chintagunta85's picture
update model card README.md
9d15158
metadata
tags:
  - generated_from_trainer
datasets:
  - bc4chemd
metrics:
  - precision
  - recall
  - f1
  - accuracy
model-index:
  - name: electramed-small-BC4CHEMD-ner
    results:
      - task:
          name: Token Classification
          type: token-classification
        dataset:
          name: bc4chemd
          type: bc4chemd
          config: bc4chemd
          split: train
          args: bc4chemd
        metrics:
          - name: Precision
            type: precision
            value: 0.7715624436835465
          - name: Recall
            type: recall
            value: 0.6760888102832959
          - name: F1
            type: f1
            value: 0.7206773498518718
          - name: Accuracy
            type: accuracy
            value: 0.9770623458780496

electramed-small-BC4CHEMD-ner

This model is a fine-tuned version of giacomomiolo/electramed_small_scivocab on the bc4chemd dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0655
  • Precision: 0.7716
  • Recall: 0.6761
  • F1: 0.7207
  • Accuracy: 0.9771

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 16
  • eval_batch_size: 16
  • seed: 42
  • optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
  • lr_scheduler_type: linear
  • num_epochs: 10

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Accuracy
0.0882 1.0 1918 0.1058 0.6615 0.3942 0.4940 0.9635
0.0555 2.0 3836 0.0820 0.7085 0.5133 0.5954 0.9689
0.0631 3.0 5754 0.0769 0.6892 0.5743 0.6266 0.9699
0.0907 4.0 7672 0.0682 0.7623 0.5923 0.6666 0.9740
0.0313 5.0 9590 0.0675 0.7643 0.6223 0.6860 0.9749
0.0306 6.0 11508 0.0662 0.7654 0.6398 0.6970 0.9754
0.0292 7.0 13426 0.0656 0.7694 0.6552 0.7077 0.9763
0.1025 8.0 15344 0.0658 0.7742 0.6687 0.7176 0.9769
0.0394 9.0 17262 0.0662 0.7741 0.6731 0.7201 0.9770
0.0378 10.0 19180 0.0655 0.7716 0.6761 0.7207 0.9771

Framework versions

  • Transformers 4.21.1
  • Pytorch 1.12.1+cu113
  • Datasets 2.4.0
  • Tokenizers 0.12.1