FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene Understanding
Paper
•
2012.02951
•
Published
This repository contains a fine-tuned LoRA adapter for the Pixtral-12B model, optimized specifically for aerial imagery analysis and visual question answering. The adapter enables detailed processing of aerial footage with a focus on construction site surveying, structural assessment, and environmental monitoring.
The adapter enhances Pixtral's ability to:
from transformers import AutoProcessor, AutoModelForCausalLM
import torch
from PIL import Image
# Load model and processor
model_id = "takara-ai/pixtral_aerial_VQA_adapter"
processor = AutoProcessor.from_pretrained(model_id)
model = AutoModelForCausalLM.from_pretrained(
model_id,
torch_dtype=torch.float16,
device_map="auto"
)
# Load and process image
image = Image.open("path_to_aerial_image.jpg")
prompt = "Describe the construction progress visible in this aerial image."
# Generate response
inputs = processor(text=prompt, images=image, return_tensors="pt").to(model.device)
generated_ids = model.generate(
**inputs,
max_new_tokens=512,
do_sample=True,
temperature=0.7
)
response = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
print(response)
@misc{rahnemoonfar2020floodnet,
title={FloodNet: A High Resolution Aerial Imagery Dataset for Post Flood Scene Understanding},
author={Maryam Rahnemoonfar and Tashnim Chowdhury and Argho Sarkar and Debvrat Varshney and Masoud Yari and Robin Murphy},
year={2020},
eprint={2012.02951},
archivePrefix={arXiv},
primaryClass={cs.CV},
doi={10.48550/arXiv.2012.02951}
}
For research inquiries and press, please reach out to [email protected]
人類を変革する
Base model
mistralai/Pixtral-12B-Base-2409