id
stringclasses
1 value
instruction
stringclasses
206 values
trajectory
listlengths
2
297
length
int64
2
297
public_tests
listlengths
1
6
generated_tests
listlengths
4
100
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i][j] := merge i..j\n", "a = list(map(int, input().split()))\n\n# dp[i][j] := merge i..j\n", "a = list(map(int, input().split()))\n\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\n", "from import \n\na = list(map(int, input().split()))\n\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\n", "from import \n\na = list(map(int, input().split()))\n\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n", "from import \n\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n", "from import \n\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n \nprint(dp[0][N-1])\n", "from import \nN = int(input())\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n \nprint(dp[0][N-1])\n", "from itertools import \nN = int(input())\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n \nprint(dp[0][N-1])\n", "from itertools import \nN = int(input())\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in :\n for i in range(N-l):\n j = i + l\n dp[i][j] = cum[j+1] - cum[i] + min(dp[i][k] + dp[k+1][j] for k in range(i, j))\nprint(dp[0][N-1])\n", "from itertools import \nN = int(input())\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in range(1, N):\n for i in range(N-l):\n j = i + l\n dp[i][j] = cum[j+1] - cum[i] + min(dp[i][k] + dp[k+1][j] for k in range(i, j))\nprint(dp[0][N-1])\n", "from itertools import accumulate\nN = int(input())\na = list(map(int, input().split()))\ncum = [0] + list(accumulate(a))\n# dp[i][j] := merge i..j\ndp = [[0] * N for i in range(N)]\nfor l in range(1, N):\n for i in range(N-l):\n j = i + l\n dp[i][j] = cum[j+1] - cum[i] + min(dp[i][k] + dp[k+1][j] for k in range(i, j))\nprint(dp[0][N-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "##dp[length][start_position]\npre=[]\ntemp=0\n\nlength=1\n", "N=int(input())\n\n\n##dp[length][start_position]\npre=[]\ntemp=0\n\nlength=1\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\n\n##dp[length][start_position]\npre=[]\ntemp=0\n\nlength=1\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\n\n##dp[length][start_position]\npre=[]\ntemp=0\n\nlength=1\nfor i in :\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\n\n##dp[length][start_position]\npre=[]\ntemp=0\n\nlength=1\nfor i in :\n \n\nfor L in :\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\n\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \nlength=1\nfor i in :\n \n\nfor L in :\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\n\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \nlength=1\nfor i in :\n \n\nfor L in :\n \nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \nlength=1\nfor i in :\n \n\nfor L in :\n \nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \n \nlength=1\nfor i in :\n \n\nfor L in :\n \nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \n \nlength=1\nfor i in :\n dp[length][i]=0\n\nfor L in :\n \nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \n \nlength=1\nfor i in :\n dp[length][i]=0\n\nfor L in :\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in :\n \n \nlength=1\nfor i in range(len(A)):\n dp[length][i]=0\n\nfor L in :\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in range(len(A)):\n \n \nlength=1\nfor i in range(len(A)):\n dp[length][i]=0\n\nfor L in :\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in range(len(A)):\n \n \nlength=1\nfor i in range(len(A)):\n dp[length][i]=0\n\nfor L in range(2,len(A)+1):\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in range(len(A)):\n \n pre+=[temp]\nlength=1\nfor i in range(len(A)):\n dp[length][i]=0\n\nfor L in range(2,len(A)+1):\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n", "N=int(input())\nA=list(map(int,input().strip().split(\" \")))\ndp=[[10**20]*len(A) for i in range(0,len(A)+1)]\n##dp[length][start_position]\npre=[]\ntemp=0\nfor i in range(len(A)):\n temp+=A[i]\n pre+=[temp]\nlength=1\nfor i in range(len(A)):\n dp[length][i]=0\n\nfor L in range(2,len(A)+1):\n for start in range(0,len(A)-L+1):\n for j in range(start+1,start+L):\n if start>0:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1]-pre[start-1],dp[L][start])\n else:\n dp[L][start]=min(dp[j-start][start]+dp[L-j+start][j]+pre[start+L-1],dp[L][start])\nprint(dp[len(A)][0])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = int(input())\n", "N = int(input())\nA = list(map(int, input().split()))\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\ndef get_min_cost(i, j):\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\ndef get_min_cost(i, j):\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n if :\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n \n if :\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if :\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if :\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if :\n return dp[i][j]\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n \n \ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n \n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n \nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n \n dp[i][j] = min_cost\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n \n for k in :\n \n\n dp[i][j] = min_cost\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n min_cost = 0\n for k in :\n \n\n dp[i][j] = min_cost\n \n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n min_cost = 0\n for k in :\n \n\n dp[i][j] = min_cost\n return dp[i][j]\n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n min_cost = 0\n for k in range(i, j):\n \n\n dp[i][j] = min_cost\n return dp[i][j]\n\nprint(get_min_cost(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\ndef get_min_cost(i, j):\n global dp\n if dp[i][j] > 0:\n return dp[i][j]\n else:\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = get_min_cost(i, k) + get_min_cost(k+1, j) + cum[i][j]\n else:\n cost = get_min_cost(i, k) + get_min_cost(k+1, j) + cum[i][j]\n min_cost = min(min_cost, cost)\n\n dp[i][j] = min_cost\n return dp[i][j]\n\nprint(get_min_cost(0, N-1))\n" ]
27
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp[0][N])\n", "N = int(input())\n\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nacc = [0] + list(accumulate(A))\n\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\nacc = [0] + list(accumulate(A))\n\nfor w in :\n \n\nprint(dp[0][N])\n", "from import \n\nN = int(input())\nA = list(map(int, input().split()))\n\n\nacc = [0] + list(accumulate(A))\n\nfor w in :\n \n\nprint(dp[0][N])\n", "from import \n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for _ in range(N+1)] for _ in range(N)]\nacc = [0] + list(accumulate(A))\n\nfor w in :\n \n\nprint(dp[0][N])\n", "from import \n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for _ in range(N+1)] for _ in range(N)]\nacc = [0] + list(accumulate(A))\n\nfor w in range(2, N+1):\n \n\nprint(dp[0][N])\n", "from import \n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for _ in range(N+1)] for _ in range(N)]\nacc = [0] + list(accumulate(A))\n\nfor w in range(2, N+1):\n for l in range(N-w+1):\n r = l + w\n dp[l][r] = min([dp[l][m] + dp[m][r] for m in range(l+1, r)]) + acc[r] - acc[l]\n\nprint(dp[0][N])\n", "from itertools import \n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for _ in range(N+1)] for _ in range(N)]\nacc = [0] + list(accumulate(A))\n\nfor w in range(2, N+1):\n for l in range(N-w+1):\n r = l + w\n dp[l][r] = min([dp[l][m] + dp[m][r] for m in range(l+1, r)]) + acc[r] - acc[l]\n\nprint(dp[0][N])\n", "from itertools import accumulate\n\nN = int(input())\nA = list(map(int, input().split()))\n\ndp = [[0 for _ in range(N+1)] for _ in range(N)]\nacc = [0] + list(accumulate(A))\n\nfor w in range(2, N+1):\n for l in range(N-w+1):\n r = l + w\n dp[l][r] = min([dp[l][m] + dp[m][r] for m in range(l+1, r)]) + acc[r] - acc[l]\n\nprint(dp[0][N])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "S = [0]\n", "S = [0]\n\n\ndef dp(i, j):\n", "n = int(input())\n\nS = [0]\n\n\ndef dp(i, j):\n", "n = int(input())\n\nS = [0]\nfor i in range(n):\n \n\ndef dp(i, j):\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \n\ndef dp(i, j):\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \n\ndef dp(i, j):\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n \n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n \n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n \n if :\n \n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n \n if :\n \n DP[i][j] = S[j]-S[i]+min([dp(i, k)+dp(k, j) for k in range(i+1, j)])\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n if j <= i+1:\n return 0\n if :\n \n DP[i][j] = S[j]-S[i]+min([dp(i, k)+dp(k, j) for k in range(i+1, j)])\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n if j <= i+1:\n return 0\n if :\n \n DP[i][j] = S[j]-S[i]+min([dp(i, k)+dp(k, j) for k in range(i+1, j)])\n return DP[i][j]\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n if j <= i+1:\n return 0\n if DP[i][j] != None:\n \n DP[i][j] = S[j]-S[i]+min([dp(i, k)+dp(k, j) for k in range(i+1, j)])\n return DP[i][j]\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for j in range(n+1)] for i in range(n)]\ndef dp(i, j):\n if j <= i+1:\n return 0\n if DP[i][j] != None:\n return DP[i][j]\n DP[i][j] = S[j]-S[i]+min([dp(i, k)+dp(k, j) for k in range(i+1, j)])\n return DP[i][j]\nprint(dp(0, n))\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# print(D)\n# print(S)\n\n\n# print(D)\n", "A = list(map(int,input().split()))\n\n\n# print(D)\n# print(S)\n\n\n# print(D)\n", "A = list(map(int,input().split()))\n\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "A = list(map(int,input().split()))\n\n\nS = [A[0]]\n\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\n\nA = list(map(int,input().split()))\n\n\nS = [A[0]]\n\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\n\nA = list(map(int,input().split()))\n\n\nS = [A[0]]\n\nS.append(0)\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\n\nA = list(map(int,input().split()))\n\n\nfor i in range(n):\n \n\nS = [A[0]]\n\nS.append(0)\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\n\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\n\nS.append(0)\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\n\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n \nS.append(0)\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n \nS.append(0)\n\n# print(D)\n# print(S)\n\n\nprint(merge(0, n-1))\n# print(D)\n", "input = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n \nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n \n\nprint(merge(0, n-1))\n# print(D)\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n \nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n \n\nprint(merge(0, n-1))\n# print(D)\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n S.append(A[i] + S[-1])\nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n \n\nprint(merge(0, n-1))\n# print(D)\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n \n\nS = [A[0]]\nfor i in :\n S.append(A[i] + S[-1])\nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n if D[l*n + r] != -1:\n return D[l*n + r]\n else:\n ans = float(\"inf\")\n for i in range(l, r):\n ans = min(ans, merge(l, i) + merge(i+1, r) + S[r] - S[l-1])\n D[l*n + r] = ans\n return ans\n\nprint(merge(0, n-1))\n# print(D)\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n D[i*n + i] = 0\n\nS = [A[0]]\nfor i in :\n S.append(A[i] + S[-1])\nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n if D[l*n + r] != -1:\n return D[l*n + r]\n else:\n ans = float(\"inf\")\n for i in range(l, r):\n ans = min(ans, merge(l, i) + merge(i+1, r) + S[r] - S[l-1])\n D[l*n + r] = ans\n return ans\n\nprint(merge(0, n-1))\n# print(D)\n", "import sys\ninput = sys.stdin.readline\n\nn = int(input())\nA = list(map(int,input().split()))\n\nD = [-1] * (n**2)\nfor i in range(n):\n D[i*n + i] = 0\n\nS = [A[0]]\nfor i in range(1, n):\n S.append(A[i] + S[-1])\nS.append(0)\n\n# print(D)\n# print(S)\n\ndef merge(l, r):\n # print(l,r)\n if D[l*n + r] != -1:\n return D[l*n + r]\n else:\n ans = float(\"inf\")\n for i in range(l, r):\n ans = min(ans, merge(l, i) + merge(i+1, r) + S[r] - S[l-1])\n D[l*n + r] = ans\n return ans\n\nprint(merge(0, n-1))\n# print(D)\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(N):\n", "a = list(map(int, input().split()))\n\nfor i in range(N):\n", "a = list(map(int, input().split()))\n\nfor i in range(N):\n \n\nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nfor i in range(N):\n \n\nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[[0,0] for j in range(N)] for i in range(N)]\nfor i in range(N):\n \n\nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[[0,0] for j in range(N)] for i in range(N)]\nfor i in range(N):\n \nfor i in :\n \nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[[0,0] for j in range(N)] for i in range(N)]\nfor i in range(N):\n dp[i][i] = [a[i],0]\nfor i in :\n \nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[[0,0] for j in range(N)] for i in range(N)]\nfor i in range(N):\n dp[i][i] = [a[i],0]\nfor i in :\n for j in range(N-i):\n Num = 0\n Num2 = 10**13\n for k in range(j, j+i):\n num2 = dp[j][k][1]+dp[k+1][j+i][1]+dp[j][k][0]+dp[k+1][j+i][0]\n if Num2 > num2:\n Num2 = num2\n Num = dp[j][k][0]+dp[k+1][j+i][0]\n dp[j][j+i] = [Num, Num2]\nprint(dp[0][N-1][1])\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[[0,0] for j in range(N)] for i in range(N)]\nfor i in range(N):\n dp[i][i] = [a[i],0]\nfor i in range(1,N):\n for j in range(N-i):\n Num = 0\n Num2 = 10**13\n for k in range(j, j+i):\n num2 = dp[j][k][1]+dp[k+1][j+i][1]+dp[j][k][0]+dp[k+1][j+i][0]\n if Num2 > num2:\n Num2 = num2\n Num = dp[j][k][0]+dp[k+1][j+i][0]\n dp[j][j+i] = [Num, Num2]\nprint(dp[0][N-1][1])\n" ]
10
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print (dp[0][N - 1])\n", "A = [0] + list(map(int, input().split()))\n\n\nprint (dp[0][N - 1])\n", "A = [0] + list(map(int, input().split()))\n\n\nfor i in range(N):\n \n\nprint (dp[0][N - 1])\n", "A = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\n\nfor i in range(N):\n \n\nprint (dp[0][N - 1])\n", "A = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n \n\nprint (dp[0][N - 1])\n", "A = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n \n\nfor j in :\n \n\nprint (dp[0][N - 1])\n", "N = int(input())\nA = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n \n\nfor j in :\n \n\nprint (dp[0][N - 1])\n", "N = int(input())\nA = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n \n\nfor j in range(1, N):\n \n\nprint (dp[0][N - 1])\n", "N = int(input())\nA = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n A[i + 1] += A[i]\n\nfor j in range(1, N):\n \n\nprint (dp[0][N - 1])\n", "N = int(input())\nA = [0] + list(map(int, input().split()))\n\nINF = 10 ** 18\n\ndp = [[0] * (N) for _ in range(N)]\n\nfor i in range(N):\n A[i + 1] += A[i]\n\nfor j in range(1, N):\n for i in range(N - j):\n tmp = INF\n for k in range(i, i + j):\n # print (i, i + j, k + 1)\n tmp = min(tmp, dp[i][k] + dp[k + 1][i + j])\n dp[i][i + j] = tmp + A[i + j + 1] - A[i]\n\nprint (dp[0][N - 1])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp(0, N - 1))\n", "N, *A = map(int, open(0).read().split())\n\n\nprint(dp(0, N - 1))\n", "from import \n\nN, *A = map(int, open(0).read().split())\n\n\nprint(dp(0, N - 1))\n", "from import \n\nN, *A = map(int, open(0).read().split())\n\n\ndef dp(L, R):\n \n\nprint(dp(0, N - 1))\n", "from import \n\nN, *A = map(int, open(0).read().split())\n\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n\nprint(dp(0, N - 1))\n", "from import \n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n\nprint(dp(0, N - 1))\n", "from import \n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n \nprint(dp(0, N - 1))\n", "from import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n \nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n \nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n \n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n \n\nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n \n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n return memo[L][R]\n\nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n \n if :\n \n\n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n return memo[L][R]\n\nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n if L == R:\n return 0\n if :\n \n\n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n return memo[L][R]\n\nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n if L == R:\n return 0\n if :\n return memo[L][R]\n\n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n return memo[L][R]\n\nprint(dp(0, N - 1))\n", "from itertools import accumulate\n\nN, *A = map(int, open(0).read().split())\n\nS = [0] + list(accumulate(A))\n\nmemo = [[-1] * N for _ in range(N)]\ndef dp(L, R):\n if L == R:\n return 0\n if memo[L][R] >= 0:\n return memo[L][R]\n\n memo[L][R] = min(dp(L, c) + dp(c + 1, R) + S[R + 1] - S[L] for c in range(L, R))\n return memo[L][R]\n\nprint(dp(0, N - 1))\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "import itertools\n", "import itertools\ninf=float(\"inf\")\n", "import itertools\ninf=float(\"inf\")\n\na=list(map(int,input().split()))\n", "import itertools\ninf=float(\"inf\")\n\na=list(map(int,input().split()))\n\n\ndp=[[0]*n for i in range(n)]\n", "import itertools\ninf=float(\"inf\")\n\na=list(map(int,input().split()))\n\n\ndp=[[0]*n for i in range(n)]\nfor l in :\n", "import itertools\ninf=float(\"inf\")\n\na=list(map(int,input().split()))\n\n\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\n\n\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\n\na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\nfor i in :\n \na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\nfor i in range(1,n):\n \na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\nfor i in range(1,n):\n a[i]+=a[i-1]\na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in :\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\nfor i in range(1,n):\n a[i]+=a[i-1]\na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in range(1,n):\n \nprint(dp[0][n-1])\n", "import itertools\ninf=float(\"inf\")\nn=int(input())\na=list(map(int,input().split()))\nfor i in range(1,n):\n a[i]+=a[i-1]\na.append(0)\ndp=[[0]*n for i in range(n)]\nfor l in range(1,n):\n for right in range(l,n):\n left=right-l\n num=inf\n for mid in range(left,right):\n num=min(num,dp[left][mid]+dp[mid+1][right])\n dp[left][right]=num+a[right]-a[left-1]\nprint(dp[0][n-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in :\n", "cumsum = [0] * N\n\nfor i in :\n", "cumsum = [0] * N\n\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n", "cumsum = [0] * N\n\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n", "a = [int(x) for x in input().split()]\n\ncumsum = [0] * N\n\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n", "a = [int(x) for x in input().split()]\n\ncumsum = [0] * N\n\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\n\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\ncumsum[0] = a[0]\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\ncumsum[0] = a[0]\nfor i in :\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n for i in range(N-1):\n if i + j >= N:\n break\n minimum = float('inf')\n for k in range(j):\n #print('i:',i,' j:',j,' k:',k,' i+k:',i+k,' j-k:',j-k)\n temp = dp[i][k] + dp[i+k+1][j-k-1]\n if minimum > temp:\n minimum = temp\n dp[i][j] = minimum + (cumsum[i+j] - cumsum[i-1] if i > 0 else cumsum[i+j])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\ncumsum[0] = a[0]\nfor i in :\n cumsum[i] = cumsum[i-1] + a[i]\n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n for i in range(N-1):\n if i + j >= N:\n break\n minimum = float('inf')\n for k in range(j):\n #print('i:',i,' j:',j,' k:',k,' i+k:',i+k,' j-k:',j-k)\n temp = dp[i][k] + dp[i+k+1][j-k-1]\n if minimum > temp:\n minimum = temp\n dp[i][j] = minimum + (cumsum[i+j] - cumsum[i-1] if i > 0 else cumsum[i+j])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\ncumsum[0] = a[0]\nfor i in range(1, N):\n cumsum[i] = cumsum[i-1] + a[i]\n\ndp = [[0] * N for _ in range(N)]\n\nfor j in :\n for i in range(N-1):\n if i + j >= N:\n break\n minimum = float('inf')\n for k in range(j):\n #print('i:',i,' j:',j,' k:',k,' i+k:',i+k,' j-k:',j-k)\n temp = dp[i][k] + dp[i+k+1][j-k-1]\n if minimum > temp:\n minimum = temp\n dp[i][j] = minimum + (cumsum[i+j] - cumsum[i-1] if i > 0 else cumsum[i+j])\n\nprint(dp[0][N-1])\n", "N = int(input())\na = [int(x) for x in input().split()]\n\ncumsum = [0] * N\ncumsum[0] = a[0]\nfor i in range(1, N):\n cumsum[i] = cumsum[i-1] + a[i]\n\ndp = [[0] * N for _ in range(N)]\n\nfor j in range(1, N):\n for i in range(N-1):\n if i + j >= N:\n break\n minimum = float('inf')\n for k in range(j):\n #print('i:',i,' j:',j,' k:',k,' i+k:',i+k,' j-k:',j-k)\n temp = dp[i][k] + dp[i+k+1][j-k-1]\n if minimum > temp:\n minimum = temp\n dp[i][j] = minimum + (cumsum[i+j] - cumsum[i-1] if i > 0 else cumsum[i+j])\n\nprint(dp[0][N-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(N):\n", "dp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n", "dp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\nprint(main(0, N-1))\n", "A = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\nprint(main(0, N-1))\n", "A = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef main(l, r):\n \n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef main(l, r):\n \n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n \n\ndef main(l, r):\n \n \nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n \n \nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n \nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n \n \nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n \n \n dp[l][r] = ret\n \n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n for i in :\n \n \n dp[l][r] = ret\n \n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n for i in :\n \n ret += sum(A[l:r+1])\n dp[l][r] = ret\n \n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n for i in :\n \n ret += sum(A[l:r+1])\n dp[l][r] = ret\n return ret\n\n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n for i in :\n ret = min(ret, main(l, i)+main(i+1, r))\n ret += sum(A[l:r+1])\n dp[l][r] = ret\n return ret\n\n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n \n ret = 10**15\n for i in range(l, r):\n ret = min(ret, main(l, i)+main(i+1, r))\n ret += sum(A[l:r+1])\n dp[l][r] = ret\n return ret\n\n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if :\n return dp[l][r]\n ret = 10**15\n for i in range(l, r):\n ret = min(ret, main(l, i)+main(i+1, r))\n ret += sum(A[l:r+1])\n dp[l][r] = ret\n return ret\n\n\nprint(main(0, N-1))\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[-1]*N for _ in range(N)]\nfor i in range(N):\n dp[i][i] = 0\n\n\ndef main(l, r):\n if dp[l][r] != -1:\n return dp[l][r]\n ret = 10**15\n for i in range(l, r):\n ret = min(ret, main(l, i)+main(i+1, r))\n ret += sum(A[l:r+1])\n dp[l][r] = ret\n return ret\n\n\nprint(main(0, N-1))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for j in :\n", "n = int(input())\n\n\nfor j in :\n", "n = int(input())\n\n\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\n\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\n\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\n\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \n\nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \nfor i in :\n \nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \nfor i in :\n \nfor j in range(2,n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \nfor i in :\n \nfor j in range(2,n+1):\n for i in range(n+1-j):\n for k in range(j):\n dp[i][i+j] = min(dp[i][i+k] +dp[i+k][i+j] + rui[i+j]-rui[i],dp[i][i+j])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n \nfor i in range(n+1):\n \nfor j in range(2,n+1):\n for i in range(n+1-j):\n for k in range(j):\n dp[i][i+j] = min(dp[i][i+k] +dp[i+k][i+j] + rui[i+j]-rui[i],dp[i][i+j])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n rui[i+1] = rui[i] + a[i]\nfor i in range(n+1):\n \nfor j in range(2,n+1):\n for i in range(n+1-j):\n for k in range(j):\n dp[i][i+j] = min(dp[i][i+k] +dp[i+k][i+j] + rui[i+j]-rui[i],dp[i][i+j])\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\ndp = [[float(\"inf\")] * (n+1) for i in range(n+1)]\nrui = [0] * (n+1)\nfor i in range(n):\n rui[i+1] = rui[i] + a[i]\nfor i in range(n+1):\n for j in [-1,0,1]:\n if i + j > n:\n continue\n if i+j < 0:\n continue\n dp[i][i+j] = 0\nfor j in range(2,n+1):\n for i in range(n+1-j):\n for k in range(j):\n dp[i][i+j] = min(dp[i][i+k] +dp[i+k][i+j] + rui[i+j]-rui[i],dp[i][i+j])\nprint(dp[0][n])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a = list(map(int,input().split()))\n", "a = list(map(int,input().split()))\n\n\nfor j in :\n", "a = list(map(int,input().split()))\n\n\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\na = list(map(int,input().split()))\n\n\nfor i in range(n):\n \n\nfor j in :\n", "n = int(input())\na = list(map(int,input().split()))\n\n\nfor i in range(n):\n \n\nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n \n\nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n \n\nfor i in range(n):\n \n\nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n \n\ndp = [[1e100]*(n+1) for _ in range(n+1)]\n\nfor i in range(n):\n \n\nfor j in :\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n \n\ndp = [[1e100]*(n+1) for _ in range(n+1)]\n\nfor i in range(n):\n \n\nfor j in range(2,n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n asum[i+1] = asum[i] + a[i]\n\ndp = [[1e100]*(n+1) for _ in range(n+1)]\n\nfor i in range(n):\n \n\nfor j in range(2,n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n asum[i+1] = asum[i] + a[i]\n\ndp = [[1e100]*(n+1) for _ in range(n+1)]\n\nfor i in range(n):\n dp[i][i+1] = 0\n\nfor j in range(2,n+1):\n \nprint(dp[0][n])\n", "n = int(input())\na = list(map(int,input().split()))\n\nasum = [0]*(n+1)\nfor i in range(n):\n asum[i+1] = asum[i] + a[i]\n\ndp = [[1e100]*(n+1) for _ in range(n+1)]\n\nfor i in range(n):\n dp[i][i+1] = 0\n\nfor j in range(2,n+1):\n for i in range(n+1-j):\n temp = 1e100\n for k in range(1,j):\n temp = min(temp, dp[i][i+k] + dp[i+k][i+j] + asum[i+j] - asum[i])\n dp[i][i+j] = temp\nprint(dp[0][n])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp[0][N-1])\n", "a = [0]+[int(x) for x in input().split()]\n\n\nprint(dp[0][N-1])\n", "a = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "a = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \n\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \n\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \nfor k in :\n \nprint(dp[0][N-1])\n", "INF = float('inf')\nN = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \nfor k in :\n \nprint(dp[0][N-1])\n", "INF = float('inf')\nN = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n \nfor k in :\n for i in range(N-k):\n for j in range(k):\n dp[i][i+k] = min(dp[i][i+k], dp[i][i+j]+dp[i+j+1][i+k]+a[i+k+1]-a[i])\nprint(dp[0][N-1])\n", "INF = float('inf')\nN = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\nfor k in :\n for i in range(N-k):\n for j in range(k):\n dp[i][i+k] = min(dp[i][i+k], dp[i][i+j]+dp[i+j+1][i+k]+a[i+k+1]-a[i])\nprint(dp[0][N-1])\n", "INF = float('inf')\nN = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n \ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\nfor k in range(1, N):\n for i in range(N-k):\n for j in range(k):\n dp[i][i+k] = min(dp[i][i+k], dp[i][i+j]+dp[i+j+1][i+k]+a[i+k+1]-a[i])\nprint(dp[0][N-1])\n", "INF = float('inf')\nN = int(input())\na = [0]+[int(x) for x in input().split()]\nfor i in range(N):\n a[i+1] += a[i]\ndp = [[INF] * N for i in range(N)]\nfor i in range(N):\n dp[i][i] = 0\nfor k in range(1, N):\n for i in range(N-k):\n for j in range(k):\n dp[i][i+k] = min(dp[i][i+k], dp[i][i+j]+dp[i+j+1][i+k]+a[i+k+1]-a[i])\nprint(dp[0][N-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[n-1][n-1] = 0\n\n\n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\n", "dp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\n\n\n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\n", "dp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\n\n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\n", "dp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\n\n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "dp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "lrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "a = list(map(int, input().split( )))\n\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\n\n\na = list(map(int, input().split( )))\n\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\n\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\n\n\na = list(map(int, input().split( )))\n\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\n\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\n\n\na = list(map(int, input().split( )))\n\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\n\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n \n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in :\n for j in range(i,n):\n s[i][j] = sum(a[i:j+1])\n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n \n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in range(n+1):\n for j in range(i,n):\n s[i][j] = sum(a[i:j+1])\n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n #\n #dp[i][i+1] = a[i]+a[i+1]\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in range(n+1):\n for j in range(i,n):\n s[i][j] = sum(a[i:j+1])\n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n \n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n #\n #dp[i][i+1] = a[i]+a[i+1]\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in range(n+1):\n for j in range(i,n):\n s[i][j] = sum(a[i:j+1])\n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n for i in range(n-d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d],dp[i][i+k]+dp[i+k+1][i+d]+s[i][i+d])###\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n", "import heapq\nn = int(input())\n\na = list(map(int, input().split( )))\na.append(0)\nlrg =10**13\ndp= [[lrg]*n for _ in range(n)]\n\nfor i in range(n):\n dp[i][i] = 0 #\n #dp[i][i+1] = a[i]+a[i+1]\n#dp[n-1][n-1] = 0\ns = [[0]*(n+1) for i in range(n+1)]\nfor i in range(n+1):\n for j in range(i,n):\n s[i][j] = sum(a[i:j+1])\n#for i in range(n+1):\n# print(*s[i])\nfor d in range(n):#n-1ではない\n for i in range(n-d):\n for k in range(d):\n dp[i][i+d] = min(dp[i][i+d],dp[i][i+k]+dp[i+k+1][i+d]+s[i][i+d])###\n#for i in range(n):\n# print(*dp[i])\nprint(dp[0][n-1])\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp[0][n])\n", "dp=[[INF for i in range(n+1)] for j in range(n+1)]\n\n\nprint(dp[0][n])\n", "INF=1001001001001\n\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\n\n\nprint(dp[0][n])\n", "INF=1001001001001\n\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\n\n\nprint(dp[0][n])\n", "INF=1001001001001\nn=int(input())\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\n\n\nprint(dp[0][n])\n", "from import \nINF=1001001001001\nn=int(input())\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\n\n\nprint(dp[0][n])\n", "from import \nINF=1001001001001\nn=int(input())\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\n\nfor gap in :\n \nprint(dp[0][n])\n", "from import \nINF=1001001001001\nn=int(input())\n\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n])\n", "from import \nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n])\n", "from import \nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in :\n for l in range(n-gap+1):\n r=l+gap\n dp[l][r]=wa[r]-wa[l]+min(dp[l][k]+dp[k][r] for k in range(l+1,r))\nprint(dp[0][n])\n", "from import accumulate\nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in :\n for l in range(n-gap+1):\n r=l+gap\n dp[l][r]=wa[r]-wa[l]+min(dp[l][k]+dp[k][r] for k in range(l+1,r))\nprint(dp[0][n])\n", "from import accumulate\nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in range(2,n+1):\n for l in range(n-gap+1):\n r=l+gap\n dp[l][r]=wa[r]-wa[l]+min(dp[l][k]+dp[k][r] for k in range(l+1,r))\nprint(dp[0][n])\n", "from itertools import accumulate\nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n \nfor gap in range(2,n+1):\n for l in range(n-gap+1):\n r=l+gap\n dp[l][r]=wa[r]-wa[l]+min(dp[l][k]+dp[k][r] for k in range(l+1,r))\nprint(dp[0][n])\n", "from itertools import accumulate\nINF=1001001001001\nn=int(input())\na=list(map(int,input().split()))\ndp=[[INF for i in range(n+1)] for j in range(n+1)]\nwa=[0]+list(accumulate(a))\nfor i in range(n):\n dp[i][i+1]=0\nfor gap in range(2,n+1):\n for l in range(n-gap+1):\n r=l+gap\n dp[l][r]=wa[r]-wa[l]+min(dp[l][k]+dp[k][r] for k in range(l+1,r))\nprint(dp[0][n])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#print(CSUM)\n\n\n#print(dp)\n", "CSUM[0] = A[0]\n\n#print(CSUM)\n\n\n#print(dp)\n", "CSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\n\n\n#print(dp)\n", "N = int(input())\n\n\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\n\n\n#print(dp)\n", "N = int(input())\n\n\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\n\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\n\n#print(dp)\n", "N = int(input())\n\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\n\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\n\n#print(dp)\n", "N = int(input())\n\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\ndef csum(i,j):\n \n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\n\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\ndef csum(i,j):\n \n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\n\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\ndef csum(i,j):\n \n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\ndef csum(i,j):\n \n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in :\n \n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in :\n \n#print(CSUM)\ndef csum(i,j):\n if i == 0:\n return CSUM[j]\n else:\n return CSUM[j]-CSUM[i-1]\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in :\n \n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in range(1,N):\n \n#print(CSUM)\ndef csum(i,j):\n if i == 0:\n return CSUM[j]\n else:\n return CSUM[j]-CSUM[i-1]\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in :\n \n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in range(1,N):\n \n#print(CSUM)\ndef csum(i,j):\n if i == 0:\n return CSUM[j]\n else:\n return CSUM[j]-CSUM[i-1]\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in range(1,N):\n \n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in range(1,N):\n \n#print(CSUM)\ndef csum(i,j):\n if i == 0:\n return CSUM[j]\n else:\n return CSUM[j]-CSUM[i-1]\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in range(1,N):\n for i in range(N-k):\n j = i+k\n tmp = 10**18\n for l in range(i,j):\n tmp = min(tmp,dp[i][l]+dp[l+1][j] + csum(i,j))\n dp[i][j] = tmp\n\nprint(dp[0][N-1])\n#print(dp)\n", "N = int(input())\nA = list(map(int,input().split()))\n\nCSUM = [0 for _ in range(N)]\nCSUM[0] = A[0]\nfor i in range(1,N):\n CSUM[i] = CSUM[i-1] + A[i]\n#print(CSUM)\ndef csum(i,j):\n if i == 0:\n return CSUM[j]\n else:\n return CSUM[j]-CSUM[i-1]\n\ndp = [[0 for _ in range(N)] for _ in range(N)]\n\nfor k in range(1,N):\n for i in range(N-k):\n j = i+k\n tmp = 10**18\n for l in range(i,j):\n tmp = min(tmp,dp[i][l]+dp[l+1][j] + csum(i,j))\n dp[i][j] = tmp\n\nprint(dp[0][N-1])\n#print(dp)\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(o[span]-aa[-1])\n", "N = int(input())\n\n\nprint(o[span]-aa[-1])\n", "N = int(input())\n\n\nINF = 10**19\n\n\nprint(o[span]-aa[-1])\n", "N = int(input())\n\no = [0]*(N**2)\nINF = 10**19\n\n\nprint(o[span]-aa[-1])\n", "N = int(input())\n\no = [0]*(N**2)\nINF = 10**19\n\naa = [0] + list(accumulate(As))\n\n\nprint(o[span]-aa[-1])\n", "N = int(input())\n\no = [0]*(N**2)\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\n\nprint(o[span]-aa[-1])\n", "N = int(input())\n\no = [0]*(N**2)\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in :\n \nprint(o[span]-aa[-1])\n", "N = int(input())\nAs = list(map(int, input().split()))\no = [0]*(N**2)\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in :\n \nprint(o[span]-aa[-1])\n", "N = int(input())\nAs = list(map(int, input().split()))\no = [0]*(N**2)\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in :\n for j in range(N-i+1):\n span = (i-1)*N+j\n # 長さi, 開始位置jの合成コスト+構成要素の和\n if i == 1:\n o[span] = As[j]\n continue\n C = INF\n for k in range(1, i):\n # 長さ,開始位置=(k,j)と(i-k,j+k)\n span1, span2 = (k-1)*N+j, (i-k-1)*N+j+k\n C = min(C, o[span1]+o[span2])\n o[span] = C + aa[(j+i-1)+1] - aa[(j-1)+1]\nprint(o[span]-aa[-1])\n", "N = int(input())\nAs = list(map(int, input().split()))\no = [0]*(N**2)\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in range(1, N+1):\n for j in range(N-i+1):\n span = (i-1)*N+j\n # 長さi, 開始位置jの合成コスト+構成要素の和\n if i == 1:\n o[span] = As[j]\n continue\n C = INF\n for k in range(1, i):\n # 長さ,開始位置=(k,j)と(i-k,j+k)\n span1, span2 = (k-1)*N+j, (i-k-1)*N+j+k\n C = min(C, o[span1]+o[span2])\n o[span] = C + aa[(j+i-1)+1] - aa[(j-1)+1]\nprint(o[span]-aa[-1])\n", "N = int(input())\nAs = list(map(int, input().split()))\no = [0]*(N**2)\nINF = 10**19\nfrom import accumulate\naa = [0] + list(accumulate(As))\n\nfor i in range(1, N+1):\n for j in range(N-i+1):\n span = (i-1)*N+j\n # 長さi, 開始位置jの合成コスト+構成要素の和\n if i == 1:\n o[span] = As[j]\n continue\n C = INF\n for k in range(1, i):\n # 長さ,開始位置=(k,j)と(i-k,j+k)\n span1, span2 = (k-1)*N+j, (i-k-1)*N+j+k\n C = min(C, o[span1]+o[span2])\n o[span] = C + aa[(j+i-1)+1] - aa[(j-1)+1]\nprint(o[span]-aa[-1])\n", "N = int(input())\nAs = list(map(int, input().split()))\no = [0]*(N**2)\nINF = 10**19\nfrom itertools import accumulate\naa = [0] + list(accumulate(As))\n\nfor i in range(1, N+1):\n for j in range(N-i+1):\n span = (i-1)*N+j\n # 長さi, 開始位置jの合成コスト+構成要素の和\n if i == 1:\n o[span] = As[j]\n continue\n C = INF\n for k in range(1, i):\n # 長さ,開始位置=(k,j)と(i-k,j+k)\n span1, span2 = (k-1)*N+j, (i-k-1)*N+j+k\n C = min(C, o[span1]+o[span2])\n o[span] = C + aa[(j+i-1)+1] - aa[(j-1)+1]\nprint(o[span]-aa[-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(main())\n", "def main():\n \n\nprint(main())\n", "def main():\n \n \nprint(main())\n", "def main():\n N = int(input())\n \n \nprint(main())\n", "def main():\n N = int(input())\n \n \n for i in range(N):\n \n \nprint(main())\n", "def main():\n N = int(input())\n \n \n for i in range(N):\n \n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n \n \n for i in :\n \n for i in range(N):\n \n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n \n \n s = [[0] * (N+1) for _ in range(N+1)]\n for i in :\n \n for i in range(N):\n \n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n \n s = [[0] * (N+1) for _ in range(N+1)]\n for i in :\n \n for i in range(N):\n \n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in :\n \n for i in range(N):\n \n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in :\n \n for i in range(N):\n \n for j in :\n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in :\n \n for i in range(N):\n \n for j in range(2, N+1):\n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in range(N-1):\n \n for i in range(N):\n \n for j in range(2, N+1):\n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in range(N-1):\n for j in range(i+1, N+1):\n s[i][j] = s[i][j-1] + a[j-1]\n for i in range(N):\n \n for j in range(2, N+1):\n \n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in range(N-1):\n for j in range(i+1, N+1):\n s[i][j] = s[i][j-1] + a[j-1]\n for i in range(N):\n \n for j in range(2, N+1):\n for i in range(N):\n m = i + j\n if m > N:\n continue\n l[i][m] = min(l[i][k] + l[k][m] for k in range(i+1, m)) + s[i][m]\n return l[0][-1]\n\nprint(main())\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n l = [[10**9+1] * (N+1) for _ in range(N+1)]\n s = [[0] * (N+1) for _ in range(N+1)]\n for i in range(N-1):\n for j in range(i+1, N+1):\n s[i][j] = s[i][j-1] + a[j-1]\n for i in range(N):\n l[i][i+1] = 0\n for j in range(2, N+1):\n for i in range(N):\n m = i + j\n if m > N:\n continue\n l[i][m] = min(l[i][k] + l[k][m] for k in range(i+1, m)) + s[i][m]\n return l[0][-1]\n\nprint(main())\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\n\nacc = list(it.accumulate([0] + xs))\n\n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\n\nacc = list(it.accumulate([0] + xs))\n\n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\n\nacc = list(it.accumulate([0] + xs))\n\n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\n\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\n\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\n\nfor i in range(N):\n \n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\ndp = [[INF] * (N + 1) for _ in range(N)]\n\nfor i in range(N):\n \n\nfor w in :\n \n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\ndp = [[INF] * (N + 1) for _ in range(N)]\n\nfor i in range(N):\n \n\nfor w in :\n for i in range(N - w + 1):\n j = i + w\n subcost = min(dp[i][k] + dp[k][j] for k in range(i + 1, j))\n dp[i][j] = subcost + acc[j] - acc[i]\n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\ndp = [[INF] * (N + 1) for _ in range(N)]\n\nfor i in range(N):\n dp[i][i + 1] = 0\n\nfor w in :\n for i in range(N - w + 1):\n j = i + w\n subcost = min(dp[i][k] + dp[k][j] for k in range(i + 1, j))\n dp[i][j] = subcost + acc[j] - acc[i]\n\nprint(dp[0][N])\n", "# https://atcoder.jp/contests/dp/tasks/dp_n\n\nimport itertools as it\n\nINF = 1 << 62\nN = int(input())\nxs = [int(s) for s in input().split()]\nacc = list(it.accumulate([0] + xs))\n\ndp = [[INF] * (N + 1) for _ in range(N)]\n\nfor i in range(N):\n dp[i][i + 1] = 0\n\nfor w in range(2, N + 1):\n for i in range(N - w + 1):\n j = i + w\n subcost = min(dp[i][k] + dp[k][j] for k in range(i + 1, j))\n dp[i][j] = subcost + acc[j] - acc[i]\n\nprint(dp[0][N])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "findsum(li)\n", "def findans:\n \n\nfindsum(li)\n", "def findans:\n \n\nfindsum(li)\n\nprint(findans(0,n-1,li))\n", "import sys\n\n\ndef findans:\n \n\nfindsum(li)\n\nprint(findans(0,n-1,li))\n", "import sys\n\n\ndef findans:\n \n\nli=[int(k) for k in input().split()]\n\nfindsum(li)\n\nprint(findans(0,n-1,li))\n", "import sys\n\nINF = float(\"inf\")\n\n\ndef findans:\n \n\nli=[int(k) for k in input().split()]\n\nfindsum(li)\n\nprint(findans(0,n-1,li))\n", "import sys\n\nINF = float(\"inf\")\n\n\ndef findans:\n \n\nli=[int(k) for k in input().split()]\n\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\n\nINF = float(\"inf\")\n\n\ndef findans:\n \n\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\n\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \ndef findans:\n \n\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\n\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \ndef findans:\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \ndef findans:\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \ndef findans:\n \n #print(\"HI\")\n \n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \n #print(tot)\n\ndef findans:\n \n #print(\"HI\")\n \n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \n #print(tot)\n\ndef findans(start,end,li):\n \n #print(\"HI\")\n \n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \n #print(tot)\n\ndef findans(start,end,li):\n \n #print(\"HI\")\n \n \n ans = INF\n \n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n \n \n ans = INF\n \n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n \n \n ans = INF\n \n dp[start][end]=ans+(tot[end+1]-tot[start])\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n \n \n ans = INF\n \n dp[start][end]=ans+(tot[end+1]-tot[start])\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n \n if:\n \n ans = INF\n \n dp[start][end]=ans+(tot[end+1]-tot[start])\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n \n if:\n \n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if:\n return 0\n if:\n \n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n \nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if:\n return 0\n if:\n \n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if:\n \n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n \n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if:\n return dp[start][end]\n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n tot[i]=tot[i-1]+li[i-1]\n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if:\n return dp[start][end]\n ans = INF\n for k in :\n\n\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n tot[i]=tot[i-1]+li[i-1]\n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if:\n return dp[start][end]\n ans = INF\n for k in :\n\n\n ans=min(findans(start,k,li)+findans(k+1,end,li),ans)\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in :\n tot[i]=tot[i-1]+li[i-1]\n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if(dp[start][end]!=-1):\n return dp[start][end]\n ans = INF\n for k in :\n\n\n ans=min(findans(start,k,li)+findans(k+1,end,li),ans)\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in range(1,len(li)+1):\n tot[i]=tot[i-1]+li[i-1]\n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if(dp[start][end]!=-1):\n return dp[start][end]\n ans = INF\n for k in :\n\n\n ans=min(findans(start,k,li)+findans(k+1,end,li),ans)\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n", "import sys\nsys.setrecursionlimit(10**8)\nINF = float(\"inf\")\n\ndef findsum(li):\n\n for i in range(1,len(li)+1):\n tot[i]=tot[i-1]+li[i-1]\n #print(tot)\n\ndef findans(start,end,li):\n global tot\n #print(\"HI\")\n if(start>=end):\n return 0\n if(dp[start][end]!=-1):\n return dp[start][end]\n ans = INF\n for k in range(start,end):\n\n\n ans=min(findans(start,k,li)+findans(k+1,end,li),ans)\n dp[start][end]=ans+(tot[end+1]-tot[start])\n return dp[start][end]\nn=int(input())\nli=[int(k) for k in input().split()]\ntot=[0]*(len(li)+1)\nfindsum(li)\ndp=[[-1 for i in range(n)]for k in range(n)]\nprint(findans(0,n-1,li))\n" ]
30
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 998244353\n", "sys.setrecursionlimit(2147483647)\n\n # 998244353\n", "import sys\nsys.setrecursionlimit(2147483647)\n\n # 998244353\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\n # 998244353\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\n # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\n # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\n # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n \n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n \n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n \n \nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n \n \n for l in range(n):\n \n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n \n\n for l in range(n):\n \n\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n \n\n for l in range(n):\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n \n\n for width in :\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n for i in range(n):\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n \n\n for width in :\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n for i in range(n):\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n dp[l][l + 1] = 0\n\n for width in :\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n for i in range(n):\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n dp[l][l + 1] = 0\n\n for width in range(2, n + 1):\n \n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n for i in range(n):\n \n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n dp[l][l + 1] = 0\n\n for width in range(2, n + 1):\n for l in range(n - width + 1):\n r = l + width\n res = INF\n for m in range(l + 1, r):\n res = min(res, dp[l][m] + dp[m][r] + S[r] - S[l])\n dp[l][r] = res\n\n print(dp[0][n])\nresolve()\n", "import sys\nsys.setrecursionlimit(2147483647)\nINF = float(\"inf\")\nMOD = 10**9 + 7 # 998244353\ninput = lambda:sys.stdin.readline().rstrip()\ndef resolve():\n n = int(input())\n A = list(map(int, input().split()))\n S = [0] * (n + 1)\n for i in range(n):\n S[i + 1] = S[i] + A[i]\n\n dp = [[None] * (n + 1) for _ in range(n + 1)]\n for l in range(n):\n dp[l][l + 1] = 0\n\n for width in range(2, n + 1):\n for l in range(n - width + 1):\n r = l + width\n res = INF\n for m in range(l + 1, r):\n res = min(res, dp[l][m] + dp[m][r] + S[r] - S[l])\n dp[l][r] = res\n\n print(dp[0][n])\nresolve()\n" ]
22
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = int(input())\n", "N = int(input())\n\n\nans = dp[0][N]\n", "inf = float('inf')\n\n\nN = int(input())\n\n\nans = dp[0][N]\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\n\n\nans = dp[0][N]\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\n\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nfor i in range(N):\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n cs = [0]*(len(array)+1)\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in :\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in range(len(array)):\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in range(len(array)):\n cs[i+1] = cs[i] + array[i]\n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor b in range(2,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n" ]
22
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "C = [0]\n", "A = list(map(int,input().split()))\nC = [0]\n", "A = list(map(int,input().split()))\nC = [0]\nfor a in A:\n", "sys.setrecursionlimit(10**8)\n\n\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n", "sys.setrecursionlimit(10**8)\n\n\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n \n\ndef rec(l,r):\n", "sys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n \n\ndef rec(l,r):\n", "sys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n", "sys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \n tmp = min(rec(l+1,r), rec(l,r-1))\n \n \n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \n tmp = min(rec(l+1,r), rec(l,r-1))\n \n \n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n \n \n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n \n \n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n \n if l == r: return 0\n \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n \n \n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n \n \n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n \n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n if r-l == 1: \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n \n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n if r-l == 1: \n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n tmp = min(tmp, rec(l,l+i+1) + rec(l+i+2,r))\n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n if r-l == 1: return A[l] + A[r]\n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in :\n tmp = min(tmp, rec(l,l+i+1) + rec(l+i+2,r))\n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: \n if l == r: return 0\n if r-l == 1: return A[l] + A[r]\n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in range(r-l-2):\n tmp = min(tmp, rec(l,l+i+1) + rec(l+i+2,r))\n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\nA = list(map(int,input().split()))\nC = [0]\nfor a in A:\n C.append(C[-1] + a)\n\ndp = [[0]*N for i in range(N)]\n\ndef rec(l,r):\n if dp[l][r]: return dp[l][r]\n if l == r: return 0\n if r-l == 1: return A[l] + A[r]\n ret = C[r+1] - C[l]\n tmp = min(rec(l+1,r), rec(l,r-1))\n for i in range(r-l-2):\n tmp = min(tmp, rec(l,l+i+1) + rec(l+i+2,r))\n ret += tmp\n dp[l][r] = ret\n return ret\n\nprint(rec(0,N-1))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a = list(map(int, input().split()))\n", "def f(n, a):\n \n\na = list(map(int, input().split()))\n", "def f(n, a):\n \n\nn = int(input())\na = list(map(int, input().split()))\n", "def f(n, a):\n \n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n \nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n \n for i in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n dp = [[0] * n for _ in range(n)]\n for i in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n \n for j in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n \n for d in :\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in :\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in :\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n \n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n k = dpi[d] + dp[d + 1][j]\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n k = dpi[d] + dp[d + 1][j]\n if k < mn:\n mn = k\n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = list(map(int, input().split()))\nprint(f(n, a))\n" ]
23
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a = list(map(int, input().split()))\n", "a = list(map(int, input().split()))\n\n\nfor i in :\n", "N = int(input())\na = list(map(int, input().split()))\n\n\nfor i in :\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\n\n\nfor i in :\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\n\n\nfor i in :\n \n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\n\n\nfor i in :\n \n\nfor w in :\n \n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\nS = [[0 for __ in range(N)] for _ in range(N)]\n\nfor i in :\n \n\nfor w in :\n \n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\nS = [[0 for __ in range(N)] for _ in range(N)]\n\nfor i in :\n for j in range(i, N):\n S[i][j] = sum(a[i:j+1])\n\nfor w in :\n \n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\nS = [[0 for __ in range(N)] for _ in range(N)]\n\nfor i in :\n for j in range(i, N):\n S[i][j] = sum(a[i:j+1])\n\nfor w in :\n for i in range(N):\n j = i + w\n if j >= N:\n break\n\n A[i][j] = min([\n A[i][k] + A[k+1][j] for k in range(i, j)\n ]) + S[i][j]\n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\nS = [[0 for __ in range(N)] for _ in range(N)]\n\nfor i in range(N-1):\n for j in range(i, N):\n S[i][j] = sum(a[i:j+1])\n\nfor w in :\n for i in range(N):\n j = i + w\n if j >= N:\n break\n\n A[i][j] = min([\n A[i][k] + A[k+1][j] for k in range(i, j)\n ]) + S[i][j]\n\nprint(A[0][-1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nA = [[0 for __ in range(N)] for _ in range(N)]\nS = [[0 for __ in range(N)] for _ in range(N)]\n\nfor i in range(N-1):\n for j in range(i, N):\n S[i][j] = sum(a[i:j+1])\n\nfor w in range(1, N):\n for i in range(N):\n j = i + w\n if j >= N:\n break\n\n A[i][j] = min([\n A[i][k] + A[k+1][j] for k in range(i, j)\n ]) + S[i][j]\n\nprint(A[0][-1])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "B = list(accumulate(B))\n", "B = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "B = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "A = list(map(int, input().split()))\n\n\nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "A = list(map(int, input().split()))\n\n\nvisit = [[False]*410 for _ in range(410)]\n\n\nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "A = list(map(int, input().split()))\n\n\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "n = int(input())\nA = list(map(int, input().split()))\n\n\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "import sys\n\n\nn = int(input())\nA = list(map(int, input().split()))\n\n\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\n\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom import \nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import \nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import \nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n \nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n \nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n \n memo[l][r] = res\n \n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n \n res = float('inf')\n \n memo[l][r] = res\n \n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n if :\n \n \n res = float('inf')\n \n memo[l][r] = res\n \n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n \n if :\n \n \n res = float('inf')\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if :\n \n \n res = float('inf')\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if :\n \n visit[l][r] = True\n res = float('inf')\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if :\n \n visit[l][r] = True\n res = float('inf')\n for c in :\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if :\n \n visit[l][r] = True\n res = float('inf')\n for c in range(l, r):\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if :\n return memo[l][r]\n visit[l][r] = True\n res = float('inf')\n for c in range(l, r):\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if visit[l][r]:\n return memo[l][r]\n visit[l][r] = True\n res = float('inf')\n for c in range(l, r):\n \n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n", "import sys\nsys.setrecursionlimit(10**9)\n\nn = int(input())\nA = list(map(int, input().split()))\n\nmemo = [[float('inf')]*410 for _ in range(410)]\nvisit = [[False]*410 for _ in range(410)]\n\nfrom itertools import accumulate\nB = [0]+A\nB = list(accumulate(B))\n\ndef dp(l, r):\n if l == r:\n return 0\n if visit[l][r]:\n return memo[l][r]\n visit[l][r] = True\n res = float('inf')\n for c in range(l, r):\n res = min(res, dp(l, c)+dp(c+1, r)+B[r+1]-B[l])\n memo[l][r] = res\n return res\n\nprint(dp(0, n-1))\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for s in slimes:\n", "N = int(input())\n\n\nfor s in slimes:\n", "N = int(input())\n\n\nfor s in slimes:\n \n\nfor L in :\n", "N = int(input())\n\n\ncum_sum = [0]\nfor s in slimes:\n \n\nfor L in :\n", "N = int(input())\n\n\ncum_sum = [0]\nfor s in slimes:\n \n\nfor L in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nslimes = [int(c) for c in input().split()]\n\ncum_sum = [0]\nfor s in slimes:\n \n\nfor L in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nslimes = [int(c) for c in input().split()]\n\ncum_sum = [0]\nfor s in slimes:\n \ndp = [[0] * N for _ in range(N)]\nfor L in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nslimes = [int(c) for c in input().split()]\n\ncum_sum = [0]\nfor s in slimes:\n \ndp = [[0] * N for _ in range(N)]\nfor L in range(N, -1, -1):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nslimes = [int(c) for c in input().split()]\n\ncum_sum = [0]\nfor s in slimes:\n \ndp = [[0] * N for _ in range(N)]\nfor L in range(N, -1, -1):\n for R in range(L, N):\n if R - L == 0:\n dp[L][R] = 0\n else:\n dp[L][R] = float('infinity')\n for i in range(L, R):\n dp[L][R] = min(dp[L][R], dp[L][i] + dp[i+1][R] + cum_sum[R+1] - cum_sum[L])\n\nprint(dp[0][N-1])\n", "N = int(input())\nslimes = [int(c) for c in input().split()]\n\ncum_sum = [0]\nfor s in slimes:\n cum_sum.append(cum_sum[-1] + s)\ndp = [[0] * N for _ in range(N)]\nfor L in range(N, -1, -1):\n for R in range(L, N):\n if R - L == 0:\n dp[L][R] = 0\n else:\n dp[L][R] = float('infinity')\n for i in range(L, R):\n dp[L][R] = min(dp[L][R], dp[L][i] + dp[i+1][R] + cum_sum[R+1] - cum_sum[L])\n\nprint(dp[0][N-1])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\n\n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\n\n\nfor i in :\n \n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\n\n\nfor i in range(n):\n \nfor i in :\n \n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\n\nINF=10**15\n\nfor i in range(n):\n \nfor i in :\n \n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\n\nfor i in range(n):\n \nfor i in :\n \n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \nfor i in :\n \n\nfor i in :\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \nfor i in :\n \n\nfor i in range(n-1):\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\n\nfor i in range(n-1):\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n \nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\n\nfor i in range(n-1):\n for j in range(i+1,n):\n ans=INF\n # print(j-i-1,j)\n for k in range(j-i-1,j):\n ans=min(ans,dp[j-i-1][k]+dp[k+1][j])\n if i<n-2:\n dp[j-i-1][j]+=ans\n else:\n print(ans)\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\nfor i in :\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\n\nfor i in range(n-1):\n for j in range(i+1,n):\n ans=INF\n # print(j-i-1,j)\n for k in range(j-i-1,j):\n ans=min(ans,dp[j-i-1][k]+dp[k+1][j])\n if i<n-2:\n dp[j-i-1][j]+=ans\n else:\n print(ans)\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nn=int(input())\na=list(map(int,input().split()))\nINF=10**15\ndp=[[0]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=a[i]\nfor i in range(n-1):\n for j in range(i+1,n):\n dp[i][j]=dp[i][j-1]+a[j]\n\nfor i in range(n-1):\n for j in range(i+1,n):\n ans=INF\n # print(j-i-1,j)\n for k in range(j-i-1,j):\n ans=min(ans,dp[j-i-1][k]+dp[k+1][j])\n if i<n-2:\n dp[j-i-1][j]+=ans\n else:\n print(ans)\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# print(sums)\n\ndp = []\n\n\n# print(dp)\n", "# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "sums[0] = arr[0]\n\n\n# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "sums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "arr = list(map(int, input().split()))\n\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "arr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\n\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n \n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n\nfor i in :\n \n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n\nfor i in :\n \n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n \nfor i in :\n \n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n \nfor i in range(1, n):\n \n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in :\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n \nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in range(1, len(sums)):\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n \nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in range(1, len(sums)):\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n for j in range(n):\n \n\nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in range(1, len(sums)):\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n \n for j in range(n):\n \n\n dp.append(temp)\n\n\nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in range(1, len(sums)):\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n temp = []\n for j in range(n):\n \n\n dp.append(temp)\n\n\nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\n\narr = list(map(int, input().split()))\n\n\nsums = [0 for i in range(len(arr))]\n\nsums[0] = arr[0]\n\nfor i in range(1, len(sums)):\n sums[i] = sums[i-1] + arr[i]\n\n# print(sums)\nsums.insert(0, 0)\ndp = []\n\nfor i in range(n):\n temp = []\n for j in range(n):\n temp.append(0)\n\n dp.append(temp)\n\n\nfor i in range(1, n):\n for j in range(0, n-i):\n start = j\n end = start + i\n\n min_ = float('inf')\n for k in range(start, end):\n min_ = min(min_, dp[start][k] + dp[k+1][end] + sums[end+1] - sums[start])\n\n dp[start][end] = min_\n\n# print(dp)\nprint(dp[0][n-1])\n" ]
20
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n main()\n", "def main():\n \n\nif :\n main()\n", "def main():\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n cumsum[0] = A[0]\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n N = int(input())\n \n \n cumsum[0] = A[0]\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n N = int(input())\n \n \n cumsum[0] = A[0]\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n \nif __name__ == '__main__':\n main()\n", "def main():\n \n N = int(input())\n \n \n cumsum[0] = A[0]\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n \n \n cumsum[0] = A[0]\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n \n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n \n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n \n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in :\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in :\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in :\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve:\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in :\n \n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in :\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n ret = dp[left][right]\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n ret = dp[left][right]\n \n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n ret = dp[left][right]\n \n \n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n \n \n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n ret = dp[left][right]\n \n \n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n \n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n \n ret = dp[left][right]\n if ret > 0:\n \n \n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n \n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n \n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n \n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n \n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n ret = INF\n for mid in :\n \n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n ret = INF\n for mid in :\n ret = min([\n ret,\n solve(left, mid) + solve(mid + 1, right)\n ])\n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if left == right:\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n ret = INF\n for mid in :\n ret = min([\n ret,\n solve(left, mid) + solve(mid + 1, right)\n ])\n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if left == right:\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = INF\n for mid in :\n ret = min([\n ret,\n solve(left, mid) + solve(mid + 1, right)\n ])\n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n INF = 10 ** 15\n N = int(input())\n A = list(map(int, input().split(' ')))\n cumsum = [0 for _ in range(N)]\n cumsum[0] = A[0]\n for i in range(1, N):\n cumsum[i] = A[i] + cumsum[i - 1]\n dp = [[0 for _ in range(N)] for _ in range(N)]\n\n def solve(left, right):\n if left == right:\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = INF\n for mid in range(left, right):\n ret = min([\n ret,\n solve(left, mid) + solve(mid + 1, right)\n ])\n ret += cumsum[right] - (cumsum[left - 1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\n print(solve(0, N - 1))\n\n\nif __name__ == '__main__':\n main()\n" ]
30
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "n = int(input())\n", "n = int(input())\n\n\nprint(dp[0][n])\n", "n = int(input())\n\n\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "n = int(input())\naaa = list(map(int, input().split()))\n\n\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\n\n\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\n\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n \nprint(dp[0][n])\n", "from import \n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n \nprint(dp[0][n])\n", "from import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n \nprint(dp[0][n])\n", "from import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n \nfor w in :\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n", "from import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in :\n dp[l][l + 2] = sum(aa)\nfor w in :\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n", "from import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in :\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in :\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate:\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\naaa = list(map(int, input().split()))\nacc = [0] + list(accumulate(aaa))\ndp = [[0] * (n + 1) for _ in range(n)]\nfor l, aa in enumerate(zip(aaa, aaa[1:])):\n dp[l][l + 2] = sum(aa)\nfor w in range(3, n + 1):\n for l in range(n - w + 1):\n r = l + w\n c = acc[r] - acc[l]\n dp[l][r] = min(dp[l][m] + dp[m][r] + c for m in range(l + 1, r))\nprint(dp[0][n])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "b=[0]\n", "n=int(input())\n\nb=[0]\n", "input=sys.stdin.readline\n\nn=int(input())\n\nb=[0]\n", "import sys\ninput=sys.stdin.readline\n\nn=int(input())\n\nb=[0]\n", "import sys\ninput=sys.stdin.readline\n\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\n\n\ndef dfs(l,r):\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\n\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \n \nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \n \nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \n if l==r:return 0\n \n \nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \n if l==r:return 0\n dp[l][r]=b[r+1]-b[l]+min(dfs(l,i)+dfs(i+1,r)for i in range(l,r))\n \nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n \n if l==r:return 0\n dp[l][r]=b[r+1]-b[l]+min(dfs(l,i)+dfs(i+1,r)for i in range(l,r))\n return dp[l][r]\nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n if :\n if l==r:return 0\n dp[l][r]=b[r+1]-b[l]+min(dfs(l,i)+dfs(i+1,r)for i in range(l,r))\n return dp[l][r]\nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n if dp[l][r]!=10**15:\n if l==r:return 0\n dp[l][r]=b[r+1]-b[l]+min(dfs(l,i)+dfs(i+1,r)for i in range(l,r))\n return dp[l][r]\nprint(dfs(0,n-1))\n", "import sys\ninput=sys.stdin.readline\nsys.setrecursionlimit(1000000000)\nn=int(input())\na=list(map(int,input().split()))\nb=[0]\nfor i in a:b.append(i+b[-1])\ndp=[n*[10**15]for _ in range(n)]\ndef dfs(l,r):\n if dp[l][r]!=10**15:return dp[l][r]\n if l==r:return 0\n dp[l][r]=b[r+1]-b[l]+min(dfs(l,i)+dfs(i+1,r)for i in range(l,r))\n return dp[l][r]\nprint(dfs(0,n-1))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "main()\n", "def main():\n \n\nmain()\n", "def main():\n \n \nmain()\n", "def main():\n \n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n \n A = list(map(int, input().split()))\n \n\n print(dp[-1][0])\n\n\nmain()\n", "def main():\n \n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in :\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n \n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n \n for j in :\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in :\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in range(len(A) - i):\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in range(len(A) - i):\n \n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in range(len(A) - i):\n \n dp[i][j] = min(dp[k][j] + dp[i - k - 1][j + k + 1] for k in range(i)) + s\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in range(len(A) - i):\n s += A[i + j]\n dp[i][j] = min(dp[k][j] + dp[i - k - 1][j + k + 1] for k in range(i)) + s\n \n print(dp[-1][0])\n\n\nmain()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n dp = [[0] * (len(A) - i) for i in range(len(A))]\n\n for i in range(1, len(A)):\n s = sum(A[:i])\n for j in range(len(A) - i):\n s += A[i + j]\n dp[i][j] = min(dp[k][j] + dp[i - k - 1][j + k + 1] for k in range(i)) + s\n s -= A[j]\n print(dp[-1][0])\n\n\nmain()\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def main():\n", "import sys\n\n\ndef main():\n", "import sys\n\n\ndef main():\n \n\nif :\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n \n\nif :\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n \n \n b = [0]\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n \n\n b = [0]\n \n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n \n\n b = [0]\n \n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n \n\n b = [0]\n \n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n \n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n \n\n b = [0]\n \n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in :\n \n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n a = list(map(int,input().split()))\n\n b = [0]\n \n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in :\n \n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n a = list(map(int,input().split()))\n\n b = [0]\n for num in a:\n \n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in :\n \n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n a = list(map(int,input().split()))\n\n b = [0]\n for num in a:\n b.append(b[-1]+num)\n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in :\n \n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n a = list(map(int,input().split()))\n\n b = [0]\n for num in a:\n b.append(b[-1]+num)\n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in :\n for j in range(N-i+1):\n dp[j][i] = min(dp[j][k]+dp[j+k][i-k] for k in range(1,i))+b[i+j]-b[j]\n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n", "import sys\ninput = sys.stdin.buffer.readline\n\ndef main():\n N = int(input())\n a = list(map(int,input().split()))\n\n b = [0]\n for num in a:\n b.append(b[-1]+num)\n\n dp = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n for i in range(2,N+1):\n for j in range(N-i+1):\n dp[j][i] = min(dp[j][k]+dp[j+k][i-k] for k in range(1,i))+b[i+j]-b[j]\n\n print(dp[0][-1])\n\nif __name__ == \"__main__\":\n main()\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "n = int(input())\n", "n = int(input())\n\n\nfor i in :\n", "n = int(input())\n\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n", "n = int(input())\n\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "from import \n\nn = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "from import accumulate\n\nn = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in :\n \n\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in range(n)[::-1]:\n \n\nprint(dp[0][n])\n", "from itertools import accumulate\n\nn = int(input())\na = [0] + list(accumulate(map(int, input().split())))\n\ndp = [[0] * (n + 1) for i in range(n + 1)]\n\nfor i in range(n)[::-1]:\n for j in range(i + 1, n + 1):\n if j - i == 1:\n continue\n dp[i][j] = min([dp[i][k] + dp[k][j] for k in range(i + 1, j)])\n dp[i][j] += a[j] - a[i]\n\nprint(dp[0][n])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "c = [0]\n\n\n# print(d)\n# print(c)\n", "c = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\n", "c = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "n = int(input())\n\n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\n\n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\n\n\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\n\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\n\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in :\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in :\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n \n\nc = [0]\nfor aa in a:\n \n\nfor i in range(n - 1, -1, -1):\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\n\nc = [0]\nfor aa in a:\n \n\nfor i in range(n - 1, -1, -1):\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\n\nc = [0]\nfor aa in a:\n c.append(c[-1] + aa)\n\nfor i in range(n - 1, -1, -1):\n \n# print(d)\n# print(c)\nprint(d[0][n - 1])\n", "inf = float('inf')\n\nn = int(input())\na = tuple(int(x) for x in input().split())\n\nd = [[inf] * n for _ in range(n)]\nfor i in range(n):\n d[i][i] = 0\n\nc = [0]\nfor aa in a:\n c.append(c[-1] + aa)\n\nfor i in range(n - 1, -1, -1):\n for j in range(i + 1, n):\n for k in range(i, j):\n # [i, k], (k, j]\n d[i][j] = min(d[i][j], d[i][k] + d[k + 1][j])\n d[i][j] += c[j + 1] - c[i]\n# print(d)\n# print(c)\nprint(d[0][n - 1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[i][j] denotes answer for subarray from i to j\n\n\nsumi=0\n", "#dp[i][j] denotes answer for subarray from i to j\n\n\npref=[0 for i in range(n)]\nsumi=0\n", "#dp[i][j] denotes answer for subarray from i to j\n\n\npref=[0 for i in range(n)]\nsumi=0\n\n\nfor gap in :\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\n\n\npref=[0 for i in range(n)]\nsumi=0\n\n\nfor gap in :\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\n\n\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\n\n\nfor gap in :\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\n\n\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\n\n\nfor gap in :\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\n\n\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\n\nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\n\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\n\nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\n\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \nfor i in range(n):\n \nfor gap in :\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \nfor i in range(n):\n \nfor gap in range(1,n):\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \nfor i in range(n):\n dp[i][i]=0\nfor gap in range(1,n):\n \nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \nfor i in range(n):\n dp[i][i]=0\nfor gap in range(1,n):\n for i in range(n-gap):\n left=i\n right=i+gap\n mina=[]\n if(left==0):\n curr=pref[right]\n else:\n curr=pref[right]-pref[left-1]\n for j in range(left,right):\n mina.append(dp[left][j]+dp[j+1][right]+curr)\n dp[left][right]=min(mina)\nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \n \nfor i in range(n):\n dp[i][i]=0\nfor gap in range(1,n):\n for i in range(n-gap):\n left=i\n right=i+gap\n mina=[]\n if(left==0):\n curr=pref[right]\n else:\n curr=pref[right]-pref[left-1]\n for j in range(left,right):\n mina.append(dp[left][j]+dp[j+1][right]+curr)\n dp[left][right]=min(mina)\nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n \n pref[i]=sumi\nfor i in range(n):\n dp[i][i]=0\nfor gap in range(1,n):\n for i in range(n-gap):\n left=i\n right=i+gap\n mina=[]\n if(left==0):\n curr=pref[right]\n else:\n curr=pref[right]-pref[left-1]\n for j in range(left,right):\n mina.append(dp[left][j]+dp[j+1][right]+curr)\n dp[left][right]=min(mina)\nprint(dp[0][n-1])\n", "#dp[i][j] denotes answer for subarray from i to j\nn=int(input())\nl=input().split()\nli=[int(i) for i in l]\ndp=[[0 for i in range(n)]for i in range(n)]\npref=[0 for i in range(n)]\nsumi=0\nfor i in range(n):\n sumi+=li[i]\n pref[i]=sumi\nfor i in range(n):\n dp[i][i]=0\nfor gap in range(1,n):\n for i in range(n-gap):\n left=i\n right=i+gap\n mina=[]\n if(left==0):\n curr=pref[right]\n else:\n curr=pref[right]-pref[left-1]\n for j in range(left,right):\n mina.append(dp[left][j]+dp[j+1][right]+curr)\n dp[left][right]=min(mina)\nprint(dp[0][n-1])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 累積和\n\n\n# 区間[l, r]の結合を分解し切るコスト\n", "# 累積和\n\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "for aa in a:\n \n# 累積和\n\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "N = int(input())\n\n\nfor aa in a:\n \n# 累積和\n\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "N = int(input())\n\n\nc_sum = [0]\nfor aa in a:\n \n# 累積和\n\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "N = int(input())\n\n\nc_sum = [0]\nfor aa in a:\n \n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n\nN = int(input())\n\n\nc_sum = [0]\nfor aa in a:\n \n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n \n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n \n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n \n t = INF\n \n \nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n if r == l: return 0\n\n t = INF\n \n \nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n if r == l: return 0\n\n t = INF\n \n \n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n if r == l: return 0\n\n t = INF\n \n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n \n if r == l: return 0\n\n t = INF\n for m in :\n \n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n if : \n if r == l: return 0\n\n t = INF\n for m in :\n \n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n if : return memo[l][r]\n if r == l: return 0\n\n t = INF\n for m in :\n \n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n if : return memo[l][r]\n if r == l: return 0\n\n t = INF\n for m in :\n t = min(t, get_cost(l, m) + get_cost(m + 1, r))\n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n if memo[l][r] < INF: return memo[l][r]\n if r == l: return 0\n\n t = INF\n for m in :\n t = min(t, get_cost(l, m) + get_cost(m + 1, r))\n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n", "def get_cost(l, r):\n # 区間[l, r]の結合を分解し切るコスト\n if memo[l][r] < INF: return memo[l][r]\n if r == l: return 0\n\n t = INF\n for m in range(l, r):\n t = min(t, get_cost(l, m) + get_cost(m + 1, r))\n memo[l][r] = t + (c_sum[r] - c_sum[l - 1])\n return memo[l][r]\n\n\nN = int(input())\na = list(map(int, input().split()))\n\nc_sum = [0]\nfor aa in a:\n c_sum.append(c_sum[-1] + aa)\n# 累積和\n\nINF = float('inf')\n\nmemo = [[INF for _ in range(N + 1)] for _ in range(N + 1)]\n# 区間[l, r]の結合を分解し切るコスト\n\nprint(get_cost(1, N))\n" ]
21
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def main():\n", "def main():\n \n\nif :\n main()\n", "INF = 10**18\n\n\ndef main():\n \n\nif :\n main()\n", "INF = 10**18\n\n\ndef main():\n \n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n \nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n \n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n \n dp = [[INF]*(N+1) for _ in range(N)]\n \n\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n \n\n for i in range(N):\n \n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n \n\n for i in range(N):\n \n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n \n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n\n for w in :\n \n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n\n for w in :\n \n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n\n for w in range(2, N+1):\n \n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n\n for w in range(2, N+1):\n for le in range(N-w+1):\n ri = le + w\n for i in range(le+1, ri):\n if dp[le][ri] >= dp[le][i] + dp[i][ri]:\n dp[le][ri] = dp[le][i] + dp[i][ri]\n cost[le][ri] = min(cost[le][ri],\n cost[le][i] + cost[i][ri] + dp[le][ri])\n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n \n for w in range(2, N+1):\n for le in range(N-w+1):\n ri = le + w\n for i in range(le+1, ri):\n if dp[le][ri] >= dp[le][i] + dp[i][ri]:\n dp[le][ri] = dp[le][i] + dp[i][ri]\n cost[le][ri] = min(cost[le][ri],\n cost[le][i] + cost[i][ri] + dp[le][ri])\n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n \n cost[i][i+1] = 0\n\n for w in range(2, N+1):\n for le in range(N-w+1):\n ri = le + w\n for i in range(le+1, ri):\n if dp[le][ri] >= dp[le][i] + dp[i][ri]:\n dp[le][ri] = dp[le][i] + dp[i][ri]\n cost[le][ri] = min(cost[le][ri],\n cost[le][i] + cost[i][ri] + dp[le][ri])\n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n", "INF = 10**18\n\n\ndef main():\n N = int(input())\n A = [int(i) for i in input().split()]\n dp = [[INF]*(N+1) for _ in range(N)]\n cost = [[INF]*(N+1) for _ in range(N)]\n\n for i in range(N):\n dp[i][i+1] = A[i]\n cost[i][i+1] = 0\n\n for w in range(2, N+1):\n for le in range(N-w+1):\n ri = le + w\n for i in range(le+1, ri):\n if dp[le][ri] >= dp[le][i] + dp[i][ri]:\n dp[le][ri] = dp[le][i] + dp[i][ri]\n cost[le][ri] = min(cost[le][ri],\n cost[le][i] + cost[i][ri] + dp[le][ri])\n\n print(cost[0][N])\n\n\nif __name__ == '__main__':\n main()\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "A = list(map(int, input().split()))\n", "A = list(map(int, input().split()))\n\n\nprint(dp[0][N-1])\n", "A = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "A = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\n\nprint(dp[0][N-1])\n", "A = list(map(int, input().split()))\n\n\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "A = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in :\n \n \ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n \n \ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n \n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + cum[i][j]\n\nprint(dp[0][N-1])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "S = [0]\n", "*A, = map(int, input().split())\nS = [0]\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\n\nDP = [[None for r in range(n+1)] for l in range(n)]\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\n\nDP = [[None for r in range(n+1)] for l in range(n)]\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \nDP = [[None for r in range(n+1)] for l in range(n)]\n\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n \nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n \n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n \n \n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n if r <= l+1:\n return 0\n \n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n \nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n if r <= l+1:\n return 0\n \n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n if r <= l+1:\n return 0\n if :\n \n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n if r <= l+1:\n return 0\n if :\n return DP[l][r]\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\nprint(dp(0, n))\n", "n = int(input())\n*A, = map(int, input().split())\nS = [0]\nfor i in range(n):\n S.append(S[-1]+A[i])\nDP = [[None for r in range(n+1)] for l in range(n)]\ndef dp(l, r):\n if r <= l+1:\n return 0\n if DP[l][r] != None:\n return DP[l][r]\n DP[l][r] = S[r]-S[l]+min([dp(l, i)+dp(i, r) for i in range(l+1, r)])\n return DP[l][r]\nprint(dp(0, n))\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "DPLIST=[[None]*N for i in range(N)]\n", "A=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n \n\nfor i in range(1,N):\n \n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n \n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in :\n #print(i,j)\n \n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in :\n #print(i,j)\n \n \n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n \n \n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n \n slime=float(\"inf\")\n\n \n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n \n slime=float(\"inf\")\n\n \n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n \n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in :\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n \n \n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n \n \n if :\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n \n\n if :\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n sc2,sl2=DPLIST[k+1][j]\n\n if :\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n sc2,sl2=DPLIST[k+1][j]\n\n if ANS>sc1+sc2+sl1+sl2:\n \n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n sc2,sl2=DPLIST[k+1][j]\n\n if ANS>sc1+sc2+sl1+sl2:\n \n \n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n sc2,sl2=DPLIST[k+1][j]\n\n if ANS>sc1+sc2+sl1+sl2:\n \n slime=sl1+sl2\n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n", "N=int(input())\nA=list(map(int,input().split()))\n\nDPLIST=[[None]*N for i in range(N)]\n\nfor i in range(N):\n DPLIST[i][i]=[0,A[i]]\n\nfor i in range(1,N):\n for j in range(i,N):\n #print(i,j)\n ANS=float(\"inf\")\n slime=float(\"inf\")\n\n for k in range(j-i,j):\n sc1,sl1=DPLIST[j-i][k]\n sc2,sl2=DPLIST[k+1][j]\n\n if ANS>sc1+sc2+sl1+sl2:\n ANS=sc1+sc2+sl1+sl2\n slime=sl1+sl2\n\n DPLIST[j-i][j]=[ANS,slime]\n\n #print(DPLIST)\n #print()\n\n\nprint(DPLIST[0][N-1][0])\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "print(dp[0][-1])\n", "n = int(input())\n\n\nprint(dp[0][-1])\n", "n = int(input())\n\n\nfor i in :\n \n\nprint(dp[0][-1])\n", "n = int(input())\n\n\ndp = [[0] * n for _ in range(n)]\n\nfor i in :\n \n\nprint(dp[0][-1])\n", "n = int(input())\n\ntotal_cost = 0\n\ndp = [[0] * n for _ in range(n)]\n\nfor i in :\n \n\nprint(dp[0][-1])\n", "n = int(input())\na = list(map(int, input().split()))\ntotal_cost = 0\n\ndp = [[0] * n for _ in range(n)]\n\nfor i in :\n \n\nprint(dp[0][-1])\n", "n = int(input())\na = list(map(int, input().split()))\ntotal_cost = 0\n\ndp = [[0] * n for _ in range(n)]\n\nfor i in range(n-1, -1, -1):\n \n\nprint(dp[0][-1])\n", "n = int(input())\na = list(map(int, input().split()))\ntotal_cost = 0\n\ndp = [[0] * n for _ in range(n)]\n\nfor i in range(n-1, -1, -1):\n for j in range(i+1, n):\n min_cost = None\n\n for k in range(i, j):\n cost = dp[i][k] + dp[k+1][j]\n if min_cost is None or cost < min_cost:\n min_cost = cost\n\n dp[i][j] = min_cost + sum(a[i:j+1])\n\nprint(dp[0][-1])\n" ]
9
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "A=list(map(int,input().split()))\n", "A=list(map(int,input().split()))\n\n\nfor j in :\n", "N=int(input())\nA=list(map(int,input().split()))\n\n\nfor j in :\n", "N=int(input())\nA=list(map(int,input().split()))\n\n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\n\nfor j in :\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\n\n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\n\nfor j in :\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\n\nfor j in :\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\n\nfor j in :\n \n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in :\n \n\nfor j in :\n \n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n \n\nfor j in :\n \n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n if N>i+1:\n dp[i][2]=A[i]+A[i+1]\n\nfor j in :\n \n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n \n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n if N>i+1:\n dp[i][2]=A[i]+A[i+1]\n\nfor j in :\n for i in range(0,N):\n if N>i+j-1 and j!=3:\n ans=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n test=min(dp[i][k]+dp[i+k][j-k]+asum[i+k]-asum[i]+asum[i+j]-asum[i+k] for k in range(2,j-1))\n dp[i][j]=min(ans,test)\n elif N>i+j-1:\n dp[i][j]=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n\n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n asum[i]=A[i-1]+asum[i-1]\n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n if N>i+1:\n dp[i][2]=A[i]+A[i+1]\n\nfor j in :\n for i in range(0,N):\n if N>i+j-1 and j!=3:\n ans=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n test=min(dp[i][k]+dp[i+k][j-k]+asum[i+k]-asum[i]+asum[i+j]-asum[i+k] for k in range(2,j-1))\n dp[i][j]=min(ans,test)\n elif N>i+j-1:\n dp[i][j]=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n\n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in :\n asum[i]=A[i-1]+asum[i-1]\n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n if N>i+1:\n dp[i][2]=A[i]+A[i+1]\n\nfor j in range(3,N+1):\n for i in range(0,N):\n if N>i+j-1 and j!=3:\n ans=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n test=min(dp[i][k]+dp[i+k][j-k]+asum[i+k]-asum[i]+asum[i+j]-asum[i+k] for k in range(2,j-1))\n dp[i][j]=min(ans,test)\n elif N>i+j-1:\n dp[i][j]=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n\n\nprint(dp[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\nasum=[0 for i in range(0,N+1)]\nfor i in range(1,N+1):\n asum[i]=A[i-1]+asum[i-1]\n\ndp=[[0 for i in range(0,N+1)] for j in range(0,N)]\n\nfor i in range(0,N):\n if N>i+1:\n dp[i][2]=A[i]+A[i+1]\n\nfor j in range(3,N+1):\n for i in range(0,N):\n if N>i+j-1 and j!=3:\n ans=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n test=min(dp[i][k]+dp[i+k][j-k]+asum[i+k]-asum[i]+asum[i+j]-asum[i+k] for k in range(2,j-1))\n dp[i][j]=min(ans,test)\n elif N>i+j-1:\n dp[i][j]=min(A[i]+asum[i+j]-asum[i+1]+dp[i+1][j-1],asum[i+j-1]-asum[i]+dp[i][j-1]+A[i+j-1])\n\n\nprint(dp[0][N])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = NI()\na = LI()\n", "NI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n", "NI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\n\nfor i in range(N):\n", "INF = 10**18\n\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\n\nfor i in range(N):\n", "INF = 10**18\n\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\n\nfor i in range(N):\n", "INF = 10**18\n\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\n\nfor i in range(N):\n \n\nfor j in :\n", "INF = 10**18\n\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "INF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "INF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n \nprint(dp[0][-1])\n", "INF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n \nprint(dp[0][-1])\n", "import sys,queue,math,copy,,bisect,,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n \nprint(dp[0][-1])\n", "import sys,queue,math,copy,,bisect,,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,,bisect,,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n \nfor j in :\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,,bisect,,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n \n \nfor j in :\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n \n \nfor j in :\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n \n \nfor j in :\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n \n \nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n dp[i][i] = 0\n \n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \nfor i in range(N):\n dp[i][i] = 0\n \n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n \n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n dp[i][i+1] = sn[i][i+1]\n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \n \nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n dp[i][i+1] = sn[i][i+1]\n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n \n \nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n dp[i][i+1] = sn[i][i+1]\n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n x += a[j]\n \nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n dp[i][i+1] = sn[i][i+1]\n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys,queue,math,copy,itertools,bisect,collections,heapq\nINF = 10**18\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n x += a[j]\n sn[i][j] = x\nfor i in range(N):\n dp[i][i] = 0\n if i < N-1:\n dp[i][i+1] = sn[i][i+1]\n\nfor j in range(2,N):\n for i in range(j-2,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "from sys import stdin\n", "from sys import stdin\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nprefix = [0]+ list(accumulate(a))\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nN = int(input())\n\n\nprefix = [0]+ list(accumulate(a))\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nINF = float('inf')\n\nN = int(input())\n\n\nprefix = [0]+ list(accumulate(a))\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\n\nprefix = [0]+ list(accumulate(a))\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\n\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom import \n\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom import \ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import \ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n for j in range(0,N-i):\n temp = INF\n for k in range(i):\n temp = min(temp,cost[j][j+k] + cost[j+k+1][j+i])\n cost[j][j+i] = temp + prefix[j+i+1] - prefix[j]\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\nprefix = [0]+ list(accumulate(a))\n\nfor i in range(1,N):\n for j in range(0,N-i):\n temp = INF\n for k in range(i):\n temp = min(temp,cost[j][j+k] + cost[j+k+1][j+i])\n cost[j][j+i] = temp + prefix[j+i+1] - prefix[j]\n\n\nprint(cost[0][N-1])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#for i in range(N):\n# dp[i][i] = a[i]\n", "#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n", "dp = [[0] * (N) for _ in range(N)]\n\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n", "N = int(input())\n\ndp = [[0] * (N) for _ in range(N)]\n\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\n\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\n\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n \n\nans = dp[0][N-1]\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\nans = int(0)\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n \n\nans = dp[0][N-1]\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\nans = int(0)\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in :\n \n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\nans = int(0)\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in range(1,N):\n \n\nans = dp[0][N-1]\n\nprint(ans)\n", "N = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N) for _ in range(N)]\nans = int(0)\n#for i in range(N):\n# dp[i][i] = a[i]\n\nfor l in range(1,N):\n for i in range(N-l):\n j = i + l\n dpcandi = [0] * (j-i)\n Sdp = int(0)\n for k in range(i,j+1):\n Sdp += a[k]\n for k in range(0,j-i):\n dpcandi[k] = dp[i][i+k] + dp[i+k+1][j]\n# print(i,j,dpcandi)\n\n dp[i][j] = min(dpcandi) + Sdp\n\nans = dp[0][N-1]\n\nprint(ans)\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "cnt = 0\n", "cnt = 0\nfor i in ns:\n", "cnt = 0\nfor i in ns:\n \n\nfor i in :\n", "cnt = 0\nfor i in ns:\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "ns = list(map(int, input().split()))\n\n\ncnt = 0\nfor i in ns:\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "ns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\n\ncnt = 0\nfor i in ns:\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "ns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "n = int(input())\nns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n \n\nfor i in :\n \nprint(dp[0][-1])\n", "n = int(input())\nns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n \n\nfor i in :\n for j in range(i + 1, n):\n dp[i][j] = min(dp[i][k] + dp[k + 1][j] for k in range(i, j)) + cur[j+1] - cur[i]\nprint(dp[0][-1])\n", "n = int(input())\nns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n cnt += i\n \n\nfor i in :\n for j in range(i + 1, n):\n dp[i][j] = min(dp[i][k] + dp[k + 1][j] for k in range(i, j)) + cur[j+1] - cur[i]\nprint(dp[0][-1])\n", "n = int(input())\nns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n cnt += i\n \n\nfor i in range(n-1, -1, -1):\n for j in range(i + 1, n):\n dp[i][j] = min(dp[i][k] + dp[k + 1][j] for k in range(i, j)) + cur[j+1] - cur[i]\nprint(dp[0][-1])\n", "n = int(input())\nns = list(map(int, input().split()))\ndp = [[0] * n for i in range(n)]\ncur = [0]\ncnt = 0\nfor i in ns:\n cnt += i\n cur.append(cnt)\n\nfor i in range(n-1, -1, -1):\n for j in range(i + 1, n):\n dp[i][j] = min(dp[i][k] + dp[k + 1][j] for k in range(i, j)) + cur[j+1] - cur[i]\nprint(dp[0][-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a_cum = [0, a[0]]\n", "a_cum = [0, a[0]]\n\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "if N == 2:\n \n\na_cum = [0, a[0]]\n\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "N = int(input())\n\n\nif N == 2:\n \n\na_cum = [0, a[0]]\n\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "N = int(input())\n\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n\nfor length in :\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n\nfor length in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n\nfor length in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n\nfor length in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in :\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in :\n \n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in :\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n \n\ndef a_sum(i,j):\n \n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n \n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n a_cum.append(a_cum[-1] + a[i])\n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n \n \nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n \n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n a_cum.append(a_cum[-1] + a[i])\n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\n \n\nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n print(sum(a))\n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n a_cum.append(a_cum[-1] + a[i])\n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\n \n\nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n print(sum(a))\n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n a_cum.append(a_cum[-1] + a[i])\n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\n if i != N-1:\n \n\nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n", "N = int(input())\na = list(map(int, input().split()))\n\nif N == 2:\n print(sum(a))\n exit()\n\na_cum = [0, a[0]]\nfor i in range(1,N):\n a_cum.append(a_cum[-1] + a[i])\n\ndef a_sum(i,j):\n return a_cum[j] - a_cum[i]\n\nINF = 10**15\n\ndp = [[INF]*(N+1) for _ in range(N+1)]\nfor i in range(N):\n dp[i][i+1] = 0\n if i != N-1:\n dp[i][i+2] = a[i] + a[i+1]\n\nfor length in range(3, N+1):\n for l in range(N-length+1):\n tmp = INF\n for m in range(l+1, l+length):\n tmp = min(tmp, dp[l][m] + dp[m][l+length] + a_sum(l, l+length))\n dp[l][l+length] = tmp\n\nprint(dp[0][N])\n" ]
23
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for length in :\n", "n = int(input())\n\n\nfor length in :\n", "n = int(input())\nalst = list(map(int, input().split()))\n\n\nfor length in :\n", "n = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\n\n\nfor length in :\n", "n = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\n\n\nfor length in :\n", "n = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\n\n\nfor length in :\n \nprint(dp[0][n - 1])\n", "n = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in :\n \nprint(dp[0][n - 1])\n", "from import \nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in :\n \nprint(dp[0][n - 1])\n", "from import \nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in range(2, n + 1):\n \nprint(dp[0][n - 1])\n", "from import accumulate\nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in range(2, n + 1):\n \nprint(dp[0][n - 1])\n", "from import accumulate\nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in range(2, n + 1):\n for left in range(n - length + 1):\n right = left + length - 1\n dp[left][right] = min([dp[left][k] + dp[k + 1][right] for k in range(left, right)]) + acc[right + 1] - acc[left]\nprint(dp[0][n - 1])\n", "from itertools import accumulate\nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n \n\nfor length in range(2, n + 1):\n for left in range(n - length + 1):\n right = left + length - 1\n dp[left][right] = min([dp[left][k] + dp[k + 1][right] for k in range(left, right)]) + acc[right + 1] - acc[left]\nprint(dp[0][n - 1])\n", "from itertools import accumulate\nn = int(input())\nalst = list(map(int, input().split()))\nacc = [0] + list(accumulate(alst))\ndp = [[None] * (n + 1) for _ in range(n + 1)]\nfor i in range(n):\n dp[i][i] = 0\n\nfor length in range(2, n + 1):\n for left in range(n - length + 1):\n right = left + length - 1\n dp[left][right] = min([dp[left][k] + dp[k + 1][right] for k in range(left, right)]) + acc[right + 1] - acc[left]\nprint(dp[0][n - 1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "solve()\n", "from import \n\n\nsolve()\n", "from import \n\ndef solve():\n \n\nsolve()\n", "from import accumulate\n\ndef solve():\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n \n\n N = int(input())\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n \n\n dp = [[INF]*(N) for _ in range(N)]\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n \n dp = [[INF]*(N) for _ in range(N)]\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n \n\n for L in :\n \n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n \n\n for L in :\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n \n\n for L in :\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n \n\n for L in reversed(range(N)):\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n \n \n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n dpL = dp[L]\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n dpL = dp[L]\n for R in :\n \n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n dpL = dp[L]\n for R in :\n dpL[R] = min([dpL[k-1] + dp[k][R] for k in range(L+1, R+1)]) + accAs[R+1] - accAs[L]\n\n print(dp[0][-1])\n\n\nsolve()\n", "from itertools import accumulate\n\ndef solve():\n INF = 10**15\n\n N = int(input())\n As = list(map(int, input().split()))\n\n accAs = list(accumulate([0]+As))\n\n dp = [[INF]*(N) for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n\n for L in reversed(range(N)):\n dpL = dp[L]\n for R in range(L+1, N):\n dpL[R] = min([dpL[k-1] + dp[k][R] for k in range(L+1, R+1)]) + accAs[R+1] - accAs[L]\n\n print(dp[0][-1])\n\n\nsolve()\n" ]
21
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "acc_A = [0] + list(accumulate(A))\n", "acc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\n", "def dfs(l, r):\n \n\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\n", "def dfs(l, r):\n \n\nn = int(input())\n\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\n", "def dfs(l, r):\n \n\nn = int(input())\n\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\n\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\n", "def dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\n\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\n", "def dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\n", "from import \n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\n", "from import \n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in :\n", "from import \n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in :\n \n\nprint(dfs(1, n))\n", "from import \n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n\nprint(dfs(1, n))\n", "from import \n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n \nprint(dfs(1, n))\n", "from import accumulate\n\n\ndef dfs(l, r):\n \n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n \nprint(dfs(1, n))\n", "from import accumulate\n\n\ndef dfs(l, r):\n \n \nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n \nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n \n \nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n \nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n \n \n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n \n \nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n \n \n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n \n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n \n for i in :\n \n \n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n \n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if :\n \n for i in :\n \n \n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n \n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if :\n \n for i in :\n \n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n \n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if :\n \n for i in :\n \n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n memo[i][i] = True\n\n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if memo[l][r]:\n \n for i in :\n \n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n memo[i][i] = True\n\n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if memo[l][r]:\n return dp[l][r]\n for i in :\n \n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n memo[i][i] = True\n\n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if memo[l][r]:\n return dp[l][r]\n for i in range(l, r):\n \n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n memo[i][i] = True\n\n\nprint(dfs(1, n))\n", "from itertools import accumulate\n\n\ndef dfs(l, r):\n if memo[l][r]:\n return dp[l][r]\n for i in range(l, r):\n dp[l][r] = min(max(0, dp[l][r]), dfs(l, i) + dfs(i + 1, r) + acc_A[r] - acc_A[l - 1])\n memo[l][r] = True\n return dp[l][r]\n\n\nn = int(input())\nA = list(map(int, input().split()))\nacc_A = [0] + list(accumulate(A))\n\nINF = 10 ** 18\ndp = [[INF] * (n + 1) for _ in range(n + 1)]\nmemo = [[False] * (n + 1) for _ in range(n + 1)]\nfor i in range(1, n + 1):\n dp[i][i] = 0\n memo[i][i] = True\n\n\nprint(dfs(1, n))\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#print(dp)\n", "for g in :\n \n\n#print(dp)\n", "for i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "dp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "def get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "a = list(map(int, input().split()))\n\n\ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "a = list(map(int, input().split()))\n\nfor p in a:\n \ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "a = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n \ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n \ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n \ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in :\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n \n\nfor g in range(1, n):\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n \n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n dp[i][i] = 0\n\nfor g in range(1, n):\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n return cost[r+1] - cost[l]\n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in :\n dp[i][i] = 0\n\nfor g in range(1, n):\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n return cost[r+1] - cost[l]\n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in enumerate(a):\n dp[i][i] = 0\n\nfor g in range(1, n):\n \n\n#print(dp)\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\ncost = [0]\nfor p in a:\n cost.append(cost[-1] + p)\ndef get_cost(l, r):\n return cost[r+1] - cost[l]\n\ndp = [[float(\"inf\") for _ in range(n)] for _ in range(n)]\nfor i, p in enumerate(a):\n dp[i][i] = 0\n\nfor g in range(1, n):\n for l in range(n-g):\n r = l + g\n for m in range(l, r):\n dp[l][r] = min(dp[l][r], dp[l][m] + dp[m+1][r] + get_cost(l, r))\n\n#print(dp)\nprint(dp[0][n-1])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def main():\n", "def input(): \ndef main():\n", "def input(): \ndef main():\n \n\nif :\n main()\n", "import sys\ndef input(): \ndef main():\n \n\nif :\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n\nif :\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j]をまとめるために必要なコストの最小値\n \n \nif :\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n \n \n #Aの[0,i)の和\n \n #[i,j]をまとめるために必要なコストの最小値\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n \n #Aの[0,i)の和\n \n #[i,j]をまとめるために必要なコストの最小値\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n \n #Aの[0,i)の和\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n \n #Aの[0,i)の和\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in :\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n \n #Aの[0,i)の和\n for i in :\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in :\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n #Aの[0,i)の和\n for i in :\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in :\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in :\n \n \nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in :\n \n print(dp[0][n-1])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n \n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n \n print(dp[0][n-1])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n \n print(dp[0][n-1])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in :\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n for i in range(n-length+1):\n j=i+length-1 #右側\n res=10**20\n for k in range(i+1,j+1):#区間[i,k)と[k,j]に分ける\n res=min(res,dp[i][k-1]+dp[k][j])\n dp[i][j]=res+cum_A[j+1]-cum_A[i]\n print(dp[0][n-1])\n\n\nif __name__=='__main__':\n main()\n", "import sys\ndef input(): return sys.stdin.readline().rstrip()\ndef main():\n n=int(input())\n A=list(map(int,input().split()))\n cum_A=[0]*(n+1) #Aの[0,i)の和\n for i in range(1,n+1):\n cum_A[i]=cum_A[i-1]+A[i-1]\n dp=[[0]*n for _ in range(n)] #[i,j]をまとめるために必要なコストの最小値\n for length in range(2,n+1):\n for i in range(n-length+1):\n j=i+length-1 #右側\n res=10**20\n for k in range(i+1,j+1):#区間[i,k)と[k,j]に分ける\n res=min(res,dp[i][k-1]+dp[k][j])\n dp[i][j]=res+cum_A[j+1]-cum_A[i]\n print(dp[0][n-1])\n\n\nif __name__=='__main__':\n main()\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = []\n", "l = list(map(int, input().split()))\ndp = []\n", "def sumi(i,j):\n \n\nl = list(map(int, input().split()))\ndp = []\n", "def sumi(i,j):\n \n\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n", "def sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n \n\nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n \nfor i in :\n \nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n \nfor i in range(n-1,-1,-1):\n \nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n dp.append([sys.maxsize]*n)\nfor i in range(n-1,-1,-1):\n \nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n \n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n dp.append([sys.maxsize]*n)\nfor i in range(n-1,-1,-1):\n for j in range(i,n):\n if i==j:\n dp[i][j]=0\n else:\n s=sumi(i,j)\n for k in range(i,j):\n dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s)\nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n s=0\n \n return s\n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n dp.append([sys.maxsize]*n)\nfor i in range(n-1,-1,-1):\n for j in range(i,n):\n if i==j:\n dp[i][j]=0\n else:\n s=sumi(i,j)\n for k in range(i,j):\n dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s)\nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n s=0\n for k in :\n s+=l[k]\n return s\n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n dp.append([sys.maxsize]*n)\nfor i in range(n-1,-1,-1):\n for j in range(i,n):\n if i==j:\n dp[i][j]=0\n else:\n s=sumi(i,j)\n for k in range(i,j):\n dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s)\nprint(dp[0][n-1])\n", "import sys\n\ndef sumi(i,j):\n s=0\n for k in range(i,j+1):\n s+=l[k]\n return s\n\nn = int(input())\nl = list(map(int, input().split()))\ndp = []\nfor i in range(n):\n dp.append([sys.maxsize]*n)\nfor i in range(n-1,-1,-1):\n for j in range(i,n):\n if i==j:\n dp[i][j]=0\n else:\n s=sumi(i,j)\n for k in range(i,j):\n dp[i][j]=min(dp[i][j],dp[i][k]+dp[k+1][j]+s)\nprint(dp[0][n-1])\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "accAs = [0] + list(accumulate(As))\n", "from import \n\n\naccAs = [0] + list(accumulate(As))\n", "from import \n\n\naccAs = [0] + list(accumulate(As))\n\n\nfor num in :\n", "from import \n\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n", "from import \n\n\nN = int(input())\n\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n", "from import \n\n\nN = int(input())\n\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n \n\nprint(dp[0][N-1])\n", "from import \n\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n \n\nprint(dp[0][N-1])\n", "from import \n\nINF = float('inf')\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n \n\nprint(dp[0][N-1])\n", "from itertools import \n\nINF = float('inf')\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n \n\nprint(dp[0][N-1])\n", "from itertools import \n\nINF = float('inf')\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in :\n for i in range(N-num+1):\n cost = INF\n for j in range(1, num):\n cost = min(cost, dp[i][i+j-1] + dp[i+j][i+num-1])\n dp[i][i+num-1] = accAs[i+num] - accAs[i] + cost\n\nprint(dp[0][N-1])\n", "from itertools import \n\nINF = float('inf')\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in range(2, N+1):\n for i in range(N-num+1):\n cost = INF\n for j in range(1, num):\n cost = min(cost, dp[i][i+j-1] + dp[i+j][i+num-1])\n dp[i][i+num-1] = accAs[i+num] - accAs[i] + cost\n\nprint(dp[0][N-1])\n", "from itertools import accumulate\n\nINF = float('inf')\n\nN = int(input())\nAs = list(map(int, input().split()))\n\naccAs = [0] + list(accumulate(As))\n\ndp = [[0] * (N) for _ in range(N)]\nfor num in range(2, N+1):\n for i in range(N-num+1):\n cost = INF\n for j in range(1, num):\n cost = min(cost, dp[i][i+j-1] + dp[i+j][i+num-1])\n dp[i][i+num-1] = accAs[i+num] - accAs[i] + cost\n\nprint(dp[0][N-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n", "def solve(n, a):\n \n\nif :\n", "def solve(n, a):\n \n\n # [l,r)\n \n\nif :\n", "def solve(n, a):\n \n\n # [l,r)\n \n\nif __name__ == '__main__':\n", "def solve(n, a):\n \n\n # [l,r)\n \n\nif __name__ == '__main__':\n \n \n print(solve(n, a))\n", "def solve(n, a):\n \n\n # [l,r)\n \n\nif __name__ == '__main__':\n \n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n \n\n # [l,r)\n \n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n \n\n # [l,r)\n \n\n acc = (0,) + tuple(accumulate(a))\n \n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n \n\n # [l,r)\n \n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n \nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n \n\n # [l,r)\n def dfs(l, r):\n \n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n \nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n \n # [l,r)\n def dfs(l, r):\n \n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n \nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n \n # [l,r)\n def dfs(l, r):\n \n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n \n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n \n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n \n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n \n res = inf\n \n \n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n \n res = inf\n \n \n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n \n if :\n return 0\n res = inf\n \n \n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if :\n \n if :\n return 0\n res = inf\n \n \n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if :\n \n if :\n return 0\n res = inf\n \n \n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if :\n \n if :\n return 0\n res = inf\n for c in :\n # [l, c), [c, r)\n \n \n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if :\n \n if :\n return 0\n res = inf\n for c in :\n # [l, c), [c, r)\n \n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if :\n return memo[l][r]\n if :\n return 0\n res = inf\n for c in :\n # [l, c), [c, r)\n \n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if memo[l][r] != -1:\n return memo[l][r]\n if :\n return 0\n res = inf\n for c in :\n # [l, c), [c, r)\n \n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if memo[l][r] != -1:\n return memo[l][r]\n if :\n return 0\n res = inf\n for c in range(l + 1, r):\n # [l, c), [c, r)\n \n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if memo[l][r] != -1:\n return memo[l][r]\n if :\n return 0\n res = inf\n for c in range(l + 1, r):\n # [l, c), [c, r)\n res = min(res, dfs(l, c) + dfs(c, r))\n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n # [l,r)\n def dfs(l, r):\n if memo[l][r] != -1:\n return memo[l][r]\n if r - l == 1:\n return 0\n res = inf\n for c in range(l + 1, r):\n # [l, c), [c, r)\n res = min(res, dfs(l, c) + dfs(c, r))\n res += acc[r] - acc[l]\n memo[l][r] = res\n return res\n\n acc = (0,) + tuple(accumulate(a))\n memo = [[-1] * (n + 1) for _ in range(n + 1)]\n\n return dfs(0, n)\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n" ]
29
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i]左からi個決めた時の最小値とする。\n", "SA = list(accumulate([0] + A))\n\n\n# dp[i]左からi個決めた時の最小値とする。\n", "A = list(map(int, input().split()))\n\nSA = list(accumulate([0] + A))\n\n\n# dp[i]左からi個決めた時の最小値とする。\n", "from import \n\n\nA = list(map(int, input().split()))\n\nSA = list(accumulate([0] + A))\n\n\n# dp[i]左からi個決めた時の最小値とする。\n", "from import \n\n\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\n\n# dp[i]左からi個決めた時の最小値とする。\n", "from import \n\n\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\n", "from import \n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\n", "from import \n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n", "from itertools import \n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n", "from itertools import \n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n \nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n \nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n \n \nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n \n \n print(dp[0][n])\nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n \n for d in :\n \n print(dp[0][n])\nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n for d in :\n \n print(dp[0][n])\nelse:\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n for d in :\n \n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n \n for d in :\n \n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n \n for d in :\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n \n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n \n \n if :\n \n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n dp[i][i] = 0\n \n if :\n \n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n dp[i][i] = 0\n dp[i][i + 1] = 0\n if :\n \n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n dp[i][i] = 0\n dp[i][i + 1] = 0\n if i <= n - 2:\n \n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n", "from itertools import accumulate\n\nn = int(input())\nA = list(map(int, input().split()))\ninfi = 10 ** 20\nSA = list(accumulate([0] + A))\n\ndp = [[infi] * (n + 1) for _ in range(n + 1)]\n# dp[i]左からi個決めた時の最小値とする。\nif n >= 3:\n for i in range(n):\n dp[i][i] = 0\n dp[i][i + 1] = 0\n if i <= n - 2:\n dp[i][i + 2] = A[i] + A[i + 1]\n for d in range(n + 1):\n for i in range(n):\n j = i + d\n if j > n:\n continue\n if d >= 2:\n for m in range(i + 1, j + 1):\n dp[i][j] = min(dp[i][j], dp[i][m] + dp[m][j] + SA[j] - SA[i])\n print(dp[0][n])\nelse:\n print(sum(A))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "main()\n", "def main():\n \n\nmain()\n", "def main():\n \n \nmain()\n", "def main():\n \n \n for i in range(N):\n \n \nmain()\n", "def main():\n \n \n for i in range(N):\n \n for i in :\n \n\nmain()\n", "def main():\n \n a = list(map(int, input().split()))\n\n \n for i in range(N):\n \n for i in :\n \n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n \n for i in range(N):\n \n for i in :\n \n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n \n s = [0] * (N+1)\n for i in range(N):\n \n for i in :\n \n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n \n s = [0] * (N+1)\n for i in range(N):\n \n for i in :\n \n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n \n for i in :\n \n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n \n \n for i in :\n \n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n \n \n for i in range(N-1, -1, -1):\n \n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n \n \n for i in range(N-1, -1, -1):\n for j in range(i+1, N):\n tmp = s[j+1] - s[i]\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j] + tmp)\n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n \n dp[i][i] = 0\n for i in range(N-1, -1, -1):\n for j in range(i+1, N):\n tmp = s[j+1] - s[i]\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j] + tmp)\n\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n N = int(input())\n a = list(map(int, input().split()))\n\n dp = [[10**13]*N for i in range(N)]\n s = [0] * (N+1)\n for i in range(N):\n s[i+1] = s[i] + a[i]\n dp[i][i] = 0\n for i in range(N-1, -1, -1):\n for j in range(i+1, N):\n tmp = s[j+1] - s[i]\n for k in range(i, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k+1][j] + tmp)\n\n print(dp[0][N-1])\n\n\nmain()\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "cost = [[0]*N for _ in range(N)]\n", "input = stdin.readline\n\n\ncost = [[0]*N for _ in range(N)]\n", "input = stdin.readline\n\n\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n", "input = stdin.readline\n\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n", "input = stdin.readline\n\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\n\nfor i in :\n", "from sys import stdin\n\ninput = stdin.readline\n\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\n\n\nfor i in :\n", "from sys import stdin\n\ninput = stdin.readline\n\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \n\nfor i in :\n", "from sys import stdin\n\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \n\nfor i in :\n", "from sys import stdin\n\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom import \ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom import \ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n \nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n cost[i][i] = 0\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n \n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n cost[i][i] = 0\nprefix = [0]+ list(accumulate(a))\n\nfor i in :\n for j in range(0,N-i):\n temp = INF\n for k in range(i):\n temp = min(temp,cost[j][j+k] + cost[j+k+1][j+i])\n cost[j][j+i] = temp + prefix[j+i+1] - prefix[j]\n\n\nprint(cost[0][N-1])\n", "from sys import stdin\nfrom itertools import accumulate\ninput = stdin.readline\n\nINF = float('inf')\n\nN = int(input())\n*a, = map(int,input().split())\n\ncost = [[0]*N for _ in range(N)]\nfor i in range(N):\n cost[i][i] = 0\nprefix = [0]+ list(accumulate(a))\n\nfor i in range(1,N):\n for j in range(0,N-i):\n temp = INF\n for k in range(i):\n temp = min(temp,cost[j][j+k] + cost[j+k+1][j+i])\n cost[j][j+i] = temp + prefix[j+i+1] - prefix[j]\n\n\nprint(cost[0][N-1])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "B = [0]\n", "B = [0]\n\n\nprint(dp[0][N-1])\n", "N = int(input())\n\nB = [0]\n\n\nprint(dp[0][N-1])\n", "N = int(input())\n\nB = [0]\nfor a in A:\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n\nB = [0]\nfor a in A:\n \n\nfor d in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = [int(a) for a in input().split()]\nB = [0]\nfor a in A:\n \n\nfor d in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = [int(a) for a in input().split()]\nB = [0]\nfor a in A:\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor d in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = [int(a) for a in input().split()]\nB = [0]\nfor a in A:\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor d in :\n for l in range(N-d):\n r = l + d\n if d == 0:\n dp[l][r] = A[l]\n\n else:\n dp[l][r] = 10**20\n for m in range(l, r):\n dp[l][r] = min(dp[l][r], dp[l][m] + dp[m+1][r] + B[r+1]-B[l])\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = [int(a) for a in input().split()]\nB = [0]\nfor a in A:\n \n\ndp = [[0] * N for _ in range(N)]\n\nfor d in range(1, N):\n for l in range(N-d):\n r = l + d\n if d == 0:\n dp[l][r] = A[l]\n\n else:\n dp[l][r] = 10**20\n for m in range(l, r):\n dp[l][r] = min(dp[l][r], dp[l][m] + dp[m+1][r] + B[r+1]-B[l])\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = [int(a) for a in input().split()]\nB = [0]\nfor a in A:\n B.append(B[-1]+a)\n\ndp = [[0] * N for _ in range(N)]\n\nfor d in range(1, N):\n for l in range(N-d):\n r = l + d\n if d == 0:\n dp[l][r] = A[l]\n\n else:\n dp[l][r] = 10**20\n for m in range(l, r):\n dp[l][r] = min(dp[l][r], dp[l][m] + dp[m+1][r] + B[r+1]-B[l])\n\nprint(dp[0][N-1])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# i\n", "import sys\n\n\n # i\n", "import sys\n\n\n # i\n\nfor i in :\n", "import sys\n\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\n\nn = int(input())\n\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\n\nn = int(input())\n\n\ndef cumsum(a):\n \n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\n\nn = int(input())\n\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\n\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n", "import sys\n\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n \nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\n\nfor i in :\n \nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n \nfor i in :\n \nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n \nfor i in range(2,n+1):\n \nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n \nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \n c = 0\n \n \n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \n c = 0\n l = [None] * (len(a)+1)\n \n \n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \n c = 0\n l = [None] * (len(a)+1)\n \n l[-1] = c\n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \"\"\"l[i] = sum(a[:i]) なるlを返す\n sum(a[i:j]) == l[j+1] - l[i]\n \"\"\"\n c = 0\n l = [None] * (len(a)+1)\n \n l[-1] = c\n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \"\"\"l[i] = sum(a[:i]) なるlを返す\n sum(a[i:j]) == l[j+1] - l[i]\n \"\"\"\n c = 0\n l = [None] * (len(a)+1)\n for i,num in :\n \n l[-1] = c\n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \"\"\"l[i] = sum(a[:i]) なるlを返す\n sum(a[i:j]) == l[j+1] - l[i]\n \"\"\"\n c = 0\n l = [None] * (len(a)+1)\n for i,num in enumerate(a):\n \n l[-1] = c\n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n", "import sys\ninput = lambda : sys.stdin.readline().rstrip()\nsys.setrecursionlimit(max(1000, 10**9))\nwrite = lambda x: sys.stdout.write(x+\"\\n\")\n\n\nn = int(input())\na = list(map(int, input().split()))\n\ndef cumsum(a):\n \"\"\"l[i] = sum(a[:i]) なるlを返す\n sum(a[i:j]) == l[j+1] - l[i]\n \"\"\"\n c = 0\n l = [None] * (len(a)+1)\n for i,num in enumerate(a):\n l[i] = c\n c += num\n l[-1] = c\n return l\ns = cumsum(a)\n\ndp = [[None]*n for _ in range(n+1)] # i\nfor j in range(n):\n dp[1][j] = 0\nfor i in range(2,n+1):\n for j in range(n-i+1):\n dp[i][j] = min(dp[k][j]+dp[i-k][j+k] for k in range(1,i)) + s[j+i] - s[j]\nprint(dp[n][0])\n" ]
24
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(N):\n", "N = int(input())\n\n\nfor i in range(N):\n", "N = int(input())\n\n\nfor i in range(N):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n\n\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n\n\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n\n\ndp = [[0]*N for _ in range(N)]\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n*a, = map(int, input().split())\n\ndp = [[0]*N for _ in range(N)]\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n*a, = map(int, input().split())\n\ndp = [[0]*N for _ in range(N)]\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n \n\nfor i in range(N-2, -1, -1):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n*a, = map(int, input().split())\n\ndp = [[0]*N for _ in range(N)]\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n for j in range(i,N):\n size[i][j] = sum(a[i:j+1])\n\nfor i in range(N-2, -1, -1):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\n*a, = map(int, input().split())\n\ndp = [[0]*N for _ in range(N)]\nsize = [[0]*N for _ in range(N)]\n\nfor i in range(N):\n for j in range(i,N):\n size[i][j] = sum(a[i:j+1])\n\nfor i in range(N-2, -1, -1):\n for j in range(i+1, N):\n dp[i][j] = min([dp[i][k] + dp[k+1][j] + size[i][k] + size[k+1][j] for k in range(i, j)])\n\nprint(dp[0][N-1])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "main()\n", "def main():\n \n\nmain()\n", "def main():\n \n \nmain()\n", "def main():\n \n \n N = int(input())\n \n \nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n \n \nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n \n \n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n \n inf = 10 ** 13\n \n \n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n \n inf = 10 ** 13\n \n s = [0] + list(accumulate(a))\n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n \n \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n \n s = [0] + list(accumulate(a))\n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n \n from import \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n \n s = [0] + list(accumulate(a))\n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n \n s = [0] + list(accumulate(a))\n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n \n for i in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import \n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n dp[i][i] = 0\n for i in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n dp[i][i] = 0\n for i in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n dp[i][i] = 0\n for i in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n dp[i][i] = 0\n for i in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in :\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n \n \n for j in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n \n si = s[i]\n for j in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in :\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n \n D = inf\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n \n D = inf\n for k in :\n \n \n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n \n D = inf\n for k in :\n \n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in :\n \n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in range(i, j):\n \n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in range(i, j):\n \n \n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in range(i, j):\n \n if D > cost:\n D = cost\n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n", "def main():\n import sys\n from itertools import accumulate\n input = sys.stdin.readline\n N = int(input())\n a = list(map(int, input().split()))\n inf = 10 ** 13\n dp = [[0]*N for i in range(N)]\n s = [0] + list(accumulate(a))\n for i, x in enumerate(a):\n dp[i][i] = 0\n for i in range(N-2, -1, -1):\n DP = dp[i]\n si = s[i]\n for j in range(i+1, N):\n tmp = s[j+1] - si\n D = inf\n for k in range(i, j):\n cost = DP[k]+dp[k+1][j]\n if D > cost:\n D = cost\n DP[j] = D + tmp\n print(dp[0][N-1])\n\n\nmain()\n" ]
33
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "resolve()\n", "def resolve():\n \nresolve()\n", "def resolve():\n \n \nresolve()\n", "def resolve():\n \n \n for w in :\n \n \nresolve()\n", "def resolve():\n \n \n for i in range(N):\n \n\n for w in :\n \n \nresolve()\n", "def resolve():\n \n \n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n \n \n SUM[0][0] = 0\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n \n a = list(map(int,input().split()))\n \n \n SUM[0][0] = 0\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n \n a = list(map(int,input().split()))\n \n \n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n \n a = list(map(int,input().split()))\n \n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n \n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n \n\n for w in range(2,N+1):\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n \n\n for w in range(2,N+1):\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n \n\n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(i,j):\n DP[i][j] = min(DP[i][k]+DP[k][j]+SUM[i][j],DP[i][j])\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n DP[i][j] = 0\n\n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(i,j):\n DP[i][j] = min(DP[i][k]+DP[k][j]+SUM[i][j],DP[i][j])\n print(DP[0][N])\nresolve()\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "resolve()\n", "def resolve():\n \nresolve()\n", "def resolve():\n \n \nresolve()\n", "def resolve():\n \n \n for i in range(N):\n \n\nresolve()\n", "def resolve():\n \n \n for i in range(N):\n \n\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n \n \n for i in range(N):\n \n\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n \n \n for i in range(N):\n \n\n for i in range(N):\n \n\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n \n \n for i in range(N):\n \n\n for i in range(N):\n \n\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n \n \n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n \n for i in range(N):\n \n\n for i in range(N):\n \n\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n \n \n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n \n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n \n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n \n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n \n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n \n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n \n\n for i in range(N):\n \n\n for w in :\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n \n\n for w in :\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n \n\n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n \n \n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n \n RANGE[i][j] = i\n\n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n", "def resolve():\n N = int(input())\n a = list(map(int,input().split()))\n DP = [[2 ** 63 -1 for _ in range(N+1)] for _ in range(N)]\n SUM = [[0 for _ in range(N+1)] for _ in range(N+1)]\n RANGE = [[0 for _ in range(N+1)] for _ in range(N+1)]\n\n SUM[0][0] = 0\n for i in range(N):\n for j in range(i,N):\n SUM[i][j+1] = SUM[i][j] + a[j]\n if i < j:\n SUM[i+1][j] = SUM[i][j] - a[i]\n\n for i in range(N):\n j = i+1\n DP[i][j] = 0\n RANGE[i][j] = i\n\n for w in range(2,N+1):\n for i in range(N+1-w):\n j = i + w\n for k in range(RANGE[i][j-1],RANGE[i+1][j]+1):\n s = DP[i][k]+DP[k][j]+SUM[i][j]\n if DP[i][j] > s:\n DP[i][j] = s\n RANGE[i][j] = k\n print(DP[0][N])\nresolve()\n" ]
20
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for i in range(N):\n", "o = dict()\n\n\nfor i in range(N):\n", "As = list(map(int, input().split()))\n\no = dict()\n\n\nfor i in range(N):\n", "As = list(map(int, input().split()))\n\no = dict()\n\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "As = list(map(int, input().split()))\n\no = dict()\n\n\naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "As = list(map(int, input().split()))\n\no = dict()\nINF = 10**19\n\naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "As = list(map(int, input().split()))\n\no = dict()\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "As = list(map(int, input().split()))\nma = sum(As)\no = dict()\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "N = int(input())\nAs = list(map(int, input().split()))\nma = sum(As)\no = dict()\nINF = 10**19\nfrom import \naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "N = int(input())\nAs = list(map(int, input().split()))\nma = sum(As)\no = dict()\nINF = 10**19\nfrom import accumulate\naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "N = int(input())\nAs = list(map(int, input().split()))\nma = sum(As)\no = dict()\nINF = 10**19\nfrom itertools import accumulate\naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n \n\nprint(o[span]-ma)\n", "N = int(input())\nAs = list(map(int, input().split()))\nma = sum(As)\no = dict()\nINF = 10**19\nfrom itertools import accumulate\naa = [0] + list(accumulate(As))\n\nfor i in range(N):\n for j in range(N-i):\n span = i*N+j\n # 長さi+1, 開始位置jの合成コスト+構成要素の和\n if i == 0:\n o[span] = As[j]\n continue\n C = INF\n# print(i,j,o)\n for k in range(i):\n # 長さk+1とi+1-(k+1)=i-kに分割\n# print(i,j,k*N+j, (i-k-1)*N+j+k, o)\n C = min(C, o[k*N+j]+o[(i-k-1)*N+j+k+1])\n# o[span] = C + sum(As[j:j+i+1])\n o[span] = C + aa[j+i+1] - aa[j]\n\nprint(o[span]-ma)\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#N\n\n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\n", "#N\n\n\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\n", "#N\n\n\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\n\n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\n\n\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\n\n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\n\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\n\n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\n\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n \n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n \n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\n\ndp=[[inf]*(N+1) for _ in range(N+1)]\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n \n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n \n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\ninf=10**15\ndp=[[inf]*(N+1) for _ in range(N+1)]\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n \n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n S[i+1]=S[i]+a[i]\n\n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\ninf=10**15\ndp=[[inf]*(N+1) for _ in range(N+1)]\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n \n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n S[i+1]=S[i]+a[i]\n\n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\ninf=10**15\ndp=[[inf]*(N+1) for _ in range(N+1)]\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in :#dはj-i\n for i in range(N+1):\n j=i+d\n if j>N:\n break\n if d==1:\n dp[i][j]=0\n else:\n for k in range(i,j):\n dp[i][j]=min(dp[i][j] , dp[i][k]+dp[k][j]+S[j]-S[i])\n\nprint(dp[0][-1])\n", "#N\n\nN=int(input())\na=list(map(int,input().split()))\n\nS=[0]*(N+1)\nfor i in range(N):\n S[i+1]=S[i]+a[i]\n\n\n#dp[i][j]は[i,j)の範囲で全てをマージする最小コスト\ninf=10**15\ndp=[[inf]*(N+1) for _ in range(N+1)]\n\n#区間[i,j)を[i,k)+[k,j)に分けて考える\nfor d in range(1,N+1):#dはj-i\n for i in range(N+1):\n j=i+d\n if j>N:\n break\n if d==1:\n dp[i][j]=0\n else:\n for k in range(i,j):\n dp[i][j]=min(dp[i][j] , dp[i][k]+dp[k][j]+S[j]-S[i])\n\nprint(dp[0][-1])\n" ]
13
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "f(0,n-1)\n", "import sys\n\n\nf(0,n-1)\n", "import sys\n\n\nfor i in :\n \n\nf(0,n-1)\n", "import sys\n\n\nfor i in :\n \naccum=[0]+accum\n\nf(0,n-1)\n", "import sys\n\nn=int(input())\n\n\nfor i in :\n \naccum=[0]+accum\n\nf(0,n-1)\n", "import sys\n\nn=int(input())\n\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\n\nf(0,n-1)\n", "import sys\n\nn=int(input())\n\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\n", "import sys\n\nn=int(input())\n\ndp=[[10**18]*(n) for _ in range(n)]\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\n\ndp=[[10**18]*(n) for _ in range(n)]\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\n\ndp=[[10**18]*(n) for _ in range(n)]\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\n\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in :\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n \naccum=[0]+accum\ndef f(l,r):\n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n \naccum=[0]+accum\ndef f(l,r):\n \n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n \n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n \n \n ret=10**18\n \n \nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n \n \n ret=10**18\n \n \n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n \n \n flag[l][r]=1\n ret=10**18\n \n \n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n \n \n flag[l][r]=1\n ret=10**18\n for i in :\n \n \n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n \n flag[l][r]=1\n ret=10**18\n for i in :\n \n \n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if :\n \n flag[l][r]=1\n ret=10**18\n for i in :\n \n \n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if :\n \n flag[l][r]=1\n ret=10**18\n for i in :\n \n dp[l][r]=ret+accum[r+1]-accum[l]\n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if :\n return dp[l][r]\n flag[l][r]=1\n ret=10**18\n for i in :\n \n dp[l][r]=ret+accum[r+1]-accum[l]\n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if :\n return dp[l][r]\n flag[l][r]=1\n ret=10**18\n for i in :\n ret=min(ret,f(l,i)+f(i+1,r))\n dp[l][r]=ret+accum[r+1]-accum[l]\n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if flag[l][r]:\n return dp[l][r]\n flag[l][r]=1\n ret=10**18\n for i in :\n ret=min(ret,f(l,i)+f(i+1,r))\n dp[l][r]=ret+accum[r+1]-accum[l]\n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n", "import sys\nsys.setrecursionlimit(10**8)\nn=int(input())\na=list(map(int,input().split()))\ndp=[[10**18]*(n) for _ in range(n)]\nflag=[[0]*n for _ in range(n)]\naccum=[a[0]]\nfor i in range(1,n):\n accum.append(accum[-1]+a[i])\naccum=[0]+accum\ndef f(l,r):\n if l==r:\n return 0\n if flag[l][r]:\n return dp[l][r]\n flag[l][r]=1\n ret=10**18\n for i in range(l,r):\n ret=min(ret,f(l,i)+f(i+1,r))\n dp[l][r]=ret+accum[r+1]-accum[l]\n return dp[l][r]\nf(0,n-1)\nprint(dp[0][n-1])\n" ]
27
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a+=a\n\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "a+=a\nb=itertools.accumulate(a)\n\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "input = sys.stdin.readline\n\n\na+=a\nb=itertools.accumulate(a)\n\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "input = sys.stdin.readline\n\nn=int(input())\n\na+=a\nb=itertools.accumulate(a)\n\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "input = sys.stdin.readline\n\nn=int(input())\n\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\n\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "input = sys.stdin.readline\n\nn=int(input())\n\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "import sys\n\ninput = sys.stdin.readline\n\nn=int(input())\n\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "import sys\n\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n\nfor i in range(n):\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\n\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n\nfor i in range(n):\n \n\nprint(dp[0][n-1])\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\ndp=[[INF] *(2*n+1) for i in range(2*n+1)]\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n\nfor i in range(n):\n \n\nprint(dp[0][n-1])\n", "import sys\nimport itertools\ninput = sys.stdin.readline\n\nn=int(input())\na= list(map(int, input().split()))\na+=a\nb=itertools.accumulate(a)\nb=[0]+list(b)\nINF=10**15\ndp=[[INF] *(2*n+1) for i in range(2*n+1)]\n# dp[i][j][0]: コスト\n# dp[i][j][1]:合成したスライムの合計\n\nfor i in range(n):\n for l in range(2*n-i):\n r=l+i\n if r==l:\n dp[l][r]=0\n else:\n # 合成の仕方を確定\n for k in range(l,r):\n dp[l][r]=min(dp[l][k]+dp[k+1][r]+b[r+1]-b[l],dp[l][r])\n\nprint(dp[0][n-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def recurse(i, j):\n", "dp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n", "N = int(input())\n\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n", "N = int(input())\n\n\nsums = [[None for i in range(N)] for j in range(N)]\n\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n", "N = int(input())\n\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n \n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n \n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n \n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n \n\n cost = float('inf')\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n \n\n if :\n \n\n cost = float('inf')\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n \n\n cost = float('inf')\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n \n\n cost = float('inf')\n \n\n dp[i][j] = cost\n \n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n \n\n cost = float('inf')\n \n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n \n\n cost = float('inf')\n for s in :\n \n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n \n\n cost = float('inf')\n for s in :\n cost = min(cost, sums[i][j] + recurse(i, s) + recurse(s+1,j))\n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n return dp[i][j]\n\n cost = float('inf')\n for s in :\n cost = min(cost, sums[i][j] + recurse(i, s) + recurse(s+1,j))\n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if :\n return dp[i][j]\n\n cost = float('inf')\n for s in range(i, j):\n cost = min(cost, sums[i][j] + recurse(i, s) + recurse(s+1,j))\n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n", "N = int(input())\nslimes = list(map(int, input().split()))\n\nsums = [[None for i in range(N)] for j in range(N)]\nfor i in range(N):\n for j in range(i, N):\n sums[i][j] = sum(slimes[i:j+1])\n\ndp = [[-1 for i in range(N)] for j in range(N)]\n\ndef recurse(i, j):\n if i == j: return 0\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n cost = float('inf')\n for s in range(i, j):\n cost = min(cost, sums[i][j] + recurse(i, s) + recurse(s+1,j))\n\n dp[i][j] = cost\n return cost\n\nprint(recurse(0, N - 1))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for d in :\n", "for d in :\n \nprint(dp[0][N])\n", "N=int(input())\n\n\nfor d in :\n \nprint(dp[0][N])\n", "N=int(input())\n\n\nfor i in range(N):\n \nfor d in :\n \nprint(dp[0][N])\n", "N=int(input())\n\n\nS=[0]+list(accumulate(a))\nfor i in range(N):\n \nfor d in :\n \nprint(dp[0][N])\n", "N=int(input())\na=[int(i) for i in input().split()]\n\nS=[0]+list(accumulate(a))\nfor i in range(N):\n \nfor d in :\n \nprint(dp[0][N])\n", "from import \nN=int(input())\na=[int(i) for i in input().split()]\n\nS=[0]+list(accumulate(a))\nfor i in range(N):\n \nfor d in :\n \nprint(dp[0][N])\n", "from import \nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n \nfor d in :\n \nprint(dp[0][N])\n", "from import \nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n dp[i][i+1]=0\nfor d in :\n \nprint(dp[0][N])\n", "from itertools import \nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n dp[i][i+1]=0\nfor d in :\n \nprint(dp[0][N])\n", "from itertools import \nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n dp[i][i+1]=0\nfor d in range(2,N+1):\n \nprint(dp[0][N])\n", "from itertools import accumulate\nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n dp[i][i+1]=0\nfor d in range(2,N+1):\n \nprint(dp[0][N])\n", "from itertools import accumulate\nN=int(input())\na=[int(i) for i in input().split()]\ndp=[[float(\"inf\")]*(N+1) for i in range(N+1)]\nS=[0]+list(accumulate(a))\nfor i in range(N):\n dp[i][i+1]=0\nfor d in range(2,N+1):\n for i in range(N+1-d):\n for k in range(i+1,i+d):\n dp[i][i+d]=min(dp[i][i+d],dp[i][k]+dp[k][i+d]+S[i+d]-S[i])\nprint(dp[0][N])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for w in :\n", "a=[0]*(N+1)\n\n\nfor w in :\n", "A=list(map(int,input().split()))\na=[0]*(N+1)\n\n\nfor w in :\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\n\n\nfor w in :\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n \n\nfor w in :\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n \n\nfor w in :\n \nprint(d[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n \nd=[[0]*(N+1) for i in range(N+1)]\nfor w in :\n \nprint(d[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n \nd=[[0]*(N+1) for i in range(N+1)]\nfor w in :\n for l in range(N+1-w):\n d[l][l+w]=min([d[l][m]+d[m][l+w] for m in range(l+1,l+w)])+a[l+w]-a[l]\nprint(d[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n \nd=[[0]*(N+1) for i in range(N+1)]\nfor w in range(2,N+1):\n for l in range(N+1-w):\n d[l][l+w]=min([d[l][m]+d[m][l+w] for m in range(l+1,l+w)])+a[l+w]-a[l]\nprint(d[0][N])\n", "N=int(input())\nA=list(map(int,input().split()))\na=[0]*(N+1)\nfor i in range(N):\n a[i+1]=a[i]+A[i]\nd=[[0]*(N+1) for i in range(N+1)]\nfor w in range(2,N+1):\n for l in range(N+1-w):\n d[l][l+w]=min([d[l][m]+d[m][l+w] for m in range(l+1,l+w)])+a[l+w]-a[l]\nprint(d[0][N])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "import sys\n", "import sys\nsys.setrecursionlimit(10**8)\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns[0] = a[0]\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns[0] = a[0]\nfor i in :\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\n\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in :\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n \ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n \n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n \n \n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n \n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n \n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n \n\n m = s[r+1]-s[l]\n \n \n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n \n\n m = s[r+1]-s[l]\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n \n\n m = s[r+1]-s[l]\n for i in :\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n \n\n n = float('inf')\n m = s[r+1]-s[l]\n for i in :\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n return dp[l][r]\n\n n = float('inf')\n m = s[r+1]-s[l]\n for i in :\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if :\n return dp[l][r]\n\n n = float('inf')\n m = s[r+1]-s[l]\n for i in range(l, r):\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if dp[l][r] > 0:\n return dp[l][r]\n\n n = float('inf')\n m = s[r+1]-s[l]\n for i in range(l, r):\n \n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n", "import sys\nsys.setrecursionlimit(10**8)\n\nN = int(input())\n*a, = map(int, input().split())\n\ns = [0]*N\ns[0] = a[0]\nfor i in range(1, N):\n s[i] += s[i-1]+a[i]\ns = [0]+s\n\ndp = [[0]*(N+1) for _ in range(N+1)]\n\n\ndef solve(l, r):\n if l == r:\n return 0\n if dp[l][r] > 0:\n return dp[l][r]\n\n n = float('inf')\n m = s[r+1]-s[l]\n for i in range(l, r):\n n = min([n, solve(l, i)+solve(i+1, r)+m])\n dp[l][r] = n\n return n\n\n\nprint(solve(0, N-1))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "inf = float('inf')\n", "inf = float('inf')\n\n\nN = int(input())\n", "inf = float('inf')\n\n\nN = int(input())\n\n\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\n\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\n\nfor b in :\n \n\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\n\nfor i in :\n \n\nfor b in :\n \n\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n \n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in :\n \n\nfor b in :\n \n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n\ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in :\n \n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n \n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in :\n \n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in :\n \n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in :\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in :\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n \n \ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n \n for i in :\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in :\n \n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in :\n cs[i+1] = cs[i] + array[i]\n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n", "inf = float('inf')\n\ndef accmulate(array):\n global cs\n cs = [0]*(len(array)+1)\n for i in range(len(array)):\n cs[i+1] = cs[i] + array[i]\n\ndef query(l,r):\n return cs[r+1] - cs[l]\n\nN = int(input())\nA = list(map(int,input().split()))\n\naccmulate(A)\n\ndp = [[inf]*(N+1) for _ in range(N+1)]\n\nfor i in range(N):\n dp[i][i+1] = 0\n\nfor i in range(N-1):\n dp[i][i+2] = A[i] + A[i+1]\n\nfor b in range(3,N+1):\n for i in range(N-b+1):\n j = i + b\n for k in range(i+1,j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + query(i,j-1))\n\nans = dp[0][N]\nprint(ans)\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n", "a = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n", "a = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nprint(dp[0][N])\n", "a = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nfor c in :\n \n\nprint(dp[0][N])\n", "'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\n\na = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nfor c in :\n \n\nprint(dp[0][N])\n", "'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nfor c in :\n \n\nprint(dp[0][N])\n", "input = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nfor c in :\n \n\nprint(dp[0][N])\n", "input = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\n #累積和\n\n\nfor i in range(N):\n \n\nfor c in :\n \n\nprint(dp[0][N])\n", "input = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\n\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\n\n\nfor i in range(N):\n \n\nfor c in :\n \n\nprint(dp[0][N])\n", "input = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\n\n\nfor i in range(N):\n \n\nfor c in :\n \n\nprint(dp[0][N])\n", "input = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\ninf = float('inf')\n\nfor i in range(N):\n \n\nfor c in :\n \n\nprint(dp[0][N])\n", "import sys\ninput = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\ninf = float('inf')\n\nfor i in range(N):\n \n\nfor c in :\n \n\nprint(dp[0][N])\n", "import sys\ninput = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\ninf = float('inf')\n\nfor i in range(N):\n \n\nfor c in :\n for i in range(N - c + 1):\n ans = inf\n for k in range(1, c):\n tmp = dp[i][i + k] + dp[i + k][i + c] + sum[i + c] - sum[i]\n if tmp < ans:\n ans = tmp\n\n dp[i][i + c] = ans\n\nprint(dp[0][N])\n", "import sys\ninput = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\ninf = float('inf')\n\nfor i in range(N):\n sum[i + 1] = sum[i] + a[i]\n\nfor c in :\n for i in range(N - c + 1):\n ans = inf\n for k in range(1, c):\n tmp = dp[i][i + k] + dp[i + k][i + c] + sum[i + c] - sum[i]\n if tmp < ans:\n ans = tmp\n\n dp[i][i + c] = ans\n\nprint(dp[0][N])\n", "import sys\ninput = sys.stdin.readline\n'''\nallinputs = iter(input().splitlines())\ninput = lambda : next(allinputs)\n#'''\nN = int(input())\na = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n#dp[i][j]: 半開区間[i,j)のスライムを結合した時の最小のコスト\nsum = [0] * (N + 1) #累積和\ninf = float('inf')\n\nfor i in range(N):\n sum[i + 1] = sum[i] + a[i]\n\nfor c in range(2, N + 1):\n for i in range(N - c + 1):\n ans = inf\n for k in range(1, c):\n tmp = dp[i][i + k] + dp[i + k][i + c] + sum[i + c] - sum[i]\n if tmp < ans:\n ans = tmp\n\n dp[i][i + c] = ans\n\nprint(dp[0][N])\n" ]
16
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a = list(map(int, input().split()))\n", "a = list(map(int, input().split()))\n\n\nfor i in :\n", "a = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\n\n\nfor i in :\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\n\n\nfor i in :\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\n\n\nfor i in :\n \n\nprint(DP[N][0][1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\nfor i in range(N):\n \n\nfor i in :\n \n\nprint(DP[N][0][1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\nfor i in range(N):\n \n\nfor i in :\n for j in range(N - i + 1):\n DP[i][j][0] = DP[1][j][0] + DP[i - 1][j + 1][0]\n DP[i][j][1] = DP[i][j][0] + DP[i][j][1] + DP[i - 1][j + 1][1]\n for k in range(2, i):\n DP[i][j][1] = min(DP[i][j][1], DP[i][j][0] + DP[k][j][1] + DP[i - k][j + k][1])\n\nprint(DP[N][0][1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\nfor i in range(N):\n \n\nfor i in range(2, N + 1):\n for j in range(N - i + 1):\n DP[i][j][0] = DP[1][j][0] + DP[i - 1][j + 1][0]\n DP[i][j][1] = DP[i][j][0] + DP[i][j][1] + DP[i - 1][j + 1][1]\n for k in range(2, i):\n DP[i][j][1] = min(DP[i][j][1], DP[i][j][0] + DP[k][j][1] + DP[i - k][j + k][1])\n\nprint(DP[N][0][1])\n", "N = int(input())\na = list(map(int, input().split()))\n\nDP = [[[0] * 2 for _ in range(N)] for _ in range(N + 1)]\nfor i in range(N):\n DP[1][i] = [a[i], 0]\n\nfor i in range(2, N + 1):\n for j in range(N - i + 1):\n DP[i][j][0] = DP[1][j][0] + DP[i - 1][j + 1][0]\n DP[i][j][1] = DP[i][j][0] + DP[i][j][1] + DP[i - 1][j + 1][1]\n for k in range(2, i):\n DP[i][j][1] = min(DP[i][j][1], DP[i][j][0] + DP[k][j][1] + DP[i - k][j + k][1])\n\nprint(DP[N][0][1])\n" ]
10
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "a = list(map(int, input().split()))\n", "n = int(input())\na = list(map(int, input().split()))\n", "n = int(input())\na = list(map(int, input().split()))\n\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\n\nfor i in range(n):\n \n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\n\nfor i in range(n):\n \n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n \n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n \n\nfor i in range(n):\n \n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\n\n\nfor i in range(n):\n \n\nfor k in :\n \n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\n\n\nfor i in range(n):\n \n\nfor k in :\n for x in range(n-k):\n y = x + k\n temp = INF\n for i in range(k):\n temp = min(temp, dp[x][x+i] + dp[x+i+1][y] + s[y+1] - s[x])\n dp[x][y] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\n\n\nfor i in range(n):\n dp[i][i] = 0\n\nfor k in :\n for x in range(n-k):\n y = x + k\n temp = INF\n for i in range(k):\n temp = min(temp, dp[x][x+i] + dp[x+i+1][y] + s[y+1] - s[x])\n dp[x][y] = temp\n\nprint(dp[0][n-1])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = 10 ** 20\n\ndp = [[0 for _ in range(n)] for _ in range(n)]\n\ns = [0] * (n+1)\nfor i in range(n):\n s[i+1] = s[i] + a[i]\n\n\nfor i in range(n):\n dp[i][i] = 0\n\nfor k in range(1, n):\n for x in range(n-k):\n y = x + k\n temp = INF\n for i in range(k):\n temp = min(temp, dp[x][x+i] + dp[x+i+1][y] + s[y+1] - s[x])\n dp[x][y] = temp\n\nprint(dp[0][n-1])\n" ]
14
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n main()\n", "def main():\n \n\nif :\n main()\n", "def main():\n \n \nif :\n main()\n", "def main():\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n INF = 10 ** 18\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n INF = 10 ** 18\n \n for i in range(N):\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n INF = 10 ** 18\n \n for i in range(N):\n \n acc = [0]\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n \n \nif __name__ == '__main__':\n main()\n", "def main():\n \n \n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n \n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n \n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n \n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n \n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n \n for w in :\n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n \n for w in :\n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n \n for w in range(2, N+1):\n \n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n \n for w in range(2, N+1):\n for left in range(N):\n right = left + w - 1\n if right >= N:\n continue\n wsum = acc[right + 1] - acc[left]\n for mid in range(left, right):\n dp[left][right] = min(dp[left][right], dp[left][mid] + dp[mid+1][right] + wsum)\n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n \n acc = [0]\n for a in A:\n acc.append(acc[-1] + a)\n for w in range(2, N+1):\n for left in range(N):\n right = left + w - 1\n if right >= N:\n continue\n wsum = acc[right + 1] - acc[left]\n for mid in range(left, right):\n dp[left][right] = min(dp[left][right], dp[left][mid] + dp[mid+1][right] + wsum)\n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n", "def main():\n N = int(input())\n A = [int(a) for a in input().split()]\n INF = 10 ** 18\n dp = [[INF] * N for _ in range(N)]\n for i in range(N):\n dp[i][i] = 0\n acc = [0]\n for a in A:\n acc.append(acc[-1] + a)\n for w in range(2, N+1):\n for left in range(N):\n right = left + w - 1\n if right >= N:\n continue\n wsum = acc[right + 1] - acc[left]\n for mid in range(left, right):\n dp[left][right] = min(dp[left][right], dp[left][mid] + dp[mid+1][right] + wsum)\n print(dp[0][N-1])\n\n\nif __name__ == '__main__':\n main()\n" ]
18
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for a in A:\n", "\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\n\nfor a in A:\n", "\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\n\nfor a in A:\n \n\nprint(dp[0][N-1])\n", "\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\nprint(dp[0][N-1])\n", "\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "A = list(map(int, input().split()))\n\n\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in :\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n \n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n \n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + (cum[j+1]-cum[i])\n\nprint(dp[0][N-1])\n", "N = int(input())\nA = list(map(int, input().split()))\n\n\"\"\"\ncum = [[0]*(N) for i in range(N)]\nfor i in range(N):\n c = 0\n for j in range(i, N):\n c += A[j]\n cum[i][j] = c\n\"\"\"\ncum = [0]\nfor a in A:\n cum.append(cum[-1] + a)\n\n\ndp = [[0]*N for i in range(N)]\n\nfor n in range(1, N+1):\n for i in range(N-n):\n j = i + n\n min_cost = 0\n for k in range(i, j):\n if min_cost == 0:\n min_cost = dp[i][k] + dp[k+1][j]\n else:\n min_cost = min(min_cost, dp[i][k]+dp[k+1][j])\n\n dp[i][j] = min_cost + (cum[j+1]-cum[i])\n\nprint(dp[0][N-1])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "from import\n", "from import \n\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n", "from import \n\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\n\nprint(dp[0][N])\n", "from import \n\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\n\nprint(dp[0][N])\n", "from import \n\n\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\n\nprint(dp[0][N])\n", "from import \n\n\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in :\n \n\nprint(dp[0][N])\n", "from import \n\nN = int(input())\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in :\n \n\nprint(dp[0][N])\n", "from itertools import \n\nN = int(input())\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in :\n \n\nprint(dp[0][N])\n", "from itertools import accumulate\n\nN = int(input())\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in :\n \n\nprint(dp[0][N])\n", "from itertools import accumulate\n\nN = int(input())\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in range(2, N + 1):\n \n\nprint(dp[0][N])\n", "from itertools import accumulate\n\nN = int(input())\na_list = list(map(int, input().split()))\n\na_acc = [0] + list(accumulate(a_list))\n\ndp = [[0] * (N + 1) for _ in range(N + 1)]\n\nfor d in range(2, N + 1):\n for l in range(N + 1 - d):\n r = l + d\n tmp = float(\"inf\")\n for m in range(l+1, r):\n tmp = min(tmp, dp[l][m] + dp[m][r])\n dp[l][r] = tmp + a_acc[r] - a_acc[l]\n\nprint(dp[0][N])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def solve(n, a):\n", "def solve(n, a):\n \n\nif :\n", "def solve(n, a):\n \n\nif __name__ == '__main__':\n", "def solve(n, a):\n \n\n acc = (0,) + tuple(accumulate(a))\n \n \nif __name__ == '__main__':\n", "def solve(n, a):\n \n\n acc = (0,) + tuple(accumulate(a))\n \n for i in range(n):\n \n\nif __name__ == '__main__':\n", "def solve(n, a):\n \n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\nif __name__ == '__main__':\n", "def solve(n, a):\n from import \n\n \n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\nif __name__ == '__main__':\n", "def solve(n, a):\n from import \n\n \n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\nif __name__ == '__main__':\n \n \n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n \n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n \n \n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n \n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n \n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n \n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n for l in :\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n \n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n for l in :\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n \n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n for l in :\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n \n\n for l in range(n - 1, -1, -1):\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import \n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n cost[i][i + 1] = 0\n\n for l in range(n - 1, -1, -1):\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n cost[i][i + 1] = 0\n\n for l in range(n - 1, -1, -1):\n \n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n cost[i][i + 1] = 0\n\n for l in range(n - 1, -1, -1):\n for r in range(l + 2, n + 1):\n for c in range(l + 1, r):\n cost[l][r] = min(cost[l][r], cost[l][c] + cost[c][r])\n cost[l][r] += acc[r] - acc[l]\n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n", "def solve(n, a):\n from itertools import accumulate\n\n inf = (400 ** 2) * (10 ** 9) + 10\n\n acc = (0,) + tuple(accumulate(a))\n cost = [[inf] * (n + 1) for _ in range(n + 1)]\n for i in range(n):\n cost[i][i + 1] = 0\n\n for l in range(n - 1, -1, -1):\n for r in range(l + 2, n + 1):\n for c in range(l + 1, r):\n cost[l][r] = min(cost[l][r], cost[l][c] + cost[c][r])\n cost[l][r] += acc[r] - acc[l]\n\n return cost[0][n]\n\n\nif __name__ == '__main__':\n n = int(input())\n a = tuple(map(int, input().split()))\n print(solve(n, a))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "A = list(map(int, input().split()))\n", "A = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\n\nfor i in range(N):\n \n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\n\nfor i in range(N):\n \n\nfor m in :\n \n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\naccum = [0] * (N + 1)\nfor i in range(N):\n \n\nfor m in :\n \n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\naccum = [0] * (N + 1)\nfor i in range(N):\n \n\nfor m in :\n for l in range(N):\n if m == 1:\n dp[l][l + m] = 0\n else:\n if l + m < N + 1:\n r = l + m\n dp[l][r] = min([dp[l][l+k] + dp[l+k][r] for k in range(1, m)]) + accum[r] - accum[l]\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\naccum = [0] * (N + 1)\nfor i in range(N):\n \n\nfor m in range(1, N+1):\n for l in range(N):\n if m == 1:\n dp[l][l + m] = 0\n else:\n if l + m < N + 1:\n r = l + m\n dp[l][r] = min([dp[l][l+k] + dp[l+k][r] for k in range(1, m)]) + accum[r] - accum[l]\n\nprint(dp[0][N])\n", "N = int(input())\nA = list(map(int, input().split()))\ndp = [[0] * (N + 1) for _ in range(N+ 1)]\n\naccum = [0] * (N + 1)\nfor i in range(N):\n accum[i + 1] = accum[i] + A[i]\n\nfor m in range(1, N+1):\n for l in range(N):\n if m == 1:\n dp[l][l + m] = 0\n else:\n if l + m < N + 1:\n r = l + m\n dp[l][r] = min([dp[l][l+k] + dp[l+k][r] for k in range(1, m)]) + accum[r] - accum[l]\n\nprint(dp[0][N])\n" ]
11
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def calcdp(i,j):\n", "def calcdp(i,j):\n \n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\nN = int(input())\n\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\nN = int(input())\n\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\nBIG_INT = 10**30\nN = int(input())\n\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\n if :\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n \n\n if :\n \n\n if :\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if :\n \n\n if :\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if :\n \n\n if i + 1== j:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if :\n return dp[i][j]\n\n if i + 1== j:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n \nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n \n elif :\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n \n elif :\n \n\n else:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n \n elif :\n \n \n else:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n \n elif i + 2== j:\n \n \n else:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n \n return dp[i][j]\n\n elif i + 2== j:\n \n \n else:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n \n \n else:\n \n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n \n \n else:\n \n \nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n \n\n else:\n \n \nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n \n\n else:\n m = BIG_INT\n \n \nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n \n\n else:\n m = BIG_INT\n \n m += sum(A[i:j])\n \n \nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n \n\n else:\n m = BIG_INT\n \n m += sum(A[i:j])\n \n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n return dp[i][j]\n\n else:\n m = BIG_INT\n \n m += sum(A[i:j])\n \n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n return dp[i][j]\n\n else:\n m = BIG_INT\n \n m += sum(A[i:j])\n dp[i][j] = m\n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n return dp[i][j]\n\n else:\n m = BIG_INT\n for k in :\n \n m += sum(A[i:j])\n dp[i][j] = m\n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n return dp[i][j]\n\n else:\n m = BIG_INT\n for k in range(i + 1, j):\n \n m += sum(A[i:j])\n dp[i][j] = m\n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n", "def calcdp(i,j):\n global dp, A, BIG_INT\n\n if dp[i][j] != -1:\n return dp[i][j]\n\n if i + 1== j:\n dp[i][j] = 0\n return dp[i][j]\n\n elif i + 2== j:\n dp[i][j] = A[i] + A[i + 1]\n return dp[i][j]\n\n else:\n m = BIG_INT\n for k in range(i + 1, j):\n m = min(calcdp(i, k) + calcdp(k, j), m)\n m += sum(A[i:j])\n dp[i][j] = m\n return dp[i][j]\n\n\nBIG_INT = 10**30\nN = int(input())\nA = [int(x) for x in input().split()]\ndp = [[-1] * (N + 1) for _ in range(N)]\n\nprint(calcdp(0, N))\n" ]
30
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def f(n, a):\n", "def f(n, a):\n \n\na = tuple(map(int, input().split()))\n", "def f(n, a):\n \n\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n \nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n \n for i in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n \n for j in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in :\n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in :\n mn = inf\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n \n \n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n \n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in :\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n \n \n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n \n if k < mn:\n mn = k\n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n", "def f(n, a):\n inf = float(\"inf\")\n dp = [[0] * n for _ in range(n)]\n for i in range(n - 2, -1, -1):\n s = a[i]\n dpi = dp[i]\n for j in range(i + 1, n):\n mn = inf\n s += a[j]\n for d in range(i, j):\n k = dpi[d] + dp[d + 1][j]\n if k < mn:\n mn = k\n dpi[j] = mn + s\n return dp[0][-1]\n\n\nn = int(input())\na = tuple(map(int, input().split()))\nprint(f(n, a))\n" ]
23
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = NI()\na = LI()\n", "import sys\n\n\nN = NI()\na = LI()\n", "import sys\n\n\nN = NI()\na = LI()\n\n\nfor i in range(N):\n", "import sys\n\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n", "import sys\n\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n", "import sys\n\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\n\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n", "import sys\n\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\n\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "import sys\n\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\n\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in :\n \nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in range(1,N):\n \nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n \nfor i in range(N):\n \n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n \n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n \nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in :\n \n \nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n \n \nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n x += a[j]\n \nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n", "import sys\nINF = 10**14\nLI = lambda : [int(x) for x in sys.stdin.readline().split()]\nNI = lambda : int(sys.stdin.readline())\n\nN = NI()\na = LI()\nsn = [[0 for _ in range(N)] for _ in range(N)]\ndp = [[INF for _ in range(N)] for _ in range(N)]\nfor i in range(N):\n x = 0\n for j in range(i,N):\n x += a[j]\n sn[i][j] = x\nfor i in range(N):\n dp[i][i] = 0\n\nfor j in range(1,N):\n for i in range(j-1,-1,-1):\n for k in range(0,j-i):\n dp[i][j] = min(dp[i][j],dp[i+k+1][j]+ dp[i][i+k] + sn[i][j])\nprint(dp[0][-1])\n" ]
21
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "dp = [[0]*(N+1) for _ in range(N+1)]\n", "dp = [[0]*(N+1) for _ in range(N+1)]\n\nprint(dp[-1][0])\n", "SA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\n\nprint(dp[-1][0])\n", "SA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in :\n \nprint(dp[-1][0])\n", "from import \n\n\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in :\n \nprint(dp[-1][0])\n", "from import \nN = int(input())\n\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in :\n \nprint(dp[-1][0])\n", "from import \nN = int(input())\nA = list(map(int, input().split()))\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in :\n \nprint(dp[-1][0])\n", "from itertools import \nN = int(input())\nA = list(map(int, input().split()))\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in :\n \nprint(dp[-1][0])\n", "from itertools import \nN = int(input())\nA = list(map(int, input().split()))\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in range(2, N+1):\n \nprint(dp[-1][0])\n", "from itertools import \nN = int(input())\nA = list(map(int, input().split()))\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in range(2, N+1):\n for j in range(N-i+1):\n dp[i][j] = SA[j+i-1] - SA[j-1] + min(dp[k][j] + dp[i-k][j+k] for k in range(1, i))\nprint(dp[-1][0])\n", "from itertools import accumulate\nN = int(input())\nA = list(map(int, input().split()))\nSA = list(accumulate(A)) + [0]\ndp = [[0]*(N+1) for _ in range(N+1)]\nfor i in range(2, N+1):\n for j in range(N-i+1):\n dp[i][j] = SA[j+i-1] - SA[j-1] + min(dp[k][j] + dp[i-k][j+k] for k in range(1, i))\nprint(dp[-1][0])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "for l in :\n", "for l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\n\nfor i in :\n \n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\n\n\nfor i in :\n \n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\n\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in :\n \n\nfor i in :\n \n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in :\n \n\nfor i in :\n \n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in :\n \n\nfor i in range(n+1):\n \n\nfor l in :\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in :\n \n\nfor i in range(n+1):\n \n\nfor l in range(2, n+1):\n \n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in :\n \n\nfor i in range(n+1):\n \n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n \n\nfor i in range(n+1):\n \n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\nfor i in range(n+1):\n \n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\nfor i in range(n+1):\n \n \nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\nfor i in range(n+1):\n dp[i][i] = 0\n \n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\nfor i in range(n+1):\n dp[i][i] = 0\n if i+1 <= n:\n \n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\nINF = float('inf')\ndp = [[INF] * (n+1) for _ in range(n+1)]\n\nacum = [0] * (n+1)\nfor i, ai in enumerate(a):\n acum[i+1] += acum[i] + ai\n\nfor i in range(n+1):\n dp[i][i] = 0\n if i+1 <= n:\n dp[i][i+1] = 0\n\nfor l in range(2, n+1):\n for i in range(n-l+1):\n j = i + l\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k] + dp[k][j] + acum[j] - acum[i])\n\nprint(dp[0][n])\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "n = int(input())\n\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "n = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\n\n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\n\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\n\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n \n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n \n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n \ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n \n elif :\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n return dp[l][r]\n elif :\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if :\n return dp[l][r]\n elif :\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif :\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n \n else:\n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n \n else:\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n \n \n else:\n res = float(\"inf\")\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n \n return dp[l][r]\n else:\n res = float(\"inf\")\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n \n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n \n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in :\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n res = min(res, dfs(l, k) + dfs(k, r) + (cost[r] - cost[l]))\n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n", "from math import isinf\nn = int(input())\na = list(map(int, input().split()))\n\n#dp[l][r] = [l, r)区間のスライムを合体するときのコストの最小値\ndp = [[float(\"inf\")]*(n+1) for i in range(n+1)]\nfor i in range(n):\n dp[i][i] = 0\n\n#cost[r]-cost[l] = [l, r)区間を合計したときのスライムの総和\ncost = [0]*(n+1)\nfor i in range(n):\n cost[i+1] = cost[i] + a[i]\n\n#メモ化再帰でdp[0][n]求める\ndef dfs(l, r):\n if not isinf(dp[l][r]):\n return dp[l][r]\n elif (r - l) == 1:\n dp[l][r] = 0\n return dp[l][r]\n else:\n res = float(\"inf\")\n for k in range(l + 1, r):\n #dp[l][k] + dp[k][r] + 合体に必要なコスト\n res = min(res, dfs(l, k) + dfs(k, r) + (cost[r] - cost[l]))\n dp[l][r] = res\n return dp[l][r]\n\ndfs(0, n)\nprint(dp[0][n])\n" ]
31
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\n\n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\n\n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\n\nB = [0] + A\n\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\n\nB = [0] + A\n\n\nINF = 10**18\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\n\n\nINF = 10**18\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\n", "A = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\n\n\nINF = 10**18\n\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\nprint(dp[0][n])\n", "A = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\n\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\n\n#print(dp)\nprint(dp[0][n])\n", "A = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\n\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in :\n \n#print(dp)\nprint(dp[0][n])\n", "A = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in :\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom import \nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in :\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import \nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in :\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import \nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n \n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in range(2, n+1):\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import \nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n dp[i][i+1] = 0\n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in range(2, n+1):\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import accumulate\nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n dp[i][i+1] = 0\n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in range(2, n+1):\n \n#print(dp)\nprint(dp[0][n])\n", "n = int(input())\nA = list(map(int, input().split()))\n\nfrom itertools import accumulate\nB = [0] + A\nB = list(accumulate(B))\n\nINF = 10**18\ndp = [[INF]*(n+1) for i in range(n+1)]\n# dp[i][j]: 区間[i, j)のスライムを取り除いたコストの最小値\nfor i in range(n):\n dp[i][i+1] = 0\n# 区間の幅(d)が狭い方から更新していく(d: 2, 3, ...n+1)\n# d = 0, 1については初期化で更新した\nfor d in range(2, n+1):\n for i in range(n+1-d):\n j = i + d\n for k in range(i+1, j):\n dp[i][j] = min(dp[i][j], dp[i][k]+dp[k][j]+B[j]-B[i])\n#print(dp)\nprint(dp[0][n])\n" ]
17
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "N = int(input())\n", "N = int(input())\n\n\ndp = [[0]*N for _ in range(N)]\n", "import sys\n\n\nN = int(input())\n\n\ndp = [[0]*N for _ in range(N)]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\n\n\ndp = [[0]*N for _ in range(N)]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\n\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\n\n\nS[0] = A[0]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\n\nS[0] = A[0]\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\n\nS[0] = A[0]\nfor i in range(N):\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\n\nS[0] = A[0]\nfor i in range(N):\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\n\nS[0] = A[0]\nfor i in range(N):\n \n\ndef f(l, r):\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n \n\nS[0] = A[0]\nfor i in range(N):\n \n\ndef f(l, r):\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n \n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n \nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n \n for m in :\n \n \nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n \n for m in :\n \n dp[l][r] = res+S[r+1]-S[l]\n \n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n \n \n for m in :\n \n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if :\n \n \n for m in :\n \n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if :\n \n flag[l][r] = True\n \n for m in :\n \n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if :\n \n flag[l][r] = True\n res = 10**18\n for m in :\n \n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if :\n \n flag[l][r] = True\n res = 10**18\n for m in :\n res = min(res, f(l, m)+f(m+1, r))\n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if :\n \n flag[l][r] = True\n res = 10**18\n for m in range(l, r):\n res = min(res, f(l, m)+f(m+1, r))\n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if flag[l][r]:\n \n flag[l][r] = True\n res = 10**18\n for m in range(l, r):\n res = min(res, f(l, m)+f(m+1, r))\n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n", "import sys\nsys.setrecursionlimit(160000)\n\nN = int(input())\nA = [int(a) for a in input().split()]\n\ndp = [[0]*N for _ in range(N)]\nflag = [[False]*N for _ in range(N)]\nS = [0]*(N+1)\n\nfor i in range(N):\n flag[i][i] = True\n\nS[0] = A[0]\nfor i in range(N):\n S[i+1] = S[i]+A[i]\n\ndef f(l, r):\n if flag[l][r]:\n return dp[l][r]\n flag[l][r] = True\n res = 10**18\n for m in range(l, r):\n res = min(res, f(l, m)+f(m+1, r))\n dp[l][r] = res+S[r+1]-S[l]\n return dp[l][r]\n\nprint(f(0, N-1))\n" ]
26
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "def solve:\n", "def solve:\n \n\ninf = 10**15\n", "def solve:\n \n\ninf = 10**15\n\nA = list(map(int, input().split()))\n", "def solve:\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\n", "from import \n\ndef solve:\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\n", "from import \n\ndef solve:\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\n", "from import \n\ndef solve:\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\n", "from import \n\ndef solve:\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from import \n\ndef solve(left, right):\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from import accumulate\n\ndef solve(left, right):\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from import accumulate\n\ndef solve(left, right):\n \n \ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n \n \ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n \n \n dp[left][right] = ret\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n \n \n for mid in :\n \n \n dp[left][right] = ret\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n \n \n ret = inf\n for mid in :\n \n \n dp[left][right] = ret\n \n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n \n \n ret = inf\n for mid in :\n \n \n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n \n \n ret = inf\n for mid in :\n \n \n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n \n \n ret = inf\n for mid in :\n \n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n \n ret = inf\n for mid in :\n \n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n \n ret = inf\n for mid in :\n \n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = inf\n for mid in :\n \n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = inf\n for mid in range(left, right):\n \n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if :\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = inf\n for mid in range(left, right):\n ret = min([ret, solve(left, mid)+solve(mid+1, right)])\n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n", "from itertools import accumulate\n\ndef solve(left, right):\n if left == right:\n return 0\n ret = dp[left][right]\n if ret > 0:\n return ret\n ret = inf\n for mid in range(left, right):\n ret = min([ret, solve(left, mid)+solve(mid+1, right)])\n ret += s[right] - (s[left-1] if left > 0 else 0)\n dp[left][right] = ret\n return ret\n\ninf = 10**15\nN = int(input())\nA = list(map(int, input().split()))\ns = list(accumulate(A))\ndp = [[0]*(N) for _ in range(N)]\nprint(solve(0, N-1))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "if :\n main()\n", "def main():\n \n\nif :\n main()\n", "def main():\n \n\nif __name__ == \"__main__\":\n main()\n", "def main():\n \n \nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n \nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n \n \nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n \n \n for i in :\n \n \nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n \n for i in :\n \n \nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n \n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n \n for i in :\n \n print(dp[N][0])\n\n\nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n \n for i in :\n \n print(dp[N][0])\n\n\nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n cumsum[1] = A\n for i in :\n \n print(dp[N][0])\n\n\nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n cumsum[1] = A\n for i in :\n for j in range(N-i+1):\n cumsum[i][j] = cumsum[i-1][j+1] + A[j]\n for k in range(1, i):\n dp[i][j] = min(dp[k][j] + dp[i-k][j+k] +\n cumsum[i][j], dp[i][j])\n print(dp[N][0])\n\n\nif __name__ == \"__main__\":\n main()\n", "def main():\n N = int(input())\n A = list(map(int, input().split()))\n\n cumsum = [[0]*(N-i+1) for i in range(N+1)]\n\n dp = [[float(\"inf\")]*(N-i+1) for i in range(N+1)]\n dp[1] = [0] * N\n cumsum[1] = A\n for i in range(2, N+1):\n for j in range(N-i+1):\n cumsum[i][j] = cumsum[i-1][j+1] + A[j]\n for k in range(1, i):\n dp[i][j] = min(dp[k][j] + dp[i-k][j+k] +\n cumsum[i][j], dp[i][j])\n print(dp[N][0])\n\n\nif __name__ == \"__main__\":\n main()\n" ]
15
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "n=int(input())\n", "import itertools\nn=int(input())\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\n\nprint(dp[0][-1])\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\n\ndp=[[0]*(n+1) for i in range(n+1)]\n\n\nprint(dp[0][-1])\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\n\ndp=[[0]*(n+1) for i in range(n+1)]\n\nfor distance in :\n \n\nprint(dp[0][-1])\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\nsumx=[0]+list(itertools.accumulate(a))\n\ndp=[[0]*(n+1) for i in range(n+1)]\n\nfor distance in :\n \n\nprint(dp[0][-1])\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\nsumx=[0]+list(itertools.accumulate(a))\n\ndp=[[0]*(n+1) for i in range(n+1)]\n\nfor distance in :\n for i in range(n-distance+1):\n j=i+distance\n dp[i][j]=sumx[j]-sumx[i]+min(dp[i][k]+dp[k][j] for k in range(i+1,j))\n\nprint(dp[0][-1])\n", "import itertools\nn=int(input())\na=list(map(int,input().split()))\n\nsumx=[0]+list(itertools.accumulate(a))\n\ndp=[[0]*(n+1) for i in range(n+1)]\n\nfor distance in range(2,n+1):\n for i in range(n-distance+1):\n j=i+distance\n dp[i][j]=sumx[j]-sumx[i]+min(dp[i][k]+dp[k][j] for k in range(i+1,j))\n\nprint(dp[0][-1])\n" ]
10
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "S = [0]*(N+1)\n", "S = [0]*(N+1)\n\n\nprint(dp[0][N])\n", "S = [0]*(N+1)\n\ndp = [[0]*(N+1) for i in range(N+1)]\n\nprint(dp[0][N])\n", "INF = 10**18\nS = [0]*(N+1)\n\ndp = [[0]*(N+1) for i in range(N+1)]\n\nprint(dp[0][N])\n", "*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\n\ndp = [[0]*(N+1) for i in range(N+1)]\n\nprint(dp[0][N])\n", "*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\n\ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in :\n \nprint(dp[0][N])\n", "*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\nfor i in range(N):\n \ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in :\n \nprint(dp[0][N])\n", "N = int(input())\n*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\nfor i in range(N):\n \ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in :\n \nprint(dp[0][N])\n", "N = int(input())\n*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\nfor i in range(N):\n S[i+1] = S[i] + A[i]\ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in :\n \nprint(dp[0][N])\n", "N = int(input())\n*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\nfor i in range(N):\n S[i+1] = S[i] + A[i]\ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in range(2, N+1):\n \nprint(dp[0][N])\n", "N = int(input())\n*A, = map(int, input().split())\n\nINF = 10**18\nS = [0]*(N+1)\nfor i in range(N):\n S[i+1] = S[i] + A[i]\ndp = [[0]*(N+1) for i in range(N+1)]\nfor k in range(2, N+1):\n for i in range(N-k+1):\n dp[i][k] = min(dp[i][j] + dp[i+j][k-j] for j in range(1, k)) + S[i+k] - S[i]\nprint(dp[0][N])\n" ]
12
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\n\n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\n\nC[1]=A[1]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in :\n \n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in :\n \n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\n\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "A=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in :\n \n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in :\n \n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n \n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n \n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n \n\n if i==j:\n \n \nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n \n if i==j:\n \n \nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if :\n \n if i==j:\n \n \nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if :\n \n if i==j:\n \n else:\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n \n if i==j:\n \n else:\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n \n else:\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n \n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n \n \nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n \n \n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n \n \n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n res=float('inf')\n \n \n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n res=float('inf')\n sum=C[j]-C[i-1]\n \n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n res=float('inf')\n sum=C[j]-C[i-1]\n for k in :\n \n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n res=float('inf')\n sum=C[j]-C[i-1]\n for k in :\n res=min(res,mincost(i,k)+mincost(k+1,j)+sum)\n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n", "N=int(input())\nA=[0]+list(map(int,input().split()))\n\n#累積和\n#C[index]=A[1]+...+A[index](1<=index<=N)\nC=[0]*(N+1)\nC[1]=A[1]\nfor index1 in range(2,N+1):\n C[index1]+=C[index1-1]+A[index1]\n\nDP=[[0]*(N+1) for index2 in range(N+1)]\n\n\ndef mincost(i,j): #i<=j\n global A\n global DP\n\n if DP[i][j]>0:\n return DP[i][j]\n if i==j:\n return DP[i][j]\n else:\n res=float('inf')\n sum=C[j]-C[i-1]\n for k in range(i,j):\n res=min(res,mincost(i,k)+mincost(k+1,j)+sum)\n DP[i][j]=res\n return DP[i][j]\n\nmincost(1,N)\nprint(DP[1][N])\n\n#for index3 in range(N+1):\n #string=''\n #for index4 in range(N+1):\n #string+=str(DP[index3][index4])+' '\n #print(string)\n" ]
29
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "cumsum = [0]\n", "n = int(input())\n\n\ncumsum = [0]\n", "n = int(input())\n\n\ncumsum = [0]\nfor i in range(n):\n", "n = int(input())\n\n\ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost:\n", "n = int(input())\na = list(map(int, input().split()))\n\n\ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost:\n", "n = int(input())\na = list(map(int, input().split()))\n\n\nfor i in range(n):\n \ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost:\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n \ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost:\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n \ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost:\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n \ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost(left, right):\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n \n\ndef calc_cost(left, right):\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n \n \nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n \n \n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n \n min_ = min(calc_cost(left, i) + calc_cost(i+1, right) for i in range(left, right))\n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n if :\n \n min_ = min(calc_cost(left, i) + calc_cost(i+1, right) for i in range(left, right))\n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n \n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n if :\n \n min_ = min(calc_cost(left, i) + calc_cost(i+1, right) for i in range(left, right))\n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n return dp[left][right]\n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n if dp[left][right] >= 0:\n \n min_ = min(calc_cost(left, i) + calc_cost(i+1, right) for i in range(left, right))\n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n return dp[left][right]\n\nprint(calc_cost(0,n-1))\n", "n = int(input())\na = list(map(int, input().split()))\n\ndp = [[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i] = 0\ncumsum = [0]\nfor i in range(n):\n cumsum.append(cumsum[-1] + a[i])\n\ndef calc_cost(left, right):\n if dp[left][right] >= 0:\n return dp[left][right]\n min_ = min(calc_cost(left, i) + calc_cost(i+1, right) for i in range(left, right))\n dp[left][right] = cumsum[right+1]-cumsum[left] + min_\n return dp[left][right]\n\nprint(calc_cost(0,n-1))\n" ]
19
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]
0/::0
There are N slimes lining up in a row. Initially, the i-th slime from the left has a size of a_i. Taro is trying to combine all the slimes into a larger slime. He will perform the following operation repeatedly until there is only one slime: * Choose two adjacent slimes, and combine them into a new slime. The new slime has a size of x + y, where x and y are the sizes of the slimes before combining them. Here, a cost of x + y is incurred. The positional relationship of the slimes does not change while combining slimes. Find the minimum possible total cost incurred. Constraints * All values in input are integers. * 2 \leq N \leq 400 * 1 \leq a_i \leq 10^9 Input Input is given from Standard Input in the following format: N a_1 a_2 \ldots a_N Output Print the minimum possible total cost incurred. Examples Input 4 10 20 30 40 Output 190 Input 5 10 10 10 10 10 Output 120 Input 3 1000000000 1000000000 1000000000 Output 5000000000 Input 6 7 6 8 6 1 1 Output 68
[ "\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\n\n\ndef memo(i,j):\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\n\n\ndp=[[-1]*n for i in range(n)]\n\ndef memo(i,j):\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\ndp=[[-1]*n for i in range(n)]\n\ndef memo(i,j):\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\ndp=[[-1]*n for i in range(n)]\n\ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\nb=[0]*(n+1)\n\ndp=[[-1]*n for i in range(n)]\n\ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\nb=[0]*(n+1)\n\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\nn=int(input())\n\nb=[0]*(n+1)\n\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\nn=int(input())\n\nb=[0]*(n+1)\nfor i in range(n):\n \ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\n\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n \ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\n\ninput = sys.stdin.readline\n\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n \ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\n\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n \ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n \ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n \ndef memo(i,j):\n \n ans=INF\n \n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n \n ans=INF\n \n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n \n ans=INF\n \n dp[i][j]=ans+b[j+1]-b[i]\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n \n ans=INF\n for k in :\n \n dp[i][j]=ans+b[j+1]-b[i]\n \nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n \n ans=INF\n for k in :\n \n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n if :\n \n ans=INF\n for k in :\n \n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n if :\n \n ans=INF\n for k in range(i,j):\n \n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n if :\n return dp[i][j]\n ans=INF\n for k in range(i,j):\n \n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n if :\n return dp[i][j]\n ans=INF\n for k in range(i,j):\n ans=min(ans,memo(i,k)+memo(k+1,j))\n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n", "# 大きさがsum(a)のスライムが1匹いる\n# dp[l][r]=min(区間[l,r]を分解するための最小コスト)\nimport sys\nsys.setrecursionlimit(1000000000)\ninput = sys.stdin.readline\nINF=10**15\nn=int(input())\na=list(map(int,input().split()))\nb=[0]*(n+1)\nfor i in range(n):\n b[i+1]=b[i]+a[i]\ndp=[[-1]*n for i in range(n)]\nfor i in range(n):\n dp[i][i]=0\ndef memo(i,j):\n if dp[i][j]>=0:\n return dp[i][j]\n ans=INF\n for k in range(i,j):\n ans=min(ans,memo(i,k)+memo(k+1,j))\n dp[i][j]=ans+b[j+1]-b[i]\n return dp[i][j]\nprint(memo(0,n-1))\n" ]
25
[ { "input": "6\n7 6 8 6 1 1", "output": "68" }, { "input": "5\n10 10 10 10 10", "output": "120" }, { "input": "3\n1000000000 1000000000 1000000000", "output": "5000000000" }, { "input": "4\n10 20 30 40", "output": "190" } ]
[ { "input": "6\n7 9 8 6 1 1", "output": "74\n" }, { "input": "5\n10 8 10 10 10", "output": "114\n" }, { "input": "3\n1001000000 1000000000 1000000000", "output": "5001000000\n" }, { "input": "4\n10 20 30 46", "output": "196\n" }, { "input": "6\n7 9 13 6 1 1", "output": "84\n" }, { "input": "5\n19 8 10 10 10", "output": "132\n" }, { "input": "3\n1001000000 1000000001 1000000000", "output": "5001000002\n" }, { "input": "4\n10 5 30 46", "output": "151\n" }, { "input": "6\n7 9 13 6 1 2", "output": "88\n" }, { "input": "5\n19 8 10 10 1", "output": "106\n" }, { "input": "3\n1001000000 1010000001 1000000000", "output": "5021000002\n" }, { "input": "4\n10 3 30 46", "output": "145\n" }, { "input": "6\n7 9 13 2 1 2", "output": "76\n" }, { "input": "5\n19 8 10 10 2", "output": "109\n" }, { "input": "3\n1001000000 1010000011 1000000000", "output": "5021000022\n" }, { "input": "4\n19 3 30 46", "output": "172\n" }, { "input": "5\n19 8 10 12 2", "output": "115\n" }, { "input": "3\n1001000010 1010000011 1000000000", "output": "5021000032\n" }, { "input": "4\n19 3 35 46", "output": "182\n" }, { "input": "5\n19 8 10 12 1", "output": "112\n" }, { "input": "3\n1001000010 1010010011 1000000000", "output": "5021020032\n" }, { "input": "4\n19 3 35 65", "output": "201\n" }, { "input": "6\n26 9 13 2 2 2", "output": "111\n" }, { "input": "5\n19 8 10 15 1", "output": "121\n" }, { "input": "3\n1001000011 1010010011 1000000000", "output": "5021020033\n" }, { "input": "4\n19 3 21 65", "output": "173\n" }, { "input": "6\n26 9 13 2 2 4", "output": "119\n" }, { "input": "5\n12 8 10 15 1", "output": "108\n" }, { "input": "3\n1001000011 1010110011 1000000000", "output": "5021220033\n" }, { "input": "4\n15 3 21 65", "output": "161\n" }, { "input": "3\n1001000011 1010110011 1001000000", "output": "5023220033\n" }, { "input": "4\n15 3 20 65", "output": "159\n" }, { "input": "6\n26 8 13 2 2 8", "output": "129\n" }, { "input": "5\n14 8 17 15 1", "output": "126\n" }, { "input": "3\n1001010011 1010110011 1001000000", "output": "5023230033\n" }, { "input": "4\n11 3 20 65", "output": "147\n" }, { "input": "6\n26 8 13 3 2 8", "output": "133\n" }, { "input": "5\n20 8 17 15 1", "output": "138\n" }, { "input": "3\n1001000011 1000110011 1001000000", "output": "5003220033\n" }, { "input": "6\n26 8 13 3 2 16", "output": "157\n" }, { "input": "5\n20 8 17 15 2", "output": "141\n" }, { "input": "3\n1001010011 1000110011 1001000000", "output": "5003230033\n" }, { "input": "4\n11 4 27 65", "output": "164\n" }, { "input": "5\n32 8 17 15 2", "output": "158\n" }, { "input": "3\n1001010011 1000110011 1001000001", "output": "5003230035\n" }, { "input": "4\n11 4 27 129", "output": "228\n" }, { "input": "5\n64 8 17 15 2", "output": "190\n" }, { "input": "3\n1001010011 1001110011 1001000001", "output": "5005230035\n" }, { "input": "4\n11 4 26 129", "output": "226\n" }, { "input": "5\n55 8 17 15 2", "output": "181\n" }, { "input": "3\n1001010010 1001110011 1001000001", "output": "5005230034\n" }, { "input": "4\n11 4 22 129", "output": "218\n" }, { "input": "6\n5 8 26 6 4 16", "output": "153\n" }, { "input": "3\n1001000010 1001110011 1001000001", "output": "5005220034\n" }, { "input": "4\n11 7 22 129", "output": "227\n" }, { "input": "3\n1001000010 1001110001 1001000001", "output": "5005220014\n" }, { "input": "6\n10 4 26 6 4 16", "output": "156\n" }, { "input": "5\n60 8 17 2 2", "output": "143\n" }, { "input": "3\n1001000010 1011110001 1001000001", "output": "5025220014\n" }, { "input": "4\n2 7 22 129", "output": "200\n" }, { "input": "5\n60 8 17 1 2", "output": "139\n" }, { "input": "3\n1011000010 1011110001 1001000001", "output": "5035220014\n" }, { "input": "4\n2 7 22 166", "output": "237\n" }, { "input": "6\n10 4 38 6 4 29", "output": "206\n" }, { "input": "5\n37 8 17 1 2", "output": "116\n" }, { "input": "3\n1011000011 1011110001 1001000001", "output": "5035220015\n" }, { "input": "4\n2 11 22 166", "output": "249\n" }, { "input": "3\n1011000001 1011110001 1001000001", "output": "5035220005\n" }, { "input": "4\n2 6 22 166", "output": "234\n" }, { "input": "5\n32 8 17 1 0", "output": "103\n" }, { "input": "3\n1011000001 1011110001 1001001001", "output": "5035222005\n" }, { "input": "4\n2 5 22 166", "output": "231\n" }, { "input": "6\n12 4 49 6 4 39", "output": "254\n" }, { "input": "5\n56 8 17 1 0", "output": "127\n" }, { "input": "3\n1011100001 1011110001 1001001001", "output": "5035322005\n" }, { "input": "4\n2 5 22 276", "output": "341\n" }, { "input": "6\n12 4 49 6 1 39", "output": "245\n" }, { "input": "5\n56 8 17 1 -1", "output": "123\n" }, { "input": "3\n1011100001 1011010001 1001001001", "output": "5035122005\n" }, { "input": "4\n2 6 22 276", "output": "344\n" }, { "input": "6\n12 4 64 6 1 39", "output": "275\n" }, { "input": "3\n1011100001 1001010001 1001001001", "output": "5015122005\n" }, { "input": "4\n2 1 22 276", "output": "329\n" }, { "input": "6\n12 1 64 6 1 39", "output": "266\n" }, { "input": "3\n1111100001 1001010001 1001001001", "output": "5115122005\n" }, { "input": "4\n2 1 24 276", "output": "333\n" }, { "input": "6\n12 0 64 6 1 39", "output": "263\n" }, { "input": "3\n1111100001 1001010000 1001001001", "output": "5115122003\n" }, { "input": "4\n2 0 24 276", "output": "330\n" }, { "input": "6\n12 0 64 6 0 39", "output": "260\n" }, { "input": "3\n1110100001 1001010000 1001001001", "output": "5114122003\n" }, { "input": "4\n0 0 24 276", "output": "324\n" }, { "input": "3\n1110100001 1001010010 1001001001", "output": "5114122023\n" }, { "input": "6\n4 1 64 6 0 39", "output": "239\n" }, { "input": "3\n1110100001 1001010010 1001001011", "output": "5114122043\n" }, { "input": "3\n1110100001 1000010010 1001001011", "output": "5112122043\n" }, { "input": "6\n4 1 64 11 0 49", "output": "274\n" }, { "input": "3\n1110000001 1000010010 1001001011", "output": "5112022043\n" }, { "input": "6\n4 2 64 11 0 49", "output": "277\n" }, { "input": "3\n1110000001 0000010010 1001001011", "output": "3112022043\n" } ]