File size: 10,882 Bytes
309343b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
# moe_transformer.py
import torch
import torch.nn as nn
import torch.nn.functional as F
import math

class SparseMoE(nn.Module):
    """Sparse Mixture-of-Experts layer."""
    def __init__(self, d_model, num_experts, top_k, routing_algorithm, d_ff):
        super().__init__()
        self.d_model = d_model
        self.num_experts = num_experts
        self.top_k = top_k
        self.routing_algorithm = routing_algorithm
        
        self.experts = nn.ModuleList([
            nn.Sequential(
                nn.Linear(d_model, d_ff),
                nn.ReLU(),
                nn.Linear(d_ff, d_model)
            ) for _ in range(num_experts)
        ])

        if self.routing_algorithm == 'top_k':
            self.gate = nn.Linear(d_model, num_experts)
        
        self.load_balancing_loss = 0.0

    def hash_routing(self, x):
        token_hashes = x.sum(dim=-1).long().abs()
        expert_indices = token_hashes % self.num_experts
        return F.one_hot(expert_indices, num_classes=self.num_experts).float()

    def top_k_routing(self, x):
        gate_logits = self.gate(x)
        top_k_logits, top_k_indices = torch.topk(gate_logits, self.top_k, dim=-1)
        gate_scores = F.softmax(top_k_logits, dim=-1)
        
        router_mask = torch.zeros_like(gate_logits).scatter_(-1, top_k_indices, gate_scores)

        if self.training:
            probs_per_expert = gate_logits.softmax(dim=-1)
            tokens_per_batch_seq = router_mask.shape[0]
            fraction_tokens_per_expert = router_mask.sum(dim=0) / tokens_per_batch_seq
            mean_prob_per_expert = probs_per_expert.mean(dim=0)
            self.load_balancing_loss = self.num_experts * torch.sum(fraction_tokens_per_expert * mean_prob_per_expert)

        return router_mask

    def forward(self, x):
        batch_size, seq_len, _ = x.shape
        x_flat = x.view(-1, self.d_model)

        if self.routing_algorithm == 'top_k':
            router_output = self.top_k_routing(x_flat)
        elif self.routing_algorithm == 'hash':
            router_output = self.hash_routing(x_flat)
        else:
            raise ValueError(f"Unknown routing algorithm: {self.routing_algorithm}")
        
        final_output = torch.zeros_like(x_flat)
        for i, expert in enumerate(self.experts):
            expert_mask = router_output[:, i].unsqueeze(1)
            active_tokens_indices = torch.where(expert_mask.squeeze() > 0)[0]
            if active_tokens_indices.numel() > 0:
                active_tokens = x_flat[active_tokens_indices]
                expert_out = expert(active_tokens)
                weighted_out = expert_out * expert_mask[active_tokens_indices]
                final_output.index_add_(0, active_tokens_indices, weighted_out)

        return final_output.view(batch_size, seq_len, self.d_model)

class GroupedQueryAttention(nn.Module):
    """
    Implements Grouped-Query Attention (GQA).
    - MHA is a special case of GQA where num_kv_heads == num_heads.
    - MQA is a special case of GQA where num_kv_heads == 1.
    """
    def __init__(self, d_model, num_heads, num_kv_heads):
        super().__init__()
        assert d_model % num_heads == 0, "d_model must be divisible by num_heads"
        assert num_heads % num_kv_heads == 0, "num_heads must be divisible by num_kv_heads"

        self.d_model = d_model
        self.num_heads = num_heads
        self.num_kv_heads = num_kv_heads
        self.num_key_value_groups = num_heads // num_kv_heads
        self.d_k = d_model // num_heads
        
        self.W_q = nn.Linear(d_model, d_model)
        self.W_k = nn.Linear(d_model, self.num_kv_heads * self.d_k)
        self.W_v = nn.Linear(d_model, self.num_kv_heads * self.d_k)
        self.W_o = nn.Linear(d_model, d_model)
    
    def scaled_dot_product_attention(self, Q, K, V, mask=None):
        attn_scores = torch.matmul(Q, K.transpose(-2, -1)) / math.sqrt(self.d_k)
        if mask is not None:
            attn_scores = attn_scores.masked_fill(mask == 0, -1e9)
        attn_probs = F.softmax(attn_scores, dim=-1)
        output = torch.matmul(attn_probs, V)
        return output

    def forward(self, q, k, v, mask=None):
        batch_size = q.size(0)
        
        Q = self.W_q(q).view(batch_size, -1, self.num_heads, self.d_k).transpose(1, 2)
        K = self.W_k(k).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
        V = self.W_v(v).view(batch_size, -1, self.num_kv_heads, self.d_k).transpose(1, 2)
        
        if self.num_key_value_groups > 1:
            K = K.repeat_interleave(self.num_key_value_groups, dim=1)
            V = V.repeat_interleave(self.num_key_value_groups, dim=1)
        
        context = self.scaled_dot_product_attention(Q, K, V, mask)
        context = context.transpose(1, 2).contiguous().view(batch_size, -1, self.d_model)
        
        output = self.W_o(context)
        return output

class PositionalEncoding(nn.Module):
    def __init__(self, d_model, dropout=0.1, max_len=5000):
        super().__init__()
        self.dropout = nn.Dropout(p=dropout)
        pe = torch.zeros(max_len, d_model)
        position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
        div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
        pe[:, 0::2] = torch.sin(position * div_term)
        pe[:, 1::2] = torch.cos(position * div_term)
        self.register_buffer('pe', pe.unsqueeze(0))

    def forward(self, x):
        x = x + self.pe[:, :x.size(1)]
        return self.dropout(x)

class EncoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
        super().__init__()
        self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
        self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, mask):
        attn_output = self.self_attn(x, x, x, mask)
        x = self.norm1(x + self.dropout(attn_output))
        
        moe_output = self.moe_ffn(x)
        x = self.norm2(x + self.dropout(moe_output))
        return x

class DecoderLayer(nn.Module):
    def __init__(self, d_model, num_heads, num_kv_heads, d_ff, num_experts, top_k, routing_algorithm, dropout):
        super().__init__()
        self.self_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
        self.cross_attn = GroupedQueryAttention(d_model, num_heads, num_kv_heads)
        self.moe_ffn = SparseMoE(d_model, num_experts, top_k, routing_algorithm, d_ff)
        self.norm1 = nn.LayerNorm(d_model)
        self.norm2 = nn.LayerNorm(d_model)
        self.norm3 = nn.LayerNorm(d_model)
        self.dropout = nn.Dropout(dropout)

    def forward(self, x, enc_output, src_mask, tgt_mask):
        attn_output = self.self_attn(x, x, x, tgt_mask)
        x = self.norm1(x + self.dropout(attn_output))
        
        cross_attn_output = self.cross_attn(x, enc_output, enc_output, src_mask)
        x = self.norm2(x + self.dropout(cross_attn_output))
        
        moe_output = self.moe_ffn(x)
        x = self.norm3(x + self.dropout(moe_output))
        return x

class MoETransformer(nn.Module):
    def __init__(self, config, vocab_size):
        super().__init__()
        self.config = config
        self.encoder_embedding = nn.Embedding(vocab_size, config['d_model'])
        self.decoder_embedding = nn.Embedding(vocab_size, config['d_model'])
        self.positional_encoding = PositionalEncoding(config['d_model'], config['dropout'])

        self.encoder_layers = nn.ModuleList([
            EncoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout']) 
            for _ in range(config['num_encoder_layers'])
        ])
        self.decoder_layers = nn.ModuleList([
            DecoderLayer(config['d_model'], config['num_heads'], config['num_kv_heads'], config['d_ff'], config['num_experts'], config['top_k'], config['routing_algorithm'], config['dropout']) 
            for _ in range(config['num_decoder_layers'])
        ])

        self.fc_out = nn.Linear(config['d_model'], vocab_size)

    def generate_mask(self, src, tgt, pad_idx):
        src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
        tgt_pad_mask = (tgt != pad_idx).unsqueeze(1).unsqueeze(2)
        seq_len = tgt.size(1)
        tgt_sub_mask = torch.tril(torch.ones((seq_len, seq_len), device=tgt.device)).bool()
        tgt_mask = tgt_pad_mask & tgt_sub_mask
        return src_mask, tgt_mask

    def forward(self, src, tgt, pad_idx=0):
        src_mask, tgt_mask = self.generate_mask(src, tgt, pad_idx)
        
        src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
        tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))

        enc_output = src_emb
        for layer in self.encoder_layers:
            enc_output = layer(enc_output, src_mask)
            
        dec_output = tgt_emb
        for layer in self.decoder_layers:
            dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
            
        return self.fc_out(dec_output)

    def get_total_load_balancing_loss(self):
        total_loss = 0
        for layer in self.encoder_layers + self.decoder_layers:
            total_loss += layer.moe_ffn.load_balancing_loss
        return total_loss

    @torch.no_grad()
    def generate(self, src, max_length, start_symbol, pad_idx=0):
        self.eval()
        device = next(self.parameters()).device
        src = src.to(device)
        batch_size = src.shape[0]

        src_mask = (src != pad_idx).unsqueeze(1).unsqueeze(2)
        src_emb = self.positional_encoding(self.encoder_embedding(src) * math.sqrt(self.config['d_model']))
        enc_output = src_emb
        for layer in self.encoder_layers:
            enc_output = layer(enc_output, src_mask)

        tgt = torch.full((batch_size, 1), start_symbol, dtype=torch.long, device=device)

        for _ in range(max_length - 1):
            _, tgt_mask = self.generate_mask(src, tgt, pad_idx)
            tgt_emb = self.positional_encoding(self.decoder_embedding(tgt) * math.sqrt(self.config['d_model']))
            dec_output = tgt_emb
            for layer in self.decoder_layers:
                dec_output = layer(dec_output, enc_output, src_mask, tgt_mask)
            
            logits = self.fc_out(dec_output[:, -1])
            next_token = torch.argmax(logits, dim=-1).unsqueeze(1)
            tgt = torch.cat([tgt, next_token], dim=1)

            if (tgt == 1).any(dim=-1).all():
                break

        return tgt