Create modeling_gclm.py
Browse files- modeling_gclm.py +195 -0
modeling_gclm.py
ADDED
|
@@ -0,0 +1,195 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import math
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
|
| 6 |
+
from transformers import PreTrainedModel
|
| 7 |
+
from transformers.modeling_outputs import CausalLMOutput
|
| 8 |
+
|
| 9 |
+
|
| 10 |
+
# ============================================================
|
| 11 |
+
# Configuration class is assumed to live in configuration_gclm.py
|
| 12 |
+
# ============================================================
|
| 13 |
+
|
| 14 |
+
# Expected fields in GCLMConfig:
|
| 15 |
+
# - vocab_size
|
| 16 |
+
# - d_model
|
| 17 |
+
# - n_layers
|
| 18 |
+
# - max_seq_len
|
| 19 |
+
# - local_kernel_size
|
| 20 |
+
# - global_kernel_size
|
| 21 |
+
# - fft_size
|
| 22 |
+
# - use_global_every_n_layers
|
| 23 |
+
# - layer_norm_eps
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
# ============================================================
|
| 27 |
+
# Global FFT Convolution
|
| 28 |
+
# ============================================================
|
| 29 |
+
|
| 30 |
+
class GlobalConv1D(nn.Module):
|
| 31 |
+
def __init__(self, d_model, kernel_size, fft_size):
|
| 32 |
+
super().__init__()
|
| 33 |
+
self.kernel = nn.Parameter(torch.randn(d_model, kernel_size) * 0.01)
|
| 34 |
+
self.kernel_size = kernel_size
|
| 35 |
+
self.fft_size = fft_size
|
| 36 |
+
|
| 37 |
+
def forward(self, x):
|
| 38 |
+
# x: [B, C, T]
|
| 39 |
+
B, C, T = x.shape
|
| 40 |
+
K = min(self.kernel_size, T)
|
| 41 |
+
|
| 42 |
+
overlap = K - 1
|
| 43 |
+
block = self.fft_size - overlap
|
| 44 |
+
|
| 45 |
+
x = F.pad(x, (overlap, 0))
|
| 46 |
+
k = self.kernel[:, :K]
|
| 47 |
+
k = F.pad(k, (0, self.fft_size - K))
|
| 48 |
+
|
| 49 |
+
k_f = torch.fft.rfft(k, n=self.fft_size)
|
| 50 |
+
|
| 51 |
+
outs = []
|
| 52 |
+
pos = 0
|
| 53 |
+
while pos < T:
|
| 54 |
+
seg = x[..., pos:pos + self.fft_size]
|
| 55 |
+
if seg.shape[-1] < self.fft_size:
|
| 56 |
+
seg = F.pad(seg, (0, self.fft_size - seg.shape[-1]))
|
| 57 |
+
|
| 58 |
+
y = torch.fft.irfft(
|
| 59 |
+
torch.fft.rfft(seg, n=self.fft_size) * k_f.unsqueeze(0),
|
| 60 |
+
n=self.fft_size
|
| 61 |
+
)
|
| 62 |
+
outs.append(y[..., overlap:overlap + block])
|
| 63 |
+
pos += block
|
| 64 |
+
|
| 65 |
+
return torch.cat(outs, dim=-1)[..., :T]
|
| 66 |
+
|
| 67 |
+
|
| 68 |
+
# ============================================================
|
| 69 |
+
# Local Convolution
|
| 70 |
+
# ============================================================
|
| 71 |
+
|
| 72 |
+
class LocalConv1D(nn.Module):
|
| 73 |
+
def __init__(self, d_model, k):
|
| 74 |
+
super().__init__()
|
| 75 |
+
self.k = k
|
| 76 |
+
self.dw = nn.Conv1d(d_model, d_model, k, groups=d_model)
|
| 77 |
+
self.pw = nn.Conv1d(d_model, d_model, 1)
|
| 78 |
+
|
| 79 |
+
def forward(self, x):
|
| 80 |
+
x = F.pad(x, (self.k - 1, 0))
|
| 81 |
+
return self.pw(F.relu(self.dw(x)))
|
| 82 |
+
|
| 83 |
+
|
| 84 |
+
# ============================================================
|
| 85 |
+
# GCLM Block
|
| 86 |
+
# ============================================================
|
| 87 |
+
|
| 88 |
+
class GCLMBlock(nn.Module):
|
| 89 |
+
def __init__(self, config, use_global):
|
| 90 |
+
super().__init__()
|
| 91 |
+
self.use_global = use_global
|
| 92 |
+
|
| 93 |
+
self.ln1 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
| 94 |
+
self.local = LocalConv1D(
|
| 95 |
+
config.d_model,
|
| 96 |
+
config.local_kernel_size
|
| 97 |
+
)
|
| 98 |
+
|
| 99 |
+
if use_global:
|
| 100 |
+
self.ln2 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
| 101 |
+
self.global_conv = GlobalConv1D(
|
| 102 |
+
config.d_model,
|
| 103 |
+
config.global_kernel_size,
|
| 104 |
+
config.fft_size
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
self.ln3 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
| 108 |
+
self.ff = nn.Sequential(
|
| 109 |
+
nn.Linear(config.d_model, config.d_model * 4),
|
| 110 |
+
nn.GELU(),
|
| 111 |
+
nn.Linear(config.d_model * 4, config.d_model),
|
| 112 |
+
)
|
| 113 |
+
|
| 114 |
+
def forward(self, x):
|
| 115 |
+
x = x + self.local(self.ln1(x).transpose(1, 2)).transpose(1, 2)
|
| 116 |
+
if self.use_global:
|
| 117 |
+
x = x + self.global_conv(self.ln2(x).transpose(1, 2)).transpose(1, 2)
|
| 118 |
+
return x + self.ff(self.ln3(x))
|
| 119 |
+
|
| 120 |
+
|
| 121 |
+
# ============================================================
|
| 122 |
+
# Base GCLM Model
|
| 123 |
+
# ============================================================
|
| 124 |
+
|
| 125 |
+
class GCLMModel(PreTrainedModel):
|
| 126 |
+
config_class = None # set by AutoConfig
|
| 127 |
+
base_model_prefix = "gclm"
|
| 128 |
+
|
| 129 |
+
def __init__(self, config):
|
| 130 |
+
super().__init__(config)
|
| 131 |
+
|
| 132 |
+
self.emb = nn.Embedding(config.vocab_size, config.d_model)
|
| 133 |
+
self.pos = nn.Embedding(config.max_seq_len, config.d_model)
|
| 134 |
+
|
| 135 |
+
self.layers = nn.ModuleList([
|
| 136 |
+
GCLMBlock(
|
| 137 |
+
config,
|
| 138 |
+
use_global=(i % config.use_global_every_n_layers == 0)
|
| 139 |
+
)
|
| 140 |
+
for i in range(config.n_layers)
|
| 141 |
+
])
|
| 142 |
+
|
| 143 |
+
self.ln = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
|
| 144 |
+
|
| 145 |
+
self.post_init()
|
| 146 |
+
|
| 147 |
+
def forward(self, input_ids):
|
| 148 |
+
B, T = input_ids.shape
|
| 149 |
+
pos = torch.arange(T, device=input_ids.device)
|
| 150 |
+
|
| 151 |
+
h = self.emb(input_ids) + self.pos(pos)
|
| 152 |
+
|
| 153 |
+
for layer in self.layers:
|
| 154 |
+
h = layer(h)
|
| 155 |
+
|
| 156 |
+
return self.ln(h)
|
| 157 |
+
|
| 158 |
+
|
| 159 |
+
# ============================================================
|
| 160 |
+
# Causal LM Head
|
| 161 |
+
# ============================================================
|
| 162 |
+
|
| 163 |
+
class GCLMForCausalLM(PreTrainedModel):
|
| 164 |
+
config_class = None
|
| 165 |
+
base_model_prefix = "gclm"
|
| 166 |
+
|
| 167 |
+
def __init__(self, config):
|
| 168 |
+
super().__init__(config)
|
| 169 |
+
|
| 170 |
+
self.gclm = GCLMModel(config)
|
| 171 |
+
self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)
|
| 172 |
+
|
| 173 |
+
self.post_init()
|
| 174 |
+
|
| 175 |
+
def forward(
|
| 176 |
+
self,
|
| 177 |
+
input_ids,
|
| 178 |
+
labels=None,
|
| 179 |
+
**kwargs
|
| 180 |
+
):
|
| 181 |
+
hidden = self.gclm(input_ids)
|
| 182 |
+
logits = self.lm_head(hidden)
|
| 183 |
+
|
| 184 |
+
loss = None
|
| 185 |
+
if labels is not None:
|
| 186 |
+
loss = F.cross_entropy(
|
| 187 |
+
logits.view(-1, logits.size(-1)),
|
| 188 |
+
labels.view(-1),
|
| 189 |
+
ignore_index=-100
|
| 190 |
+
)
|
| 191 |
+
|
| 192 |
+
return CausalLMOutput(
|
| 193 |
+
loss=loss,
|
| 194 |
+
logits=logits
|
| 195 |
+
)
|