nb-bert-edu-scorer-lr3e4-bs32

This model is a fine-tuned version of NbAiLab/nb-bert-base on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 1.1845
  • Precision: 0.5087
  • Recall: 0.3283
  • F1 Macro: 0.3194
  • Accuracy: 0.3564

Model description

More information needed

Intended uses & limitations

More information needed

Test results

Binary classification accuracy (threshold at label 3) โ‰ˆ 78.18%

Report:

              precision    recall  f1-score   support

           0       0.77      0.54      0.64       100
           1       0.32      0.42      0.36       100
           2       0.25      0.44      0.32       100
           3       0.29      0.40      0.34       100
           4       0.42      0.15      0.22       100
           5       1.00      0.02      0.04        50

    accuracy                           0.36       550
   macro avg       0.51      0.33      0.32       550
weighted avg       0.46      0.36      0.34       550

Confusion Matrix:

[[54 38  7  1  0  0]
 [13 42 38  7  0  0]
 [ 3 39 44 13  1  0]
 [ 0 11 46 40  3  0]
 [ 0  1 33 51 15  0]
 [ 0  0  7 25 17  1]]

Metrics

  epoch                   =       20.0
  eval_accuracy           =     0.3564
  eval_f1_macro           =     0.3194
  eval_loss               =     1.1845
  eval_precision          =     0.5087
  eval_recall             =     0.3283
  eval_runtime            = 0:00:05.11
  eval_samples_per_second =    107.474
  eval_steps_per_second   =      3.517

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0003
  • train_batch_size: 32
  • eval_batch_size: 32
  • seed: 0
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 20

Training results

Training Loss Epoch Step Validation Loss Precision Recall F1 Macro Accuracy
No log 0 0 2.3345 0.1086 0.1651 0.0954 0.3476
0.862 0.3368 1000 0.8527 0.4130 0.2980 0.2791 0.4624
0.8114 0.6736 2000 0.7838 0.4017 0.3237 0.3203 0.4868
0.81 1.0104 3000 0.7608 0.3934 0.3218 0.3154 0.4824
0.7887 1.3473 4000 0.9429 0.3713 0.3335 0.3193 0.3882
0.8082 1.6841 5000 0.7526 0.3936 0.3315 0.3298 0.4994
0.7536 2.0209 6000 0.7296 0.4059 0.3360 0.3325 0.4792
0.7932 2.3577 7000 0.7459 0.4036 0.3359 0.3314 0.4634
0.7472 2.6945 8000 0.7204 0.3888 0.3467 0.3468 0.5026
0.743 3.0313 9000 0.7214 0.3964 0.3408 0.3432 0.5036
0.705 3.3681 10000 0.7082 0.3956 0.3575 0.3600 0.51
0.7321 3.7050 11000 0.7231 0.3995 0.3419 0.3414 0.5176
0.7346 4.0418 12000 0.6929 0.4091 0.3560 0.3585 0.5052
0.7125 4.3786 13000 0.6933 0.4106 0.3491 0.3482 0.5052
0.735 4.7154 14000 0.7265 0.3979 0.3369 0.3396 0.5106
0.7009 5.0522 15000 0.7024 0.4024 0.3435 0.3444 0.5098
0.7068 5.3890 16000 0.7089 0.3951 0.3476 0.3499 0.5214
0.6774 5.7258 17000 0.7333 0.4000 0.3315 0.3281 0.5174
0.6799 6.0626 18000 0.7095 0.4167 0.3356 0.3332 0.5168
0.6956 6.3995 19000 0.6896 0.3969 0.3609 0.3645 0.5156
0.6647 6.7363 20000 0.6845 0.4050 0.3533 0.3559 0.5162
0.6509 7.0731 21000 0.6809 0.4004 0.3521 0.3525 0.4982
0.6775 7.4099 22000 0.6796 0.4021 0.3584 0.3617 0.5136
0.6744 7.7467 23000 0.6749 0.3994 0.3510 0.3531 0.511
0.6479 8.0835 24000 0.6750 0.4103 0.3556 0.3560 0.5234
0.6495 8.4203 25000 0.6797 0.4007 0.3516 0.3543 0.5184
0.691 8.7572 26000 0.6801 0.4114 0.3551 0.3577 0.515
0.7 9.0940 27000 0.6736 0.4034 0.3564 0.3572 0.5056
0.6697 9.4308 28000 0.6672 0.4063 0.3597 0.3616 0.5132
0.6228 9.7676 29000 0.6723 0.4109 0.3553 0.3579 0.5164
0.6459 10.1044 30000 0.6829 0.3976 0.3518 0.3528 0.5238
0.6534 10.4412 31000 0.6918 0.4015 0.3486 0.3485 0.5216
0.6229 10.7780 32000 0.6666 0.4016 0.3571 0.3587 0.5172
0.654 11.1149 33000 0.6687 0.4045 0.3640 0.3664 0.5126
0.6465 11.4517 34000 0.6717 0.4093 0.3490 0.3482 0.516
0.64 11.7885 35000 0.6836 0.3976 0.3639 0.3687 0.517
0.6338 12.1253 36000 0.6729 0.3957 0.3554 0.3574 0.521
0.6276 12.4621 37000 0.6703 0.4042 0.3616 0.3657 0.5164
0.6619 12.7989 38000 0.6673 0.4027 0.3599 0.3607 0.5096
0.5977 13.1357 39000 0.6741 0.4030 0.3561 0.3573 0.5258
0.6377 13.4725 40000 0.6726 0.3944 0.3686 0.3703 0.5146
0.6251 13.8094 41000 0.6734 0.4048 0.3565 0.3590 0.5228
0.6095 14.1462 42000 0.6655 0.4027 0.3619 0.3651 0.516
0.6175 14.4830 43000 0.6741 0.4015 0.3671 0.3689 0.5058
0.5936 14.8198 44000 0.6637 0.3959 0.3599 0.3604 0.508
0.6491 15.1566 45000 0.6721 0.4074 0.3673 0.3713 0.5184
0.6345 15.4934 46000 0.6725 0.3950 0.3539 0.3558 0.519
0.6295 15.8302 47000 0.6628 0.4040 0.3571 0.3597 0.5174
0.6262 16.1671 48000 0.6719 0.3989 0.3686 0.3696 0.509
0.6397 16.5039 49000 0.6706 0.3995 0.3653 0.3679 0.5186
0.586 16.8407 50000 0.6640 0.4017 0.3630 0.3656 0.5218
0.631 17.1775 51000 0.6669 0.3946 0.3568 0.3598 0.5144
0.6026 17.5143 52000 0.6797 0.3999 0.3544 0.3569 0.5256
0.5906 17.8511 53000 0.6608 0.4069 0.3662 0.3690 0.5214
0.5529 18.1879 54000 0.6630 0.3967 0.3638 0.3655 0.5182
0.6216 18.5248 55000 0.6645 0.4004 0.3671 0.3692 0.5106
0.5945 18.8616 56000 0.6602 0.3986 0.3577 0.3593 0.5172
0.6105 19.1984 57000 0.6602 0.3986 0.3596 0.3610 0.5148
0.6245 19.5352 58000 0.6617 0.3986 0.3623 0.3646 0.5124
0.5857 19.8720 59000 0.6621 0.3982 0.3627 0.3649 0.5138

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
5
Safetensors
Model size
0.2B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for versae/nb-bert-edu-scorer-lr3e4-bs32

Finetuned
(26)
this model

Evaluation results