|
|
import math |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
import torch.nn.functional as F |
|
|
|
|
|
from transformers import PreTrainedModel |
|
|
from transformers.modeling_outputs import CausalLMOutput |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GlobalConv1D(nn.Module): |
|
|
def __init__(self, d_model, kernel_size, fft_size): |
|
|
super().__init__() |
|
|
self.kernel = nn.Parameter(torch.randn(d_model, kernel_size) * 0.01) |
|
|
self.kernel_size = kernel_size |
|
|
self.fft_size = fft_size |
|
|
|
|
|
def forward(self, x): |
|
|
|
|
|
B, C, T = x.shape |
|
|
K = min(self.kernel_size, T) |
|
|
|
|
|
overlap = K - 1 |
|
|
block = self.fft_size - overlap |
|
|
|
|
|
x = F.pad(x, (overlap, 0)) |
|
|
k = self.kernel[:, :K] |
|
|
k = F.pad(k, (0, self.fft_size - K)) |
|
|
|
|
|
k_f = torch.fft.rfft(k, n=self.fft_size) |
|
|
|
|
|
outs = [] |
|
|
pos = 0 |
|
|
while pos < T: |
|
|
seg = x[..., pos:pos + self.fft_size] |
|
|
if seg.shape[-1] < self.fft_size: |
|
|
seg = F.pad(seg, (0, self.fft_size - seg.shape[-1])) |
|
|
|
|
|
y = torch.fft.irfft( |
|
|
torch.fft.rfft(seg, n=self.fft_size) * k_f.unsqueeze(0), |
|
|
n=self.fft_size |
|
|
) |
|
|
outs.append(y[..., overlap:overlap + block]) |
|
|
pos += block |
|
|
|
|
|
return torch.cat(outs, dim=-1)[..., :T] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class LocalConv1D(nn.Module): |
|
|
def __init__(self, d_model, k): |
|
|
super().__init__() |
|
|
self.k = k |
|
|
self.dw = nn.Conv1d(d_model, d_model, k, groups=d_model) |
|
|
self.pw = nn.Conv1d(d_model, d_model, 1) |
|
|
|
|
|
def forward(self, x): |
|
|
x = F.pad(x, (self.k - 1, 0)) |
|
|
return self.pw(F.relu(self.dw(x))) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GCLMBlock(nn.Module): |
|
|
def __init__(self, config, use_global): |
|
|
super().__init__() |
|
|
self.use_global = use_global |
|
|
|
|
|
self.ln1 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) |
|
|
self.local = LocalConv1D( |
|
|
config.d_model, |
|
|
config.local_kernel_size |
|
|
) |
|
|
|
|
|
if use_global: |
|
|
self.ln2 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) |
|
|
self.global_conv = GlobalConv1D( |
|
|
config.d_model, |
|
|
config.global_kernel_size, |
|
|
config.fft_size |
|
|
) |
|
|
|
|
|
self.ln3 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) |
|
|
self.ff = nn.Sequential( |
|
|
nn.Linear(config.d_model, config.d_model * 4), |
|
|
nn.GELU(), |
|
|
nn.Linear(config.d_model * 4, config.d_model), |
|
|
) |
|
|
|
|
|
def forward(self, x): |
|
|
x = x + self.local(self.ln1(x).transpose(1, 2)).transpose(1, 2) |
|
|
if self.use_global: |
|
|
x = x + self.global_conv(self.ln2(x).transpose(1, 2)).transpose(1, 2) |
|
|
return x + self.ff(self.ln3(x)) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GCLMModel(PreTrainedModel): |
|
|
config_class = None |
|
|
base_model_prefix = "gclm" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
self.emb = nn.Embedding(config.vocab_size, config.d_model) |
|
|
self.pos = nn.Embedding(config.max_seq_len, config.d_model) |
|
|
|
|
|
self.layers = nn.ModuleList([ |
|
|
GCLMBlock( |
|
|
config, |
|
|
use_global=(i % config.use_global_every_n_layers == 0) |
|
|
) |
|
|
for i in range(config.n_layers) |
|
|
]) |
|
|
|
|
|
self.ln = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward(self, input_ids): |
|
|
B, T = input_ids.shape |
|
|
pos = torch.arange(T, device=input_ids.device) |
|
|
|
|
|
h = self.emb(input_ids) + self.pos(pos) |
|
|
|
|
|
for layer in self.layers: |
|
|
h = layer(h) |
|
|
|
|
|
return self.ln(h) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class GCLMForCausalLM(PreTrainedModel): |
|
|
config_class = None |
|
|
base_model_prefix = "gclm" |
|
|
|
|
|
def __init__(self, config): |
|
|
super().__init__(config) |
|
|
|
|
|
self.gclm = GCLMModel(config) |
|
|
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False) |
|
|
|
|
|
self.post_init() |
|
|
|
|
|
def forward( |
|
|
self, |
|
|
input_ids, |
|
|
labels=None, |
|
|
**kwargs |
|
|
): |
|
|
hidden = self.gclm(input_ids) |
|
|
logits = self.lm_head(hidden) |
|
|
|
|
|
loss = None |
|
|
if labels is not None: |
|
|
loss = F.cross_entropy( |
|
|
logits.view(-1, logits.size(-1)), |
|
|
labels.view(-1), |
|
|
ignore_index=-100 |
|
|
) |
|
|
|
|
|
return CausalLMOutput( |
|
|
loss=loss, |
|
|
logits=logits |
|
|
) |
|
|
|