--- library_name: transformers license: mit base_model: jhu-clsp/mmBERT-small tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: mmbert-xnli results: [] --- # mmbert-xnli This model is a fine-tuned version of [jhu-clsp/mmBERT-small](https://huggingface.co/jhu-clsp/mmBERT-small) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.3736 - Accuracy: 0.8863 - F1: 0.8863 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 64 - eval_batch_size: 64 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:| | No log | 1.0 | 337 | 0.4502 | 0.8600 | 0.8587 | | 0.6169 | 2.0 | 674 | 0.3983 | 0.8796 | 0.8786 | | 0.2926 | 3.0 | 1011 | 0.3693 | 0.8904 | 0.8907 | ### Framework versions - Transformers 4.52.4 - Pytorch 2.6.0+cu124 - Datasets 3.6.0 - Tokenizers 0.21.2