()]\na = [0] * N\nfor i in A:\n a[i-1] += 1\ncnt = 0\ncnt += sum([i*(i-1)//2 for i in a])\nfor i in A:\n print(cnt - (a[i-1]-1))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s=0\n",
"c=collections.Counter(a)\ns=0\n",
"n=int(input())\n\n\nc=collections.Counter(a)\ns=0\n",
"import collections\nn=int(input())\n\n\nc=collections.Counter(a)\ns=0\n",
"import collections\nn=int(input())\n\n\nc=collections.Counter(a)\ns=0\nfor i in :\n",
"import collections\nn=int(input())\n\n\nc=collections.Counter(a)\ns=0\nfor i in :\n \n\nfor i in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\ns=0\nfor i in :\n \n\nfor i in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\ns=0\nfor i in :\n \n\nfor i in a:\n cnt=c[i]\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\ns=0\nfor i in :\n s+=i*(i-1)//2\n\nfor i in a:\n cnt=c[i]\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\ns=0\nfor i in c.values():\n s+=i*(i-1)//2\n\nfor i in a:\n cnt=c[i]\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\ns=0\nfor i in c.values():\n s+=i*(i-1)//2\n\nfor i in a:\n cnt=c[i]\n print(int(s-cnt+1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"x = 0\n",
"N = int(input())\n\n\nx = 0\n",
"N = int(input())\n\n\nx = 0\n\nfor a in A:\n",
"from import Counter\nN = int(input())\n\n\nx = 0\n\nfor a in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\n\nx = 0\n\nfor a in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\n\nx = 0\nfor i in C:\n \nfor a in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\nC = Counter(A)\nx = 0\nfor i in C:\n \nfor a in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\nC = Counter(A)\nx = 0\nfor i in C:\n x += C[i] * (C[i] - 1) // 2\nfor a in A:\n",
"from import Counter\nN = int(input())\nA = list(map(int, input().split()))\nC = Counter(A)\nx = 0\nfor i in C:\n x += C[i] * (C[i] - 1) // 2\nfor a in A:\n print(x - (C[a] - 1))\n",
"from collections import Counter\nN = int(input())\nA = list(map(int, input().split()))\nC = Counter(A)\nx = 0\nfor i in C:\n x += C[i] * (C[i] - 1) // 2\nfor a in A:\n print(x - (C[a] - 1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans=0\n",
"k=list(map(int,input().split()))\n\nans=0\n",
"k=list(map(int,input().split()))\n\nans=0\n\n\nfor i in range(n):\n",
"n=int(input())\nk=list(map(int,input().split()))\n\nans=0\n\n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\n\nans=0\n\n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\n\nans=0\n\nfor i in :\n \n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\nc=collections.Counter(k)\nans=0\n\nfor i in :\n \n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\nc=collections.Counter(k)\nans=0\n\nfor i in c.values():\n \n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\nc=collections.Counter(k)\nans=0\n\nfor i in c.values():\n ans+=i*(i-1)//2\n\nfor i in range(n):\n",
"import collections\nn=int(input())\nk=list(map(int,input().split()))\nc=collections.Counter(k)\nans=0\n\nfor i in c.values():\n ans+=i*(i-1)//2\n\nfor i in range(n):\n print(ans-c[k[i]]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"cnt = 0\n",
"cnt = 0\n\n\nfor i in A:\n",
"for i in A:\n \n\ncnt = 0\n\n\nfor i in A:\n",
"X = [0]*N\n\nfor i in A:\n \n\ncnt = 0\n\n\nfor i in A:\n",
"N = int(input())\n\nX = [0]*N\n\nfor i in A:\n \n\ncnt = 0\n\n\nfor i in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n \n\ncnt = 0\n\n\nfor i in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n \n\ncnt = 0\nfor i in X:\n \n\nfor i in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n X[i-1] += 1\n\ncnt = 0\nfor i in X:\n \n\nfor i in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n X[i-1] += 1\n\ncnt = 0\nfor i in X:\n cnt += i* (i-1) // 2\n\nfor i in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n X[i-1] += 1\n\ncnt = 0\nfor i in X:\n cnt += i* (i-1) // 2\n\nfor i in A:\n \n print(ans)\n",
"N = int(input())\nA = list(map(int, input().split()))\nX = [0]*N\n\nfor i in A:\n X[i-1] += 1\n\ncnt = 0\nfor i in X:\n cnt += i* (i-1) // 2\n\nfor i in A:\n ans = cnt - (X[i-1] - 1)\n print(ans)\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"C=0\n",
"C=0\n\n\nfor i in A:\n",
"C=0\nfor i in A:\n \n\nfor i in A:\n",
"N=int(input())\n\n\nC=0\nfor i in A:\n \n\nfor i in A:\n",
"N=int(input())\n\nB=[0]*(N+1)\nC=0\nfor i in A:\n \n\nfor i in A:\n",
"N=int(input())\n\nB=[0]*(N+1)\nC=0\nfor i in A:\n \nfor i in B:\n \nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nC=0\nfor i in A:\n \nfor i in B:\n \nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nC=0\nfor i in A:\n B[i-1]+=1\nfor i in B:\n \nfor i in A:\n",
"N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nC=0\nfor i in A:\n B[i-1]+=1\nfor i in B:\n \nfor i in A:\n print(C-B[i-1]+1)\n",
"N=int(input())\nA=list(map(int,input().split()))\nB=[0]*(N+1)\nC=0\nfor i in A:\n B[i-1]+=1\nfor i in B:\n if i>=2:\n C+=i*(i-1)//2\nfor i in A:\n print(C-B[i-1]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d = {}\n",
"d = {}\n\n\nfor a in A:\n",
"d = {}\nfor a in A:\n \n\nfor a in A:\n",
"A = list(map(int, input().split()))\nd = {}\nfor a in A:\n \n\nfor a in A:\n",
"A = list(map(int, input().split()))\nd = {}\nfor a in A:\n \nans = sum([v * (v - 1) // 2 for v in d.values()])\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = {}\nfor a in A:\n \nans = sum([v * (v - 1) // 2 for v in d.values()])\nfor a in A:\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = {}\nfor a in A:\n \nans = sum([v * (v - 1) // 2 for v in d.values()])\nfor a in A:\n print(ans - d[a] + 1)\n",
"N = int(input())\nA = list(map(int, input().split()))\nd = {}\nfor a in A:\n d[a] = d.get(a, 0) + 1\nans = sum([v * (v - 1) // 2 for v in d.values()])\nfor a in A:\n print(ans - d[a] + 1)\n"
] | 9
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = 0\n",
"for a in ls:\n \n\nans = 0\n",
"for a in ls:\n \n\nans = 0\n\n\nfor a in ls:\n",
"rec = [0]*(n+1)\nfor a in ls:\n \n\nans = 0\n\n\nfor a in ls:\n",
"n = int(input())\n\n\nrec = [0]*(n+1)\nfor a in ls:\n \n\nans = 0\n\n\nfor a in ls:\n",
"n = int(input())\n\n\nrec = [0]*(n+1)\nfor a in ls:\n \n\nans = 0\nfor a in rec:\n \n\nfor a in ls:\n",
"n = int(input())\n\nls = list(map(int,input().split()))\n\nrec = [0]*(n+1)\nfor a in ls:\n \n\nans = 0\nfor a in rec:\n \n\nfor a in ls:\n",
"n = int(input())\n\nls = list(map(int,input().split()))\n\nrec = [0]*(n+1)\nfor a in ls:\n \n\nans = 0\nfor a in rec:\n ans += a*(a-1)//2\n\nfor a in ls:\n",
"n = int(input())\n\nls = list(map(int,input().split()))\n\nrec = [0]*(n+1)\nfor a in ls:\n rec[a] += 1\n\nans = 0\nfor a in rec:\n ans += a*(a-1)//2\n\nfor a in ls:\n",
"n = int(input())\n\nls = list(map(int,input().split()))\n\nrec = [0]*(n+1)\nfor a in ls:\n rec[a] += 1\n\nans = 0\nfor a in rec:\n ans += a*(a-1)//2\n\nfor a in ls:\n print(ans - rec[a] +1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b=[0]*n\nc=0\n",
"n=int(input())\n\nb=[0]*n\nc=0\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\n\n\nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\n\nfor i in range(n):\n \nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\nfor i in range(n):\n \nfor i in range(n):\n \nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\nfor i in range(n):\n b[a[i]-1]+=1\nfor i in range(n):\n \nfor i in range(n):\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\nfor i in range(n):\n b[a[i]-1]+=1\nfor i in range(n):\n \nfor i in range(n):\n print(c-b[a[i]-1]+1)\n",
"n=int(input())\na=list(map(int,input().split()))\nb=[0]*n\nc=0\nfor i in range(n):\n b[a[i]-1]+=1\nfor i in range(n):\n c+=b[i]*(b[i]-1)//2\nfor i in range(n):\n print(c-b[a[i]-1]+1)\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"total=0\n",
"import collections\n\n\ntotal=0\n",
"import collections\n\n\nd=collections.Counter(a)\ntotal=0\n",
"import collections\n\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\n",
"import collections\n\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\n\nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\n\nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\nfor v in :\n \nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\nfor v in d.values():\n \nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\nfor v in d.values():\n total+=(v-1)*v//2\nfor x in a:\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nd=collections.Counter(a)\ntotal=0\nfor v in d.values():\n total+=(v-1)*v//2\nfor x in a:\n print(total-d[x]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans=0\n",
"ans=0\nfor v in :\n",
"a=list(map(int,input().split()))\n\nans=0\nfor v in :\n",
"n=int(input())\na=list(map(int,input().split()))\n\nans=0\nfor v in :\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nans=0\nfor v in :\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\n\nans=0\nfor v in :\n \nfor i in range(n):\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nA=collections.Counter(a)\nans=0\nfor v in :\n \nfor i in range(n):\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nA=collections.Counter(a)\nans=0\nfor v in :\n \nfor i in range(n):\n print(ans-A[a[i]]+1)\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nA=collections.Counter(a)\nans=0\nfor v in :\n ans+=v*(v-1)//2\nfor i in range(n):\n print(ans-A[a[i]]+1)\n",
"import collections\nn=int(input())\na=list(map(int,input().split()))\nA=collections.Counter(a)\nans=0\nfor v in A.values():\n ans+=v*(v-1)//2\nfor i in range(n):\n print(ans-A[a[i]]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"b=0\n",
"a=list(map(str,input().split()))\n\nb=0\n",
"a=list(map(str,input().split()))\n\nb=0\n\n\nfor i in a:\n",
"a=list(map(str,input().split()))\n\nb=0\n\nfor i in c.keys():\n \nfor i in a:\n",
"import collections\n\na=list(map(str,input().split()))\n\nb=0\n\nfor i in c.keys():\n \nfor i in a:\n",
"import collections\nn=int(input())\na=list(map(str,input().split()))\n\nb=0\n\nfor i in c.keys():\n \nfor i in a:\n",
"import collections\nn=int(input())\na=list(map(str,input().split()))\nc=collections.Counter(a)\nb=0\n\nfor i in c.keys():\n \nfor i in a:\n",
"import collections\nn=int(input())\na=list(map(str,input().split()))\nc=collections.Counter(a)\nb=0\n\nfor i in c.keys():\n \nfor i in a:\n print(int(b-c[i]+1))\n",
"import collections\nn=int(input())\na=list(map(str,input().split()))\nc=collections.Counter(a)\nb=0\n\nfor i in c.keys():\n b+=(c[i]*(c[i]-1)/2)\nfor i in a:\n print(int(b-c[i]+1))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"num=0\n",
"num=0\nfor i in :\n",
"import collections\n\n\nnum=0\nfor i in :\n",
"import collections\n\nx=int(input())\n\n\nnum=0\nfor i in :\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\n\nnum=0\nfor i in :\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nnum=0\nfor i in :\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nnum=0\nfor i in :\n \n\nfor i in range(x):\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nnum=0\nfor i in :\n \n\nfor i in range(x):\n print(int(num-c[a[i]]+1))\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nnum=0\nfor i in c.values():\n \n\nfor i in range(x):\n print(int(num-c[a[i]]+1))\n",
"import collections\n\nx=int(input())\na=list(map(int,input().split()))\n\nc=collections.Counter(a)\nnum=0\nfor i in c.values():\n num+=i*(i-1)/2\n\nfor i in range(x):\n print(int(num-c[a[i]]+1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s = 0\n",
"A = [int(i) for i in input().split()]\n\n\ns = 0\n",
"A = [int(i) for i in input().split()]\n\nB = [0]*N\n\n\ns = 0\n",
"A = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n \n\ns = 0\n",
"A = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n \n\ns = 0\n\n\nfor i in range(N):\n",
"A = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n \n\ns = 0\nfor i in range(N):\n \n\nfor i in range(N):\n",
"N = int(input())\nA = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n \n\ns = 0\nfor i in range(N):\n \n\nfor i in range(N):\n",
"N = int(input())\nA = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n B[A[i]-1] += 1\n\ns = 0\nfor i in range(N):\n \n\nfor i in range(N):\n",
"N = int(input())\nA = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n B[A[i]-1] += 1\n\ns = 0\nfor i in range(N):\n s += B[i]*(B[i]-1)//2\n\nfor i in range(N):\n",
"N = int(input())\nA = [int(i) for i in input().split()]\n\nB = [0]*N\nfor i in range(N):\n B[A[i]-1] += 1\n\ns = 0\nfor i in range(N):\n s += B[i]*(B[i]-1)//2\n\nfor i in range(N):\n print(s-B[A[i]-1]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"s = 0\n",
"N = int(input())\n\n\ns = 0\n",
"N = int(input())\n\n\ns = 0\nfor x in X:\n",
"N = int(input())\n\n\ns = 0\nfor x in X:\n \n\nfor a in A:\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\n\n\ns = 0\nfor x in X:\n \n\nfor a in A:\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\n\nfor a in A:\n \ns = 0\nfor x in X:\n \n\nfor a in A:\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\nX = [0] * N\nfor a in A:\n \ns = 0\nfor x in X:\n \n\nfor a in A:\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\nX = [0] * N\nfor a in A:\n \ns = 0\nfor x in X:\n \n\nfor a in A:\n print(s - (X[a] - 1))\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\nX = [0] * N\nfor a in A:\n \ns = 0\nfor x in X:\n s += x * (x-1) // 2\n\nfor a in A:\n print(s - (X[a] - 1))\n",
"N = int(input())\nA = [int(a)-1 for a in input().split()]\nX = [0] * N\nfor a in A:\n X[a] += 1\ns = 0\nfor x in X:\n s += x * (x-1) // 2\n\nfor a in A:\n print(s - (X[a] - 1))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"c = C(A)\ns = 0\n",
"c = C(A)\ns = 0\n\nfor j in A:\n",
"A = list(map(int,input().split()))\nc = C(A)\ns = 0\n\nfor j in A:\n",
"from import \n\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\n\nfor j in A:\n",
"from import \n\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in :\n \nfor j in A:\n",
"from import \nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in :\n \nfor j in A:\n",
"from import \nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in c.values():\n \nfor j in A:\n",
"from collections import \nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in c.values():\n \nfor j in A:\n",
"from collections import Counter as C\nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in c.values():\n \nfor j in A:\n",
"from collections import Counter as C\nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in c.values():\n \nfor j in A:\n print(s-(c[j]-1))\n",
"from collections import Counter as C\nN = int(input())\nA = list(map(int,input().split()))\nc = C(A)\ns = 0\nfor i in c.values():\n s += i*(i-1)//2\nfor j in A:\n print(s-(c[j]-1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"ans = 0\n",
"A = list(map(int, input().split()))\nans = 0\n",
"A = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n",
"A = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in :\n",
"A = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in :\n \n\nfor i in A:\n",
"from import Counter\n\n\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in :\n \n\nfor i in A:\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in :\n \n\nfor i in A:\n",
"from import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in c.values():\n \n\nfor i in A:\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in c.values():\n \n\nfor i in A:\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in c.values():\n ans += v*(v-1)//2\n\nfor i in A:\n",
"from collections import Counter\n\nN = int(input())\nA = list(map(int, input().split()))\nans = 0\nc = Counter(A)\n\nfor v in c.values():\n ans += v*(v-1)//2\n\nfor i in A:\n print(ans - (c[i] - 1))\n"
] | 12
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"# coding: utf-8\n\n\ns = 0\n",
"# coding: utf-8\n\n\ns = 0\nfor x in X:\n",
"# coding: utf-8\n\nA = list(map(int, input().split()))\n\n\ns = 0\nfor x in X:\n",
"# coding: utf-8\n\nA = list(map(int, input().split()))\n\nfor a in A:\n \ns = 0\nfor x in X:\n",
"# coding: utf-8\n\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n \ns = 0\nfor x in X:\n",
"# coding: utf-8\n\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n \ns = 0\nfor x in X:\n \nfor a in A:\n",
"# coding: utf-8\nn = int(input())\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n \ns = 0\nfor x in X:\n \nfor a in A:\n",
"# coding: utf-8\nn = int(input())\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n \ns = 0\nfor x in X:\n \nfor a in A:\n print(s-X[a]+1)\n",
"# coding: utf-8\nn = int(input())\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n X[a] += 1\ns = 0\nfor x in X:\n \nfor a in A:\n print(s-X[a]+1)\n",
"# coding: utf-8\nn = int(input())\nA = list(map(int, input().split()))\nX = [0]*(n+1)\nfor a in A:\n X[a] += 1\ns = 0\nfor x in X:\n s += x*(x-1)//2\nfor a in A:\n print(s-X[a]+1)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"m = 0\n",
"for a in A:\n \nm = 0\n",
"for a in A:\n \nm = 0\n\nfor i in range(N):\n",
"N = int(input())\n\n\nfor a in A:\n \nm = 0\n\nfor i in range(N):\n",
"N = int(input())\n\ncnt = [0]*(N+1)\nfor a in A:\n \nm = 0\n\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n \nm = 0\n\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n \nm = 0\nfor a in cnt:\n \nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n cnt[a] += 1\nm = 0\nfor a in cnt:\n \nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n cnt[a] += 1\nm = 0\nfor a in cnt:\n m += a*(a-1)/2\nfor i in range(N):\n",
"N = int(input())\nA = list(map(int, input().split()))\ncnt = [0]*(N+1)\nfor a in A:\n cnt[a] += 1\nm = 0\nfor a in cnt:\n m += a*(a-1)/2\nfor i in range(N):\n print(int(m - (cnt[A[i]] - 1)))\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d={}\n\nans=0\n",
"n=int(input())\n\nd={}\n\nans=0\n",
"n=int(input())\n\nd={}\n\nans=0\n\nfor i in a:\n",
"n=int(input())\n\nd={}\nfor i in a:\n \nans=0\n\nfor i in a:\n",
"n=int(input())\n\nd={}\nfor i in a:\n \nans=0\nfor i in d:\n \nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nd={}\nfor i in a:\n \nans=0\nfor i in d:\n \nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nd={}\nfor i in a:\n \nans=0\nfor i in d:\n ans+=d[i]*(d[i]-1)//2\nfor i in a:\n",
"n=int(input())\na=list(map(int,input().split()))\nd={}\nfor i in a:\n \nans=0\nfor i in d:\n ans+=d[i]*(d[i]-1)//2\nfor i in a:\n print(ans-(d[i]-1))\n",
"n=int(input())\na=list(map(int,input().split()))\nd={}\nfor i in a:\n if d.get(i):d[i]+=1\n else:d[i]=1\nans=0\nfor i in d:\n ans+=d[i]*(d[i]-1)//2\nfor i in a:\n print(ans-(d[i]-1))\n"
] | 10
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
0/::0
|
We have N balls. The i-th ball has an integer A_i written on it.
For each k=1, 2, ..., N, solve the following problem and print the answer.
* Find the number of ways to choose two distinct balls (disregarding order) from the N-1 balls other than the k-th ball so that the integers written on them are equal.
Constraints
* 3 \leq N \leq 2 \times 10^5
* 1 \leq A_i \leq N
* All values in input are integers.
Input
Input is given from Standard Input in the following format:
N
A_1 A_2 ... A_N
Output
For each k=1,2,...,N, print a line containing the answer.
Examples
Input
5
1 1 2 1 2
Output
2
2
3
2
3
Input
4
1 2 3 4
Output
0
0
0
0
Input
5
3 3 3 3 3
Output
6
6
6
6
6
Input
8
1 2 1 4 2 1 4 1
Output
5
7
5
7
7
5
7
5
|
[
"\n",
"d={};an=0\n",
"n=int(input())\n\nd={};an=0\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n \n\nfor j in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n \nfor i in :\n \nfor j in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n d[i]=d.get(i,0)+1\nfor i in :\n \nfor j in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n d[i]=d.get(i,0)+1\nfor i in :\n an+=i*(i-1)//2\nfor j in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n d[i]=d.get(i,0)+1\nfor i in d.values():\n an+=i*(i-1)//2\nfor j in l:\n",
"n=int(input())\nl=list(map(int,input().split()))\nd={};an=0\nfor i in l:\n d[i]=d.get(i,0)+1\nfor i in d.values():\n an+=i*(i-1)//2\nfor j in l:\n i=d[j];print(an+(i-1)*(i-2)//2-i*(i-1)//2)\n"
] | 11
|
[
{
"input": "8\n1 2 1 4 2 1 4 1",
"output": "5\n7\n5\n7\n7\n5\n7\n5"
},
{
"input": "5\n1 1 2 1 2",
"output": "2\n2\n3\n2\n3"
},
{
"input": "4\n1 2 3 4",
"output": "0\n0\n0\n0"
},
{
"input": "5\n3 3 3 3 3",
"output": "6\n6\n6\n6\n6"
}
] |
[
{
"input": "8\n1 2 1 6 2 1 4 1",
"output": "4\n6\n4\n7\n6\n4\n7\n4\n"
},
{
"input": "5\n0 1 2 1 2",
"output": "2\n1\n1\n1\n1\n"
},
{
"input": "4\n2 2 3 4",
"output": "0\n0\n1\n1\n"
},
{
"input": "5\n3 3 2 3 3",
"output": "3\n3\n6\n3\n3\n"
},
{
"input": "8\n1 3 1 6 2 1 4 1",
"output": "3\n6\n3\n6\n6\n3\n6\n3\n"
},
{
"input": "5\n0 1 2 1 0",
"output": "1\n1\n2\n1\n1\n"
},
{
"input": "5\n0 3 2 3 3",
"output": "3\n1\n3\n1\n1\n"
},
{
"input": "8\n1 3 1 6 2 0 4 1",
"output": "1\n3\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 2 1 6 2 0 4 1",
"output": "2\n3\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 1 1 6 2 0 4 1",
"output": "3\n3\n3\n6\n6\n6\n6\n3\n"
},
{
"input": "5\n1 0 2 1 1",
"output": "1\n3\n3\n1\n1\n"
},
{
"input": "8\n1 1 1 3 1 0 4 1",
"output": "6\n6\n6\n10\n6\n10\n10\n6\n"
},
{
"input": "5\n0 0 2 1 0",
"output": "1\n1\n3\n3\n1\n"
},
{
"input": "5\n0 -1 2 1 0",
"output": "0\n1\n1\n1\n0\n"
},
{
"input": "8\n2 1 1 5 1 0 4 1",
"output": "6\n3\n3\n6\n3\n6\n6\n3\n"
},
{
"input": "8\n2 2 1 5 1 0 4 1",
"output": "3\n3\n2\n4\n2\n4\n4\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 4 1",
"output": "5\n5\n5\n6\n5\n5\n6\n5\n"
},
{
"input": "5\n1 2 2 1 2",
"output": "3\n2\n2\n3\n2\n"
},
{
"input": "4\n1 2 2 4",
"output": "1\n0\n0\n1\n"
},
{
"input": "5\n3 3 3 0 3",
"output": "3\n3\n3\n6\n3\n"
},
{
"input": "5\n1 1 4 1 2",
"output": "1\n1\n3\n1\n3\n"
},
{
"input": "8\n1 6 1 6 2 1 4 1",
"output": "4\n6\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n0 3 1 6 2 0 4 1",
"output": "1\n2\n1\n2\n2\n1\n2\n1\n"
},
{
"input": "8\n2 2 1 6 2 0 4 1",
"output": "2\n2\n3\n4\n2\n4\n4\n3\n"
},
{
"input": "5\n1 1 2 2 1",
"output": "2\n2\n3\n3\n2\n"
},
{
"input": "8\n2 1 1 6 2 0 4 1",
"output": "3\n2\n2\n4\n3\n4\n4\n2\n"
},
{
"input": "8\n1 0 1 3 2 0 4 1",
"output": "2\n3\n2\n4\n4\n3\n4\n2\n"
},
{
"input": "5\n1 -1 2 1 0",
"output": "0\n1\n1\n0\n1\n"
},
{
"input": "8\n1 1 1 1 1 0 4 1",
"output": "10\n10\n10\n10\n10\n15\n15\n10\n"
},
{
"input": "8\n2 1 1 5 0 0 4 1",
"output": "4\n2\n2\n4\n3\n3\n4\n2\n"
},
{
"input": "8\n2 2 0 5 1 0 4 1",
"output": "2\n2\n2\n3\n2\n2\n3\n2\n"
},
{
"input": "8\n1 2 1 4 2 2 7 1",
"output": "4\n4\n4\n6\n4\n4\n6\n4\n"
},
{
"input": "5\n1 4 2 1 2",
"output": "1\n2\n1\n1\n1\n"
},
{
"input": "4\n2 2 2 4",
"output": "1\n1\n1\n3\n"
},
{
"input": "4\n2 2 3 2",
"output": "1\n1\n3\n1\n"
},
{
"input": "5\n4 3 2 3 5",
"output": "1\n0\n1\n0\n1\n"
},
{
"input": "8\n0 6 1 6 2 1 4 1",
"output": "4\n3\n2\n3\n4\n2\n4\n2\n"
},
{
"input": "5\n0 3 2 2 4",
"output": "1\n1\n0\n0\n1\n"
},
{
"input": "8\n0 3 1 3 2 0 4 1",
"output": "2\n2\n2\n2\n3\n2\n3\n2\n"
},
{
"input": "8\n2 4 1 6 2 0 4 1",
"output": "2\n2\n2\n3\n2\n3\n2\n2\n"
},
{
"input": "8\n1 0 1 0 2 0 4 1",
"output": "4\n4\n4\n4\n6\n4\n6\n4\n"
},
{
"input": "8\n1 1 1 3 1 0 3 1",
"output": "7\n7\n7\n10\n7\n11\n10\n7\n"
},
{
"input": "5\n1 -1 2 0 0",
"output": "1\n1\n1\n0\n0\n"
},
{
"input": "8\n2 1 0 5 0 0 4 1",
"output": "4\n3\n2\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n2 2 0 2 1 0 4 1",
"output": "3\n3\n4\n3\n4\n4\n5\n4\n"
},
{
"input": "4\n0 2 3 2",
"output": "1\n0\n1\n0\n"
},
{
"input": "8\n0 6 1 7 2 1 4 1",
"output": "3\n3\n1\n3\n3\n1\n3\n1\n"
},
{
"input": "8\n0 3 1 3 0 0 4 1",
"output": "3\n4\n4\n4\n3\n3\n5\n4\n"
},
{
"input": "8\n2 4 1 6 2 0 4 0",
"output": "2\n2\n3\n3\n2\n2\n2\n2\n"
},
{
"input": "8\n1 0 1 0 1 0 4 1",
"output": "6\n7\n6\n7\n6\n7\n9\n6\n"
},
{
"input": "5\n1 1 2 -1 0",
"output": "0\n0\n1\n1\n1\n"
},
{
"input": "8\n1 1 0 1 1 0 6 1",
"output": "7\n7\n10\n7\n7\n10\n11\n7\n"
},
{
"input": "8\n2 0 0 5 0 0 4 1",
"output": "6\n3\n3\n6\n3\n3\n6\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 4 1",
"output": "4\n4\n4\n3\n3\n4\n5\n3\n"
},
{
"input": "8\n1 2 1 7 3 1 3 1",
"output": "4\n7\n4\n7\n6\n4\n6\n4\n"
},
{
"input": "8\n0 3 0 3 0 0 4 1",
"output": "4\n6\n4\n6\n4\n4\n7\n7\n"
},
{
"input": "8\n2 4 1 6 2 0 4 -1",
"output": "1\n1\n2\n2\n1\n2\n1\n2\n"
},
{
"input": "8\n1 0 2 0 1 0 4 1",
"output": "4\n4\n6\n4\n4\n4\n6\n4\n"
},
{
"input": "8\n1 1 0 3 1 -1 3 1",
"output": "4\n4\n7\n6\n4\n7\n6\n4\n"
},
{
"input": "5\n1 1 0 -1 0",
"output": "1\n1\n1\n2\n1\n"
},
{
"input": "8\n1 1 0 1 1 1 6 1",
"output": "10\n10\n15\n10\n10\n10\n15\n10\n"
},
{
"input": "8\n2 0 0 5 0 0 0 1",
"output": "10\n6\n6\n10\n6\n6\n6\n10\n"
},
{
"input": "8\n1 2 1 4 1 1 7 1",
"output": "6\n10\n6\n10\n6\n6\n10\n6\n"
},
{
"input": "5\n3 1 1 3 5",
"output": "1\n1\n1\n1\n2\n"
},
{
"input": "8\n-1 3 0 3 0 0 4 1",
"output": "4\n3\n2\n3\n2\n2\n4\n4\n"
},
{
"input": "8\n3 4 1 6 2 0 4 -1",
"output": "1\n0\n1\n1\n1\n1\n0\n1\n"
},
{
"input": "8\n2 1 1 6 0 -1 3 1",
"output": "3\n1\n1\n3\n3\n3\n3\n1\n"
},
{
"input": "8\n1 0 2 1 1 0 4 1",
"output": "4\n6\n7\n4\n4\n6\n7\n4\n"
},
{
"input": "8\n1 2 0 3 1 -1 3 1",
"output": "2\n4\n4\n3\n2\n4\n3\n2\n"
},
{
"input": "5\n1 1 0 0 0",
"output": "3\n3\n2\n2\n2\n"
},
{
"input": "8\n1 1 0 1 2 1 6 1",
"output": "6\n6\n10\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 1",
"output": "6\n6\n5\n5\n5\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 1 1 7 2",
"output": "4\n6\n4\n7\n4\n4\n7\n6\n"
},
{
"input": "5\n2 1 1 3 5",
"output": "1\n0\n0\n1\n1\n"
},
{
"input": "5\n1 4 0 3 2",
"output": "0\n0\n0\n0\n0\n"
},
{
"input": "8\n2 0 1 6 0 0 3 1",
"output": "4\n2\n3\n4\n2\n2\n4\n3\n"
},
{
"input": "8\n1 2 0 3 0 -1 3 1",
"output": "2\n3\n2\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 0 1 2 1 6 1",
"output": "6\n4\n7\n4\n6\n4\n7\n4\n"
},
{
"input": "8\n3 0 0 5 0 1 0 1",
"output": "7\n4\n4\n7\n4\n6\n4\n6\n"
},
{
"input": "8\n2 2 0 1 1 0 0 0",
"output": "7\n7\n5\n7\n7\n5\n5\n5\n"
},
{
"input": "8\n1 2 1 4 0 1 7 2",
"output": "2\n3\n2\n4\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 1 6 0 0 1 1",
"output": "6\n4\n4\n6\n4\n4\n4\n4\n"
},
{
"input": "8\n1 0 2 1 2 0 4 1",
"output": "3\n4\n4\n3\n4\n4\n5\n3\n"
},
{
"input": "8\n2 2 0 3 0 -1 3 1",
"output": "2\n2\n2\n2\n2\n3\n2\n3\n"
},
{
"input": "8\n2 1 0 1 4 1 6 1",
"output": "6\n3\n6\n3\n6\n3\n6\n3\n"
},
{
"input": "8\n3 0 0 5 -1 1 0 1",
"output": "4\n2\n2\n4\n4\n3\n2\n3\n"
},
{
"input": "8\n2 0 0 1 1 0 0 0",
"output": "11\n7\n7\n10\n10\n7\n7\n7\n"
},
{
"input": "5\n2 1 2 4 5",
"output": "0\n1\n0\n1\n1\n"
},
{
"input": "8\n2 0 2 6 0 0 1 1",
"output": "4\n3\n4\n5\n3\n3\n4\n4\n"
},
{
"input": "8\n1 1 2 1 2 0 4 1",
"output": "4\n4\n6\n4\n6\n7\n7\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 3 1",
"output": "2\n2\n3\n2\n2\n3\n2\n2\n"
},
{
"input": "8\n2 1 1 1 4 1 6 1",
"output": "10\n6\n6\n6\n10\n6\n10\n6\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 0",
"output": "7\n4\n4\n6\n6\n7\n4\n4\n"
},
{
"input": "8\n1 2 1 4 0 1 3 4",
"output": "2\n4\n2\n3\n4\n2\n4\n3\n"
},
{
"input": "8\n2 0 2 6 0 1 1 1",
"output": "4\n4\n4\n5\n4\n3\n3\n3\n"
},
{
"input": "8\n1 1 2 2 2 0 4 1",
"output": "4\n4\n4\n4\n4\n6\n6\n4\n"
},
{
"input": "8\n2 2 0 3 1 -1 5 1",
"output": "1\n1\n2\n2\n1\n2\n2\n1\n"
},
{
"input": "8\n2 1 1 2 4 1 6 1",
"output": "6\n4\n4\n6\n7\n4\n7\n4\n"
},
{
"input": "8\n3 0 1 4 -1 1 0 1",
"output": "4\n3\n2\n4\n4\n2\n3\n2\n"
},
{
"input": "8\n2 0 0 1 1 -1 0 1",
"output": "6\n4\n4\n4\n4\n6\n4\n4\n"
}
] |
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.