LeanQuant's picture
Add files using upload-large-folder tool
c53d7f0 verified
---
base_model:
- Qwen/Qwen-Image-Edit-2509
base_model_relation: quantized
tags:
- dfloat11
- df11
- lossless compression
- 70% size, 100% accuracy
---
# DFloat11 Compressed Model: `Qwen/Qwen-Image-Edit-2509`
This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image-Edit-2509` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**.
πŸ”₯πŸ”₯πŸ”₯ Thanks to DFloat11 compression, Qwen-Image-Edit-2509 can now run on **a single 32GB GPU**, or on **a single 24GB GPU with CPU offloading**, while maintaining full model quality. πŸ”₯πŸ”₯πŸ”₯
### πŸ“Š Performance Comparison
| Model | Model Size | Peak GPU Memory (1024x1024 image generation) | Image Editing Time (A100 GPU) |
|-----------------------------------------------------|------------|----------------------------------------------|-------------------------------|
| Qwen-Image-Edit-2509 (BFloat16) | ~41 GB | OOM | - |
| Qwen-Image-Edit-2509 (DFloat11) | 28.43 GB | 30.20 GB | 102 seconds |
### πŸ”§ How to Use
1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*:
```bash
pip install -U dfloat11[cuda12]
```
2. Install or upgrade diffusers:
```bash
pip install git+https://github.com/huggingface/diffusers
```
3. Save the following code to a Python file `qwen_image_edit.py`:
```python
import os
import torch
import argparse
from diffusers import QwenImageEditPlusPipeline
from diffusers.utils import load_image
from dfloat11 import DFloat11Model
parser = argparse.ArgumentParser(description="Qwen Image Edit with DFloat11")
parser.add_argument("--image", default="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png", help="Image URL or path")
parser.add_argument("--prompt", default="Make this cat an astronaut gazing at planet earth from space", help="Edit prompt")
parser.add_argument("--output", default="qwen_image_edit_output.png", help="Output image path")
parser.add_argument("--steps", type=int, default=40, help="Number of inference steps")
parser.add_argument("--seed", type=int, default=42, help="Random seed")
parser.add_argument("--true_cfg_scale", type=float, default=4.0, help="True CFG scale")
parser.add_argument("--negative_prompt", default=" ", help="Negative prompt")
parser.add_argument("--guidance_scale", type=float, default=1.0, help="Guidance scale")
parser.add_argument("--cpu_offload", action="store_true", help="Enable CPU offloading")
parser.add_argument("--cpu_offload_blocks", type=int, default=20, help="Number of blocks to offload to CPU for block swapping")
parser.add_argument("--cpu_offload_no_pin_memory", action="store_true", help="Disable memory pinning for CPU offloading")
args = parser.parse_args()
pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16)
DFloat11Model.from_pretrained(
"DFloat11/Qwen-Image-Edit-2509-DF11",
bfloat16_model=pipeline.transformer,
device="cpu",
cpu_offload=args.cpu_offload,
cpu_offload_blocks=args.cpu_offload_blocks,
pin_memory=not args.cpu_offload_no_pin_memory,
)
pipeline.enable_model_cpu_offload()
image = load_image(args.image)
inputs = {
"image": [image],
"prompt": args.prompt,
"generator": torch.manual_seed(args.seed),
"true_cfg_scale": args.true_cfg_scale,
"negative_prompt": args.negative_prompt,
"num_inference_steps": args.steps,
"guidance_scale": args.guidance_scale,
"num_images_per_prompt": 1,
}
with torch.inference_mode():
output = pipeline(**inputs)
output_image = output.images[0]
output_image.save(args.output)
print("Image saved at", os.path.abspath(args.output))
max_memory = torch.cuda.max_memory_allocated()
print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB")
```
4. To run without CPU offloading (32GB VRAM required):
```bash
python qwen_image_edit.py
```
To run with CPU offloading (24GB VRAM required):
```bash
python qwen_image_edit.py --cpu_offload
```
If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning:
```bash
# Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster):
python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 16
# Disable memory-pinning (the most memory efficient way, but could be slower):
python qwen_image_edit.py --cpu_offload --no_pin_memory
```
### πŸ” How It Works
We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU.
The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model.
Learn more in our [research paper](https://arxiv.org/abs/2504.11651).
### πŸ“„ Learn More
* **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651)
* **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11)
* **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)