moe_new_hash_load_balanced / moe_transformer.py
nikhilrayaprolu's picture
Upload MoE Transformer model
309343b verified
# moe_transformer.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import math
class SparseMoE(nn.Module):
"""Sparse Mixture-of-Experts layer."""
def __init__(self, d_model, num_experts, top_k, routing_algorithm, d_ff):
super().__init__()
self.d_model = d_model
self.num_experts = num_experts
self.top_k = top_k
self.routing_algorithm = routing_algorithm
self.experts = nn.ModuleList([
nn.Sequential(
nn.Linear(d_model, d_ff),
nn.ReLU(),
nn.Linear(d_ff, d_model)
) for _ in range(num_experts)
])
if self.routing_algorithm == 'top_k':
self.gate = nn.Linear(d_model, num_experts)
self.load_balancing_loss = 0.0
def hash_routing(self, x):
token_hashes = x.sum(dim=-1).long().abs()
expert_indices = token_hashes % self.num_experts
return F.one_hot(expert_indices, num_classes=self.num_experts).float()
def top_k_routing(self, x):
gate_logits = self.gate(x)
top_k_logits, top_k_indices = torch.topk(gate_logits, self.top_k, dim=-1)
gate_scores = F.softmax(top_k_logits, dim=-1)
router_mask = torch.zeros_like(gate_logits).scatter_(-1, top_k_indices, gate_scores)
if self.training:
probs_per_expert = gate_logits.softmax(dim=-1)
tokens_per_batch_seq = router_mask.shape[0]
fraction_tokens_per_expert = router_mask.sum(dim=0) / tokens_per_batch_seq
mean_prob_per_expert = probs_per_expert.mean(dim=0)
self.load_balancing_loss = self.num_experts * torch.sum(fraction_tokens_per_expert * mean_prob_per_expert)
return router_mask
def forward(self, x):
batch_size, seq_len, _ = x.shape
x_flat = x.view(-1, self.d_model)
if self.routing_algorithm == 'top_k':
router_output = self.top_k_routing(x_flat)
elif self.routing_algorithm == 'hash':
router_output = self.hash_routing(x_flat)
else:
raise ValueError(f"Unknown routing algorithm: {self.routing_algorithm}")
final_output = torch.zeros_like(x_flat)
for i, expert in enumerate(self.experts):
expert_mask = router_output[:, i].unsqueeze(1)
active_tokens_indices = torch.where(expert_mask.squeeze() > 0)[0]
if active_tokens_indices.numel() > 0:
active_tokens = x_flat[active_tokens_indices]
expert_out = expert(active_tokens)
weighted_out = expert_out * expert_mask[active_tokens_indices]
final_output.index_add_(0, active_tokens_indices, weighted_out)
return final_output.view(batch_size, seq_len, self.d_model)
class GroupedQueryAttention(nn.Module):
"""
Implements Grouped-Query Attention (GQA).
- MHA is a special case of GQA where num_kv_heads == num_heads.
- MQA is a special case of GQA where num_kv_heads == 1.
"""
def __init__(self, d_model, num_heads, num_kv_heads):
super().__init__()
assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
assert num_heads % num_kv_heads == 0, "num_heads must be divisible by num_kv_heads"
self.d_model = d_model
self.num_heads = num_heads
self.num_kv_heads = num_kv_heads
self.num_key_value_groups = num_heads // num_kv_heads
self.d_k = d_model // num_heads
self.W_q = nn.Linear(d_model, d_model)
self.W_k = nn.Linear(d_model, self.num_kv_heads * self.d_k)
self.W_v = nn.Linear(d_model, self.num_kv_heads * self.d_k)
self.W_o = nn.Linear(d_model, d_model)
def scaled_dot_product_attention(self, Q, K, V, mask=None):
attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
if mask is not None:
attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
attn_probs = F.softmax(attn_scores, dim=-1)
output = torch.matmul(attn_probs, V)
return output
def forward(self, q, k, v, mask=None):
batch_size = q.size(0)
Q = self.W_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
K = self.W_k(k).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
V = self.W_v(v).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
if self.num_key_value_groups > 1:
K = K.repeat_interleave(self.num_key_value_groups, dim=1)
V = V.repeat_interleave(self.num_key_value_groups, dim=1)
context = self.scaled_dot_product_attention(Q, K, V, mask)
context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
output = self.W_o(context)
return output
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super().__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
self.register_buffer('pe', pe.unsqueeze(0))
def forward(self, x):
x = x + self.pe[:, :x.size(1)]
return self.dropout(x)
class EncoderLayer(nn.Module):
def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
super().__init__()
self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, mask):
attn_output = self.self_attn(x, x, x, mask)
x = self.norm1(x + self.dropout(attn_output))
moe_output = self.moe_ffn(x)
x = self.norm2(x + self.dropout(moe_output))
return x
class DecoderLayer(nn.Module):
def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
super().__init__()
self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
self.cross_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
self.norm1 = nn.LayerNorm(d_model)
self.norm2 = nn.LayerNorm(d_model)
self.norm3 = nn.LayerNorm(d_model)
self.dropout = nn.Dropout(dropout)
def forward(self, x, enc_output, src_mask, tgt_mask):
attn_output = self.self_attn(x, x, x, tgt_mask)
x = self.norm1(x + self.dropout(attn_output))
cross_attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
x = self.norm2(x + self.dropout(cross_attn_output))
moe_output = self.moe_ffn(x)
x = self.norm3(x + self.dropout(moe_output))
return x
class MoETransformer(nn.Module):
def __init__(self, config, vocab_size):
super().__init__()
self.config = config
self.encoder_embedding = nn.Embedding(vocab_size, config['d_model'])
self.decoder_embedding = nn.Embedding(vocab_size, config['d_model'])
self.positional_encoding = PositionalEncoding(config['d_model'], config['dropout'])
self.encoder_layers = nn.ModuleList([
EncoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout'])
for _ in range(config['num_encoder_layers'])
])
self.decoder_layers = nn.ModuleList([
DecoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout'])
for _ in range(config['num_decoder_layers'])
])
self.fc_out = nn.Linear(config['d_model'], vocab_size)
def generate_mask(self, src, tgt, pad_idx):
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
seq_len = tgt.size(1)
tgt_sub_mask = torch.tril(torch.ones((seq_len, seq_len), device=tgt.device)).bool()
tgt_mask = tgt_pad_mask & tgt_sub_mask
return src_mask, tgt_mask
def forward(self, src, tgt, pad_idx=0):
src_mask, tgt_mask = self.generate_mask(src, tgt, pad_idx)
src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))
enc_output = src_emb
for layer in self.encoder_layers:
enc_output = layer(enc_output, src_mask)
dec_output = tgt_emb
for layer in self.decoder_layers:
dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
return self.fc_out(dec_output)
def get_total_load_balancing_loss(self):
total_loss = 0
for layer in self.encoder_layers + self.decoder_layers:
total_loss += layer.moe_ffn.load_balancing_loss
return total_loss
@torch.no_grad()
def generate(self, src, max_length, start_symbol, pad_idx=0):
self.eval()
device = next(self.parameters()).device
src = src.to(device)
batch_size = src.shape[0]
src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
enc_output = src_emb
for layer in self.encoder_layers:
enc_output = layer(enc_output, src_mask)
tgt = torch.full((batch_size, 1), start_symbol, dtype=torch.long, device=device)
for _ in range(max_length - 1):
_, tgt_mask = self.generate_mask(src, tgt, pad_idx)
tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))
dec_output = tgt_emb
for layer in self.decoder_layers:
dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
logits = self.fc_out(dec_output[:, -1])
next_token = torch.argmax(logits, dim=-1).unsqueeze(1)
tgt = torch.cat([tgt, next_token], dim=1)
if (tgt == 1).any(dim=-1).all():
break
return tgt