--- base_model: - Qwen/Qwen-Image-Edit-2509 base_model_relation: quantized tags: - dfloat11 - df11 - lossless compression - 70% size, 100% accuracy --- # DFloat11 Compressed Model: `Qwen/Qwen-Image-Edit-2509` This is a **DFloat11 losslessly compressed** version of the original `Qwen/Qwen-Image-Edit-2509` model. It reduces model size by **32%** compared to the original BFloat16 model, while maintaining **bit-identical outputs** and supporting **efficient GPU inference**. 🔥🔥🔥 Thanks to DFloat11 compression, Qwen-Image-Edit-2509 can now run on **a single 32GB GPU**, or on **a single 24GB GPU with CPU offloading**, while maintaining full model quality. 🔥🔥🔥 ### 📊 Performance Comparison | Model | Model Size | Peak GPU Memory (1024x1024 image generation) | Image Editing Time (A100 GPU) | |-----------------------------------------------------|------------|----------------------------------------------|-------------------------------| | Qwen-Image-Edit-2509 (BFloat16) | ~41 GB | OOM | - | | Qwen-Image-Edit-2509 (DFloat11) | 28.43 GB | 30.20 GB | 102 seconds | ### 🔧 How to Use 1. Install or upgrade the DFloat11 pip package *(installs the CUDA kernel automatically; requires a CUDA-compatible GPU and PyTorch installed)*: ```bash pip install -U dfloat11[cuda12] ``` 2. Install or upgrade diffusers: ```bash pip install git+https://github.com/huggingface/diffusers ``` 3. Save the following code to a Python file `qwen_image_edit.py`: ```python import os import torch import argparse from diffusers import QwenImageEditPlusPipeline from diffusers.utils import load_image from dfloat11 import DFloat11Model parser = argparse.ArgumentParser(description="Qwen Image Edit with DFloat11") parser.add_argument("--image", default="https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/cat.png", help="Image URL or path") parser.add_argument("--prompt", default="Make this cat an astronaut gazing at planet earth from space", help="Edit prompt") parser.add_argument("--output", default="qwen_image_edit_output.png", help="Output image path") parser.add_argument("--steps", type=int, default=40, help="Number of inference steps") parser.add_argument("--seed", type=int, default=42, help="Random seed") parser.add_argument("--true_cfg_scale", type=float, default=4.0, help="True CFG scale") parser.add_argument("--negative_prompt", default=" ", help="Negative prompt") parser.add_argument("--guidance_scale", type=float, default=1.0, help="Guidance scale") parser.add_argument("--cpu_offload", action="store_true", help="Enable CPU offloading") parser.add_argument("--cpu_offload_blocks", type=int, default=20, help="Number of blocks to offload to CPU for block swapping") parser.add_argument("--cpu_offload_no_pin_memory", action="store_true", help="Disable memory pinning for CPU offloading") args = parser.parse_args() pipeline = QwenImageEditPlusPipeline.from_pretrained("Qwen/Qwen-Image-Edit-2509", torch_dtype=torch.bfloat16) DFloat11Model.from_pretrained( "DFloat11/Qwen-Image-Edit-2509-DF11", bfloat16_model=pipeline.transformer, device="cpu", cpu_offload=args.cpu_offload, cpu_offload_blocks=args.cpu_offload_blocks, pin_memory=not args.cpu_offload_no_pin_memory, ) pipeline.enable_model_cpu_offload() image = load_image(args.image) inputs = { "image": [image], "prompt": args.prompt, "generator": torch.manual_seed(args.seed), "true_cfg_scale": args.true_cfg_scale, "negative_prompt": args.negative_prompt, "num_inference_steps": args.steps, "guidance_scale": args.guidance_scale, "num_images_per_prompt": 1, } with torch.inference_mode(): output = pipeline(**inputs) output_image = output.images[0] output_image.save(args.output) print("Image saved at", os.path.abspath(args.output)) max_memory = torch.cuda.max_memory_allocated() print(f"Max memory: {max_memory / (1000 ** 3):.2f} GB") ``` 4. To run without CPU offloading (32GB VRAM required): ```bash python qwen_image_edit.py ``` To run with CPU offloading (24GB VRAM required): ```bash python qwen_image_edit.py --cpu_offload ``` If you are getting out-of-CPU-memory errors, try limiting the number of offloaded blocks or disabling memory-pinning: ```bash # Offload only 16 blocks (offloading more blocks uses less GPU memory and more CPU memory; offloading less blocks is faster): python qwen_image_edit.py --cpu_offload --cpu_offload_blocks 16 # Disable memory-pinning (the most memory efficient way, but could be slower): python qwen_image_edit.py --cpu_offload --no_pin_memory ``` ### 🔍 How It Works We apply **Huffman coding** to losslessly compress the exponent bits of BFloat16 model weights, which are highly compressible (their 8 bits carry only ~2.6 bits of actual information). To enable fast inference, we implement a highly efficient CUDA kernel that performs on-the-fly weight decompression directly on the GPU. The result is a model that is **~32% smaller**, delivers **bit-identical outputs**, and achieves performance **comparable to the original** BFloat16 model. Learn more in our [research paper](https://arxiv.org/abs/2504.11651). ### 📄 Learn More * **Paper**: [70% Size, 100% Accuracy: Lossless LLM Compression for Efficient GPU Inference via Dynamic-Length Float](https://arxiv.org/abs/2504.11651) * **GitHub**: [https://github.com/LeanModels/DFloat11](https://github.com/LeanModels/DFloat11) * **HuggingFace**: [https://huggingface.co/DFloat11](https://huggingface.co/DFloat11)