BioGraphFusion / README.md
TARL Y
update readme
23886b5
๏ปฟ---
license: apache-2.0
task_categories:
- graph-ml
- tabular-classification
language:
- en
tags:
- biology
- bioinformatics
- knowledge-graph
- graph-neural-networks
- drug-discovery
- medical
- disease-gene-prediction
- protein-chemical-interaction
- medical-ontology
size_categories:
- 100K<n<1M
---
# BioGraphFusion Dataset
[![License](https://img.shields.io/badge/License-Apache_2.0-blue.svg)](https://opensource.org/licenses/Apache-2.0)
[![Paper](https://img.shields.io/badge/Paper-Bioinformatics-green.svg)](https://doi.org/10.1093/bioinformatics/btaf408)
[![arXiv](https://img.shields.io/badge/arXiv-2507.14468-b31b1b.svg)](https://arxiv.org/abs/2507.14468)
## ๐Ÿ“Š Dataset Description
This dataset contains the benchmark data used in the paper **"BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning"** published in *Bioinformatics*.
## ๐Ÿ—๏ธ Dataset Structure
The dataset includes three biomedical knowledge graph completion tasks with background knowledge integration:
### 1. Disease-Gene Prediction (DisGeNet_cv)
- **Task**: Disease-gene association prediction
- **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Protein-Chemical relationships from STITCH (277,745 triples)
- **Main Dataset**: DisGeNet (130,820 triples) focusing on gene targets
- **Description**: Predicts disease-gene associations using multi-source biological knowledge
### 2. Protein-Chemical Interaction (STITCH)
- **Task**: Protein-chemical interaction prediction
- **Background Knowledge**: Drug-Disease relationships from SIDER (14,631 triples) + Disease-Gene relationships from DisGeNet (130,820 triples)
- **Main Dataset**: STITCH (23,074 triples) focusing on chemical targets
- **Description**: Predicts protein-chemical interactions with integrated disease and gene knowledge
### 3. Medical Ontology Reasoning (UMLS)
- **Task**: Medical concept reasoning
- **Background Knowledge**: Various medical relationships from UMLS (4,006 triples)
- **Main Dataset**: UMLS (2,523 triples) with multi-domain entities
- **Description**: Reasons about medical concepts and their hierarchical relationships
## ๐Ÿ“ˆ Dataset Statistics
| Dataset | Task | Background Knowledge Sources | Main Dataset Targets | Total Triples |
|---------|------|------------------------------|---------------------|---------------|
| **Disease-Gene Prediction** | Disease-gene association prediction | Drug-Disease Relationships SIDER (14,631) + Protein-Chemical Relationships STITCH (277,745) | DisGeNet (130,820) Gene | ~423K |
| **Protein-Chemical Interaction** | Protein-chemical interaction prediction | Drug-Disease Relationships SIDER (14,631) + Disease-Gene Relationships DisGeNet (130,820) | STITCH (23,074) Chemical | ~168K |
| **Medical Ontology Reasoning** | Medical concept reasoning | Various Medical Relationships UMLS (4,006) | UMLS (2,523) Multi-domain Entities | ~6.5K |
## ๐Ÿ’ป Usage
### Loading the Dataset
```python
from datasets import load_dataset
# Load the complete dataset
dataset = load_dataset("Y-TARL/BioGraphFusion")
# Load specific task
disgenet_data = load_dataset("Y-TARL/BioGraphFusion", "Disease-Gene")
stitch_data = load_dataset("Y-TARL/BioGraphFusion", "Protein-Chemical")
umls_data = load_dataset("Y-TARL/BioGraphFusion", "umls")
```
## ๐Ÿ“ Citation
If you use this dataset in your research, please cite our paper:
```bibtex
@article{lin2025biographfusion,
title={BioGraphFusion: Graph Knowledge Embedding for Biological Completion and Reasoning},
author={Lin, Yitong and He, Jiaying and Chen, Jiahe and Zhu, Xinnan and Zheng, Jianwei and Tao, Bo},
journal={Bioinformatics},
pages={btaf408},
year={2025},
publisher={Oxford University Press}
}
```
## ๐Ÿ”— Related Resources
- **Paper**: [Bioinformatics](https://doi.org/10.1093/bioinformatics/btaf408)
- **Preprint**: [arXiv:2507.14468](https://arxiv.org/abs/2507.14468)
- **Code**: [GitHub Repository](https://github.com/Y-TARL/BioGraphFusion)
## ๐Ÿ“„ License
This dataset is released under the Apache 2.0 License.
## ๐Ÿ™ Acknowledgements
We thank the original data providers:
- DisGeNet for disease-gene associations
- STITCH for protein-chemical interactions
- UMLS for medical ontology data
## ๐Ÿ“ž Contact
For questions about the dataset, please open an issue in the [GitHub repository](https://github.com/Y-TARL/BioGraphFusion/issues).