Llama-3.1-8B-Instruct Quantized (Quanto INT8)
This is a quantized version of meta-llama/Llama-3.1-8B-Instruct using quanto with INT8 weight quantization.
Model Details
- Base Model: meta-llama/Llama-3.1-8B-Instruct
- Quantization Method: quanto
- Weight Precision: INT8 (qint8)
- Original Size: ~16 GB (bfloat16)
- Quantized Size: ~8.5 GB
Usage
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
from quanto import quantize, freeze, qint8, safe_load
# Load base model structure
model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
torch_dtype=torch.bfloat16,
low_cpu_mem_usage=True
)
# Quantize structure and load weights
quantize(model, weights=qint8)
state_dict = safe_load("model.safetensors") # Use quanto's safe_load
model.load_state_dict(state_dict)
freeze(model)
# Load tokenizer and generate
tokenizer = AutoTokenizer.from_pretrained("tokenlabsdotrun/Llama-3.1-8B-Quanto-Int8")
inputs = tokenizer("Hello, my name is", return_tensors="pt")
outputs = model.generate(**inputs, max_new_tokens=10)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
License
This model inherits the Llama 3.1 Community License.
- Downloads last month
- 125
Model tree for tokenlabsdotrun/Llama-3.1-8B-Quanto-Int8
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct