Spaces:
Runtime error
Runtime error
File size: 20,896 Bytes
34b253d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 |
"""
Dataset implementation for LLaVA multimodal training
"""
import torch
from torch.utils.data import Dataset
from datasets import load_dataset
import requests
from PIL import Image
import io
from typing import Dict, Any, List, Optional, Union
import logging
import time
from pathlib import Path
from .processors import ImageProcessor, TextProcessor
logger = logging.getLogger(__name__)
class LLaVADataset(Dataset):
"""LLaVA dataset for multimodal training"""
def __init__(
self,
config: Dict[str, Any],
split: str = "train",
transform: Optional[Any] = None
):
self.config = config
self.split = split
self.transform = transform
# Initialize processors
self.image_processor = ImageProcessor(config)
self.text_processor = TextProcessor(config)
# Dataset configuration
data_config = config["data"]
self.cache_dir = data_config.get("cache_dir", "./data/cache")
self.image_size = data_config["image_size"]
# COCO configuration
coco_config = config.get("coco", {})
self.coco_base_url = coco_config.get("base_url", "http://images.cocodataset.org/train2017/")
self.download_timeout = coco_config.get("download_timeout", 30)
self.retry_attempts = coco_config.get("retry_attempts", 3)
self.fallback_size = tuple(coco_config.get("fallback_image_size", [224, 224]))
self.fallback_color = coco_config.get("fallback_image_color", "white")
# Load dataset
self._load_dataset()
# Apply filtering optimizations
if config["data"].get("filter_long_conversations", True):
self._filter_dataset()
# Statistics
self.successful_images = 0
self.failed_images = 0
logger.info(f"Initialized LLaVADataset with {len(self.dataset)} samples for split '{split}'")
def _load_dataset(self):
"""Load the LLaVA dataset from HuggingFace"""
dataset_name = self.config["data"]["dataset_name"]
# Create cache directory
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
# Try different loading approaches
loading_strategies = [
# Strategy 1: Simple loading without problematic parameters
lambda: load_dataset(
dataset_name,
split=self.split,
cache_dir=self.cache_dir
),
# Strategy 2: With streaming disabled
lambda: load_dataset(
dataset_name,
split=self.split,
cache_dir=self.cache_dir,
streaming=False
),
# Strategy 3: Different data format approach
lambda: self._load_alternative_format(dataset_name),
# Strategy 4: Load from local files if available
lambda: self._load_local_dataset(dataset_name)
]
for i, strategy in enumerate(loading_strategies):
try:
logger.info(f"Trying dataset loading strategy {i+1}...")
self.dataset = strategy()
# Validate dataset
if len(self.dataset) == 0:
raise ValueError("Dataset is empty")
logger.info(f"Successfully loaded {len(self.dataset)} examples from {dataset_name}")
return
except Exception as e:
logger.warning(f"Strategy {i+1} failed: {e}")
# Continue to next strategy
# If all strategies fail, create a larger dummy dataset for development
logger.warning("All loading strategies failed, creating larger dummy dataset...")
self.dataset = self._create_development_dataset()
def _load_alternative_format(self, dataset_name):
"""Try alternative loading format for LLaVA dataset"""
try:
# Try loading with explicit JSON format
from datasets import load_dataset, DownloadConfig
download_config = DownloadConfig(
resume_download=True,
force_download=False,
use_etag=False
)
return load_dataset(
"json",
data_files={
"train": "hf://datasets/liuhaotian/LLaVA-Instruct-150K/llava_instruct_150k.json"
},
split=self.split,
cache_dir=self.cache_dir,
download_config=download_config
)
except Exception as e:
logger.warning(f"Alternative format loading failed: {e}")
raise
def _load_local_dataset(self, dataset_name):
"""Try to load dataset from local files or alternative sources"""
try:
# Try loading with minimal parameters
return load_dataset(
dataset_name,
split=self.split,
cache_dir=self.cache_dir
)
except Exception:
# If local loading fails, create dummy data
logger.warning("Local loading failed, using dummy dataset")
return self._create_dummy_dataset()
def _create_dummy_dataset(self):
"""Create a small dummy dataset for testing"""
from datasets import Dataset
dummy_data = []
for i in range(100): # Small dataset for testing
# Use realistic COCO-style filenames that will trigger fallback
coco_filename = f"{str(i).zfill(12)}.jpg"
dummy_data.append({
"id": str(i),
"image": coco_filename,
"conversations": [
{
"from": "human",
"value": f"What do you see in image {i}?"
},
{
"from": "gpt",
"value": f"I can see an image numbered {i}."
}
]
})
return Dataset.from_list(dummy_data)
def _create_development_dataset(self):
"""Create a larger dummy dataset for development/testing"""
from datasets import Dataset
import random
# Create more realistic sample data for development
dummy_data = []
# Common visual questions and responses
questions = [
"What do you see in this image?",
"Describe the main objects in the picture.",
"What is the person doing?",
"What colors are prominent in this image?",
"Can you identify any animals in the picture?",
"What's the setting or location of this image?",
"Are there any vehicles visible?",
"What's the weather like in the image?",
"How many people are in the picture?",
"What objects are on the table?",
]
responses = [
"I can see a person standing in a park with trees in the background.",
"The image shows a cat sitting on a windowsill, looking outside.",
"There's a red car parked on a street with buildings nearby.",
"I notice several people walking on a busy sidewalk.",
"The picture contains a bowl of fruit on a wooden table.",
"I can see a dog playing in a grassy field.",
"The image shows a bicycle leaning against a wall.",
"There's a group of children playing in a playground.",
"I can see mountains in the distance with a clear blue sky.",
"The picture shows a kitchen with modern appliances.",
]
# Generate realistic sample size for development
num_samples = self.config["data"].get("subset_size", 10000) if self.config["data"].get("use_subset", False) else 50000
for i in range(num_samples):
# Use realistic COCO-style filenames
coco_filename = f"{str(i % 1000).zfill(12)}.jpg"
question = random.choice(questions)
response = random.choice(responses)
dummy_data.append({
"id": str(i),
"image": coco_filename,
"conversations": [
{
"from": "human",
"value": question
},
{
"from": "gpt",
"value": response
}
]
})
logger.info(f"Created development dataset with {len(dummy_data)} samples")
return Dataset.from_list(dummy_data)
def _filter_dataset(self):
"""Filter dataset for faster training"""
logger.info("Applying speed optimization filters...")
filtering_config = self.config["data"]["filtering"]
data_config = self.config["data"]
original_size = len(self.dataset)
filtered_indices = []
# Use subset for testing if enabled
if data_config.get("use_subset", False):
subset_size = data_config.get("subset_size", 10000)
indices = list(range(min(subset_size, original_size)))
logger.info(f"Using subset of {len(indices)} samples for testing")
else:
indices = list(range(original_size))
max_turns = data_config.get("max_conversation_turns", 6)
max_tokens = filtering_config.get("max_tokens_per_sample", 256)
max_length = filtering_config.get("max_length", 800)
for idx in indices:
try:
item = self.dataset[idx]
conversations = item.get("conversations", [])
# Filter by conversation length
if len(conversations) > max_turns:
continue
# Estimate token count (rough approximation: 1 token ≈ 4 chars)
total_text = ""
for conv in conversations:
total_text += conv.get("value", "")
estimated_tokens = len(total_text) // 4
if estimated_tokens > max_tokens:
continue
# Check if it's image-related (has visual keywords)
has_visual_content = any(
keyword in total_text.lower()
for keyword in ["see", "image", "picture", "photo", "visual", "look", "show", "appear", "visible"]
)
if filtering_config.get("min_image_questions", 1) > 0 and not has_visual_content:
continue
# Check final text length
if len(total_text) > max_length:
continue
filtered_indices.append(idx)
except Exception as e:
logger.debug(f"Error filtering item {idx}: {e}")
continue
# Apply filtering
if filtered_indices:
self.dataset = self.dataset.select(filtered_indices)
filtered_size = len(self.dataset)
reduction_pct = (1 - filtered_size / original_size) * 100
logger.info(f"Dataset filtered: {original_size:,} → {filtered_size:,} samples")
logger.info(f"Reduction: {reduction_pct:.1f}% (faster training!)")
return self.dataset
def __len__(self) -> int:
return len(self.dataset)
def __getitem__(self, idx: int) -> Dict[str, Any]:
"""Get a single sample from the dataset with improved error handling"""
try:
item = self.dataset[idx]
# Load and process image
image = self._load_image(item.get("image", ""))
# Process conversation text with robust handling
conversations = item.get("conversations", [])
if not conversations or not isinstance(conversations, list):
# Fallback if no valid conversations
conversations = [
{"from": "human", "value": "What do you see in this image?"},
{"from": "gpt", "value": "I can see an image that contains various visual elements."}
]
formatted_text = self.text_processor.format_conversation(conversations)
# Add image token if image is present
formatted_text = self.text_processor.add_image_token(formatted_text, image is not None)
# More lenient validation - only reject if truly problematic
if not self.text_processor.validate_text(formatted_text):
# Create a better fallback based on original conversations
try:
# Try to extract any usable content
fallback_content = "What do you see in this image?"
if conversations and len(conversations) > 0:
first_conv = conversations[0]
if isinstance(first_conv, dict) and "value" in first_conv:
user_text = str(first_conv["value"]).strip()
if user_text and len(user_text) > 5:
fallback_content = user_text
formatted_text = f"<image>\nHuman: {fallback_content}\nAssistant: I can see an image."
except Exception:
formatted_text = "<image>\nHuman: What do you see?\nAssistant: I see an image."
return {
"image": image,
"text": formatted_text,
"conversations": conversations,
"id": item.get("id", f"sample_{idx}"),
"image_filename": item.get("image", ""),
"has_image": image is not None
}
except Exception as e:
logger.debug(f"Error processing item {idx}: {e}")
# Return a fallback sample (reduce logging level to debug)
return self._get_fallback_sample(idx)
def _load_image(self, image_filename: str) -> Optional[Image.Image]:
"""Load image from COCO dataset with retry logic"""
if not image_filename or not image_filename.strip():
return None
# Check if it's a dummy image (contains "dummy_")
if "dummy_" in image_filename:
logger.debug(f"Using placeholder image for {image_filename}")
return self._create_fallback_image()
# For actual dummy filenames from our generated dataset (short numbers), use placeholder
filename_without_ext = image_filename.replace('.jpg', '').replace('.png', '')
if image_filename and filename_without_ext.isdigit() and len(filename_without_ext) <= 6:
logger.debug(f"Using placeholder image for dummy filename: {image_filename}")
return self._create_fallback_image()
# Check cache first
cache_path = Path(self.cache_dir) / "images" / image_filename
if cache_path.exists():
try:
image = Image.open(cache_path).convert('RGB')
self.successful_images += 1
return image
except Exception:
cache_path.unlink(missing_ok=True) # Remove corrupted cache
image_url = f"{self.coco_base_url}{image_filename}"
for attempt in range(self.retry_attempts):
try:
response = requests.get(
image_url,
timeout=self.download_timeout,
headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
)
response.raise_for_status()
# Load and validate image
image = Image.open(io.BytesIO(response.content)).convert('RGB')
# Basic validation
if image.size[0] < 10 or image.size[1] < 10:
raise ValueError("Image too small")
# Cache the image
cache_path.parent.mkdir(parents=True, exist_ok=True)
image.save(cache_path, "JPEG", quality=85)
logger.debug(f"Cached image: {cache_path}")
self.successful_images += 1
return image
except Exception as e:
if attempt == self.retry_attempts - 1:
logger.debug(f"Failed to load image {image_filename} after {self.retry_attempts} attempts: {e}")
self.failed_images += 1
return self._create_fallback_image()
else:
time.sleep(0.5) # Brief pause before retry
return self._create_fallback_image()
def _create_fallback_image(self) -> Image.Image:
"""Create a fallback image when loading fails"""
return Image.new('RGB', self.fallback_size, color=self.fallback_color)
def _get_fallback_sample(self, idx: int) -> Dict[str, Any]:
"""Get a fallback sample when processing fails"""
fallback_image = self._create_fallback_image()
fallback_text = "Human: What do you see in this image?\nAssistant: I can see a simple image."
return {
"image": fallback_image,
"text": fallback_text,
"conversations": [
{"from": "human", "value": "What do you see in this image?"},
{"from": "gpt", "value": "I can see a simple image."}
],
"id": f"fallback_{idx}",
"image_filename": "",
"has_image": True
}
def get_stats(self) -> Dict[str, int]:
"""Get dataset statistics"""
return {
"total_samples": len(self),
"successful_images": self.successful_images,
"failed_images": self.failed_images,
"success_rate": self.successful_images / (self.successful_images + self.failed_images) * 100
if (self.successful_images + self.failed_images) > 0 else 0
}
class MultimodalCollator:
"""Custom collator for multimodal data batching"""
def __init__(
self,
tokenizer,
vision_processor,
config: Dict[str, Any],
max_length: Optional[int] = None
):
self.tokenizer = tokenizer
self.vision_processor = vision_processor
self.config = config
self.max_length = max_length or config["data"]["max_length"]
# Image token for processing
self.image_token = config.get("special_tokens", {}).get("image_token", "<image>")
def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
"""Collate a batch of samples"""
images = []
texts = []
has_images = []
for sample in batch:
# Collect images
if sample["image"] is not None:
images.append(sample["image"])
has_images.append(True)
else:
# Create placeholder image for samples without images
placeholder = Image.new('RGB', (224, 224), color='white')
images.append(placeholder)
has_images.append(False)
# Collect texts
texts.append(sample["text"])
# Process images using vision processor
try:
vision_inputs = self.vision_processor(
images=images,
return_tensors="pt"
)
pixel_values = vision_inputs["pixel_values"]
except Exception as e:
logger.error(f"Error processing images: {e}")
# Create dummy pixel values
pixel_values = torch.zeros(len(batch), 3, 224, 224)
# Tokenize texts
try:
text_inputs = self.tokenizer(
texts,
padding=True,
truncation=True,
max_length=self.max_length,
return_tensors="pt"
)
except Exception as e:
logger.error(f"Error tokenizing texts: {e}")
# Create dummy inputs
text_inputs = {
"input_ids": torch.zeros(len(batch), self.max_length, dtype=torch.long),
"attention_mask": torch.ones(len(batch), self.max_length, dtype=torch.long)
}
# Create labels (same as input_ids for causal LM)
labels = text_inputs["input_ids"].clone()
# Mask padding tokens in labels (-100 is ignored by loss function)
labels[labels == self.tokenizer.pad_token_id] = -100
batch_dict = {
"input_ids": text_inputs["input_ids"],
"attention_mask": text_inputs["attention_mask"],
"labels": labels,
"images": pixel_values,
"has_images": torch.tensor(has_images, dtype=torch.bool)
}
return batch_dict
|