--- tags: - generated_from_trainer datasets: - bc4chemd metrics: - precision - recall - f1 - accuracy model-index: - name: electramed-small-BC4CHEMD-ner results: - task: name: Token Classification type: token-classification dataset: name: bc4chemd type: bc4chemd config: bc4chemd split: train args: bc4chemd metrics: - name: Precision type: precision value: 0.7715624436835465 - name: Recall type: recall value: 0.6760888102832959 - name: F1 type: f1 value: 0.7206773498518718 - name: Accuracy type: accuracy value: 0.9770623458780496 --- # electramed-small-BC4CHEMD-ner This model is a fine-tuned version of [giacomomiolo/electramed_small_scivocab](https://huggingface.co/giacomomiolo/electramed_small_scivocab) on the bc4chemd dataset. It achieves the following results on the evaluation set: - Loss: 0.0655 - Precision: 0.7716 - Recall: 0.6761 - F1: 0.7207 - Accuracy: 0.9771 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0882 | 1.0 | 1918 | 0.1058 | 0.6615 | 0.3942 | 0.4940 | 0.9635 | | 0.0555 | 2.0 | 3836 | 0.0820 | 0.7085 | 0.5133 | 0.5954 | 0.9689 | | 0.0631 | 3.0 | 5754 | 0.0769 | 0.6892 | 0.5743 | 0.6266 | 0.9699 | | 0.0907 | 4.0 | 7672 | 0.0682 | 0.7623 | 0.5923 | 0.6666 | 0.9740 | | 0.0313 | 5.0 | 9590 | 0.0675 | 0.7643 | 0.6223 | 0.6860 | 0.9749 | | 0.0306 | 6.0 | 11508 | 0.0662 | 0.7654 | 0.6398 | 0.6970 | 0.9754 | | 0.0292 | 7.0 | 13426 | 0.0656 | 0.7694 | 0.6552 | 0.7077 | 0.9763 | | 0.1025 | 8.0 | 15344 | 0.0658 | 0.7742 | 0.6687 | 0.7176 | 0.9769 | | 0.0394 | 9.0 | 17262 | 0.0662 | 0.7741 | 0.6731 | 0.7201 | 0.9770 | | 0.0378 | 10.0 | 19180 | 0.0655 | 0.7716 | 0.6761 | 0.7207 | 0.9771 | ### Framework versions - Transformers 4.21.1 - Pytorch 1.12.1+cu113 - Datasets 2.4.0 - Tokenizers 0.12.1