File size: 5,534 Bytes
1d31d8f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
import math
import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import PreTrainedModel
from transformers.modeling_outputs import CausalLMOutput


# ============================================================
# Configuration class is assumed to live in configuration_gclm.py
# ============================================================

# Expected fields in GCLMConfig:
# - vocab_size
# - d_model
# - n_layers
# - max_seq_len
# - local_kernel_size
# - global_kernel_size
# - fft_size
# - use_global_every_n_layers
# - layer_norm_eps


# ============================================================
# Global FFT Convolution
# ============================================================

class GlobalConv1D(nn.Module):
    def __init__(self, d_model, kernel_size, fft_size):
        super().__init__()
        self.kernel = nn.Parameter(torch.randn(d_model, kernel_size) * 0.01)
        self.kernel_size = kernel_size
        self.fft_size = fft_size

    def forward(self, x):
        # x: [B, C, T]
        B, C, T = x.shape
        K = min(self.kernel_size, T)

        overlap = K - 1
        block = self.fft_size - overlap

        x = F.pad(x, (overlap, 0))
        k = self.kernel[:, :K]
        k = F.pad(k, (0, self.fft_size - K))

        k_f = torch.fft.rfft(k, n=self.fft_size)

        outs = []
        pos = 0
        while pos < T:
            seg = x[..., pos:pos + self.fft_size]
            if seg.shape[-1] < self.fft_size:
                seg = F.pad(seg, (0, self.fft_size - seg.shape[-1]))

            y = torch.fft.irfft(
                torch.fft.rfft(seg, n=self.fft_size) * k_f.unsqueeze(0),
                n=self.fft_size
            )
            outs.append(y[..., overlap:overlap + block])
            pos += block

        return torch.cat(outs, dim=-1)[..., :T]


# ============================================================
# Local Convolution
# ============================================================

class LocalConv1D(nn.Module):
    def __init__(self, d_model, k):
        super().__init__()
        self.k = k
        self.dw = nn.Conv1d(d_model, d_model, k, groups=d_model)
        self.pw = nn.Conv1d(d_model, d_model, 1)

    def forward(self, x):
        x = F.pad(x, (self.k - 1, 0))
        return self.pw(F.relu(self.dw(x)))


# ============================================================
# GCLM Block
# ============================================================

class GCLMBlock(nn.Module):
    def __init__(self, config, use_global):
        super().__init__()
        self.use_global = use_global

        self.ln1 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.local = LocalConv1D(
            config.d_model,
            config.local_kernel_size
        )

        if use_global:
            self.ln2 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
            self.global_conv = GlobalConv1D(
                config.d_model,
                config.global_kernel_size,
                config.fft_size
            )

        self.ln3 = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)
        self.ff = nn.Sequential(
            nn.Linear(config.d_model, config.d_model * 4),
            nn.GELU(),
            nn.Linear(config.d_model * 4, config.d_model),
        )

    def forward(self, x):
        x = x + self.local(self.ln1(x).transpose(1, 2)).transpose(1, 2)
        if self.use_global:
            x = x + self.global_conv(self.ln2(x).transpose(1, 2)).transpose(1, 2)
        return x + self.ff(self.ln3(x))


# ============================================================
# Base GCLM Model
# ============================================================

class GCLMModel(PreTrainedModel):
    config_class = None  # set by AutoConfig
    base_model_prefix = "gclm"

    def __init__(self, config):
        super().__init__(config)

        self.emb = nn.Embedding(config.vocab_size, config.d_model)
        self.pos = nn.Embedding(config.max_seq_len, config.d_model)

        self.layers = nn.ModuleList([
            GCLMBlock(
                config,
                use_global=(i % config.use_global_every_n_layers == 0)
            )
            for i in range(config.n_layers)
        ])

        self.ln = nn.LayerNorm(config.d_model, eps=config.layer_norm_eps)

        self.post_init()

    def forward(self, input_ids):
        B, T = input_ids.shape
        pos = torch.arange(T, device=input_ids.device)

        h = self.emb(input_ids) + self.pos(pos)

        for layer in self.layers:
            h = layer(h)

        return self.ln(h)


# ============================================================
# Causal LM Head
# ============================================================

class GCLMForCausalLM(PreTrainedModel):
    config_class = None
    base_model_prefix = "gclm"

    def __init__(self, config):
        super().__init__(config)

        self.gclm = GCLMModel(config)
        self.lm_head = nn.Linear(config.d_model, config.vocab_size, bias=False)

        self.post_init()

    def forward(
        self,
        input_ids,
        labels=None,
        **kwargs
    ):
        hidden = self.gclm(input_ids)
        logits = self.lm_head(hidden)

        loss = None
        if labels is not None:
            loss = F.cross_entropy(
                logits.view(-1, logits.size(-1)),
                labels.view(-1),
                ignore_index=-100
            )

        return CausalLMOutput(
            loss=loss,
            logits=logits
        )