Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
12
This is a sentence-transformers model finetuned from Snowflake/snowflake-arctic-embed-l-v2.0 on the json dataset. It maps sentences & paragraphs to a 1024-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 8192, 'do_lower_case': False}) with Transformer model: PeftModelForFeatureExtraction
(1): Pooling({'word_embedding_dimension': 1024, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'Risk-based water quality monitoring framework',
'Development of a new risk-based framework to guide investment in water quality monitoring. ',
'Water quality monitoring strategies - A review and future perspectives. ',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 1024]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
triplet-devTripletEvaluator| Metric | Value |
|---|---|
| cosine_accuracy | 0.802 |
anchor, positive, and negative| anchor | positive | negative | |
|---|---|---|---|
| type | string | string | string |
| details |
|
|
|
| anchor | positive | negative |
|---|---|---|
Pediatric Infectious Disease Control |
[Urgent tasks in scientific studies concerning the control of infectious diseases in children]. |
Pediatric workforce: a look at pediatric infectious diseases data from the American Board of Pediatrics. |
Thermal coefficient of phase shift |
Thermal characteristics of phase shift in jacketed optical fibers. |
Thermal effects. |
Renal biomarkers in heart failure |
Current and novel renal biomarkers in heart failure. |
Cardiac biomarkers of heart failure in chronic kidney disease. |
MultipleNegativesRankingLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 128per_device_eval_batch_size: 128num_train_epochs: 1lr_scheduler_type: cosine_with_restartswarmup_ratio: 0.1bf16: Truebatch_sampler: no_duplicatesoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 128per_device_eval_batch_size: 128per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 1max_steps: -1lr_scheduler_type: cosine_with_restartslr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Truefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | triplet-dev_cosine_accuracy |
|---|---|---|---|
| 0 | 0 | - | 0.58 |
| 0.0127 | 1 | 1.677 | - |
| 0.0253 | 2 | 1.7295 | - |
| 0.0380 | 3 | 1.6713 | - |
| 0.0506 | 4 | 1.4761 | - |
| 0.0633 | 5 | 1.3731 | - |
| 0.0759 | 6 | 1.8333 | - |
| 0.0886 | 7 | 1.3218 | - |
| 0.1013 | 8 | 1.1539 | - |
| 0.1139 | 9 | 1.4003 | - |
| 0.1266 | 10 | 1.4514 | - |
| 0.1392 | 11 | 1.0803 | - |
| 0.1519 | 12 | 1.183 | - |
| 0.1646 | 13 | 0.9984 | - |
| 0.1772 | 14 | 1.2043 | - |
| 0.1899 | 15 | 1.1367 | - |
| 0.2025 | 16 | 1.1863 | - |
| 0.2152 | 17 | 1.0185 | - |
| 0.2278 | 18 | 0.9038 | - |
| 0.2405 | 19 | 0.8942 | - |
| 0.2532 | 20 | 1.0396 | - |
| 0.2658 | 21 | 1.1067 | - |
| 0.2785 | 22 | 1.0281 | - |
| 0.2911 | 23 | 1.1479 | - |
| 0.3038 | 24 | 1.2893 | - |
| 0.3165 | 25 | 1.0388 | - |
| 0.3291 | 26 | 1.1925 | - |
| 0.3418 | 27 | 0.9564 | - |
| 0.3544 | 28 | 0.8533 | - |
| 0.3671 | 29 | 0.9999 | - |
| 0.3797 | 30 | 1.126 | - |
| 0.3924 | 31 | 0.9898 | - |
| 0.4051 | 32 | 0.8786 | - |
| 0.4177 | 33 | 0.9878 | - |
| 0.4304 | 34 | 1.0988 | - |
| 0.4430 | 35 | 0.9721 | - |
| 0.4557 | 36 | 0.838 | - |
| 0.4684 | 37 | 0.9935 | - |
| 0.4810 | 38 | 1.1439 | - |
| 0.4937 | 39 | 0.7076 | - |
| 0.5063 | 40 | 1.0033 | - |
| 0.5190 | 41 | 1.0411 | - |
| 0.5316 | 42 | 0.8646 | - |
| 0.5443 | 43 | 0.8991 | - |
| 0.5570 | 44 | 0.6337 | - |
| 0.5696 | 45 | 1.0695 | - |
| 0.5823 | 46 | 0.9144 | - |
| 0.5949 | 47 | 0.9248 | - |
| 0.6076 | 48 | 0.7711 | - |
| 0.6203 | 49 | 1.0001 | - |
| 0.6329 | 50 | 1.0151 | - |
| 0.6456 | 51 | 1.06 | - |
| 0.6582 | 52 | 0.8105 | - |
| 0.6709 | 53 | 0.6892 | - |
| 0.6835 | 54 | 1.1341 | - |
| 0.6962 | 55 | 0.9726 | - |
| 0.7089 | 56 | 0.8783 | - |
| 0.7215 | 57 | 0.8084 | - |
| 0.7342 | 58 | 1.089 | - |
| 0.7468 | 59 | 0.8486 | - |
| 0.7595 | 60 | 0.8507 | - |
| 0.7722 | 61 | 0.9502 | - |
| 0.7848 | 62 | 0.8178 | - |
| 0.7975 | 63 | 1.0142 | - |
| 0.8101 | 64 | 0.9516 | - |
| 0.8228 | 65 | 0.9399 | - |
| 0.8354 | 66 | 0.7602 | - |
| 0.8481 | 67 | 0.8389 | - |
| 0.8608 | 68 | 0.9234 | - |
| 0.8734 | 69 | 0.9747 | - |
| 0.8861 | 70 | 1.1591 | - |
| 0.8987 | 71 | 1.0074 | - |
| 0.9114 | 72 | 0.8169 | - |
| 0.9241 | 73 | 0.9561 | - |
| 0.9367 | 74 | 0.9406 | - |
| 0.9494 | 75 | 0.9603 | - |
| 0.9620 | 76 | 0.8758 | - |
| 0.9747 | 77 | 0.8546 | - |
| 0.9873 | 78 | 0.7313 | - |
| 1.0 | 79 | 0.6568 | 0.802 |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
Base model
Snowflake/snowflake-arctic-embed-l-v2.0