# moe_transformer.py import torch import torch.nn as nn import torch.nn.functional as F import math class SparseMoE(nn.Module): """Sparse Mixture-of-Experts layer.""" def __init__(self, d_model, num_experts, top_k, routing_algorithm, d_ff): super().__init__() self.d_model = d_model self.num_experts = num_experts self.top_k = top_k self.routing_algorithm = routing_algorithm self.experts = nn.ModuleList([ nn.Sequential( nn.Linear(d_model, d_ff), nn.ReLU(), nn.Linear(d_ff, d_model) ) for _ in range(num_experts) ]) if self.routing_algorithm == 'top_k': self.gate = nn.Linear(d_model, num_experts) self.load_balancing_loss = 0.0 def hash_routing(self, x): token_hashes = x.sum(dim=-1).long().abs() expert_indices = token_hashes % self.num_experts return F.one_hot(expert_indices, num_classes=self.num_experts).float() def top_k_routing(self, x): gate_logits = self.gate(x) top_k_logits, top_k_indices = torch.topk(gate_logits, self.top_k, dim=-1) gate_scores = F.softmax(top_k_logits, dim=-1) router_mask = torch.zeros_like(gate_logits).scatter_(-1, top_k_indices, gate_scores) if self.training: probs_per_expert = gate_logits.softmax(dim=-1) tokens_per_batch_seq = router_mask.shape[0] fraction_tokens_per_expert = router_mask.sum(dim=0) / tokens_per_batch_seq mean_prob_per_expert = probs_per_expert.mean(dim=0) self.load_balancing_loss = self.num_experts * torch.sum(fraction_tokens_per_expert * mean_prob_per_expert) return router_mask def forward(self, x): batch_size, seq_len, _ = x.shape x_flat = x.view(-1, self.d_model) if self.routing_algorithm == 'top_k': router_output = self.top_k_routing(x_flat) elif self.routing_algorithm == 'hash': router_output = self.hash_routing(x_flat) else: raise ValueError(f"Unknown routing algorithm: {self.routing_algorithm}") final_output = torch.zeros_like(x_flat) for i, expert in enumerate(self.experts): expert_mask = router_output[:, i].unsqueeze(1) active_tokens_indices = torch.where(expert_mask.squeeze() > 0)[0] if active_tokens_indices.numel() > 0: active_tokens = x_flat[active_tokens_indices] expert_out = expert(active_tokens) weighted_out = expert_out * expert_mask[active_tokens_indices] final_output.index_add_(0, active_tokens_indices, weighted_out) return final_output.view(batch_size, seq_len, self.d_model) class GroupedQueryAttention(nn.Module): """ Implements Grouped-Query Attention (GQA). - MHA is a special case of GQA where num_kv_heads == num_heads. - MQA is a special case of GQA where num_kv_heads == 1. """ def __init__(self, d_model, num_heads, num_kv_heads): super().__init__() assert d_model % num_heads == 0, "d_model must be divisible by num_heads" assert num_heads % num_kv_heads == 0, "num_heads must be divisible by num_kv_heads" self.d_model = d_model self.num_heads = num_heads self.num_kv_heads = num_kv_heads self.num_key_value_groups = num_heads // num_kv_heads self.d_k = d_model // num_heads self.W_q = nn.Linear(d_model, d_model) self.W_k = nn.Linear(d_model, self.num_kv_heads * self.d_k) self.W_v = nn.Linear(d_model, self.num_kv_heads * self.d_k) self.W_o = nn.Linear(d_model, d_model) def scaled_dot_product_attention(self, Q, K, V, mask=None): attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k) if mask is not None: attn_scores = attn_scores.masked_fill(mask == 0, -1e9) attn_probs = F.softmax(attn_scores, dim=-1) output = torch.matmul(attn_probs, V) return output def forward(self, q, k, v, mask=None): batch_size = q.size(0) Q = self.W_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2) K = self.W_k(k).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2) V = self.W_v(v).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2) if self.num_key_value_groups > 1: K = K.repeat_interleave(self.num_key_value_groups, dim=1) V = V.repeat_interleave(self.num_key_value_groups, dim=1) context = self.scaled_dot_product_attention(Q, K, V, mask) context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model) output = self.W_o(context) return output class PositionalEncoding(nn.Module): def __init__(self, d_model, dropout=0.1, max_len=5000): super().__init__() self.dropout = nn.Dropout(p=dropout) pe = torch.zeros(max_len, d_model) position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model)) pe[:, 0::2] = torch.sin(position * div_term) pe[:, 1::2] = torch.cos(position * div_term) self.register_buffer('pe', pe.unsqueeze(0)) def forward(self, x): x = x + self.pe[:, :x.size(1)] return self.dropout(x) class EncoderLayer(nn.Module): def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout): super().__init__() self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads) self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, mask): attn_output = self.self_attn(x, x, x, mask) x = self.norm1(x + self.dropout(attn_output)) moe_output = self.moe_ffn(x) x = self.norm2(x + self.dropout(moe_output)) return x class DecoderLayer(nn.Module): def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout): super().__init__() self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads) self.cross_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads) self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff) self.norm1 = nn.LayerNorm(d_model) self.norm2 = nn.LayerNorm(d_model) self.norm3 = nn.LayerNorm(d_model) self.dropout = nn.Dropout(dropout) def forward(self, x, enc_output, src_mask, tgt_mask): attn_output = self.self_attn(x, x, x, tgt_mask) x = self.norm1(x + self.dropout(attn_output)) cross_attn_output = self.cross_attn(x, enc_output, enc_output, src_mask) x = self.norm2(x + self.dropout(cross_attn_output)) moe_output = self.moe_ffn(x) x = self.norm3(x + self.dropout(moe_output)) return x class MoETransformer(nn.Module): def __init__(self, config, vocab_size): super().__init__() self.config = config self.encoder_embedding = nn.Embedding(vocab_size, config['d_model']) self.decoder_embedding = nn.Embedding(vocab_size, config['d_model']) self.positional_encoding = PositionalEncoding(config['d_model'], config['dropout']) self.encoder_layers = nn.ModuleList([ EncoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout']) for _ in range(config['num_encoder_layers']) ]) self.decoder_layers = nn.ModuleList([ DecoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout']) for _ in range(config['num_decoder_layers']) ]) self.fc_out = nn.Linear(config['d_model'], vocab_size) def generate_mask(self, src, tgt, pad_idx): src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2) tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2) seq_len = tgt.size(1) tgt_sub_mask = torch.tril(torch.ones((seq_len, seq_len), device=tgt.device)).bool() tgt_mask = tgt_pad_mask & tgt_sub_mask return src_mask, tgt_mask def forward(self, src, tgt, pad_idx=0): src_mask, tgt_mask = self.generate_mask(src, tgt, pad_idx) src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model'])) tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model'])) enc_output = src_emb for layer in self.encoder_layers: enc_output = layer(enc_output, src_mask) dec_output = tgt_emb for layer in self.decoder_layers: dec_output = layer(dec_output, enc_output, src_mask, tgt_mask) return self.fc_out(dec_output) def get_total_load_balancing_loss(self): total_loss = 0 for layer in self.encoder_layers + self.decoder_layers: total_loss += layer.moe_ffn.load_balancing_loss return total_loss @torch.no_grad() def generate(self, src, max_length, start_symbol, pad_idx=0): self.eval() device = next(self.parameters()).device src = src.to(device) batch_size = src.shape[0] src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2) src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model'])) enc_output = src_emb for layer in self.encoder_layers: enc_output = layer(enc_output, src_mask) tgt = torch.full((batch_size, 1), start_symbol, dtype=torch.long, device=device) for _ in range(max_length - 1): _, tgt_mask = self.generate_mask(src, tgt, pad_idx) tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model'])) dec_output = tgt_emb for layer in self.decoder_layers: dec_output = layer(dec_output, enc_output, src_mask, tgt_mask) logits = self.fc_out(dec_output[:, -1]) next_token = torch.argmax(logits, dim=-1).unsqueeze(1) tgt = torch.cat([tgt, next_token], dim=1) if (tgt == 1).any(dim=-1).all(): break return tgt