mmbert-xnli / README.md
Enkhmanlai's picture
mmbert-news-classifier
2a73bdb verified
metadata
library_name: transformers
license: mit
base_model: jhu-clsp/mmBERT-small
tags:
  - generated_from_trainer
metrics:
  - accuracy
  - f1
model-index:
  - name: mmbert-xnli
    results: []

mmbert-xnli

This model is a fine-tuned version of jhu-clsp/mmBERT-small on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.3736
  • Accuracy: 0.8863
  • F1: 0.8863

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 3e-05
  • train_batch_size: 64
  • eval_batch_size: 64
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 3

Training results

Training Loss Epoch Step Validation Loss Accuracy F1
No log 1.0 337 0.4502 0.8600 0.8587
0.6169 2.0 674 0.3983 0.8796 0.8786
0.2926 3.0 1011 0.3693 0.8904 0.8907

Framework versions

  • Transformers 4.52.4
  • Pytorch 2.6.0+cu124
  • Datasets 3.6.0
  • Tokenizers 0.21.2