Spaces:
Runtime error
Runtime error
Upload folder using huggingface_hub
Browse files- src/data/__init__.py +11 -0
- src/data/__pycache__/__init__.cpython-311.pyc +0 -0
- src/data/__pycache__/datamodule.cpython-311.pyc +0 -0
- src/data/__pycache__/dataset.cpython-311.pyc +0 -0
- src/data/__pycache__/processors.cpython-311.pyc +0 -0
- src/data/datamodule.py +179 -0
- src/data/dataset.py +543 -0
- src/data/processors.py +181 -0
- src/training/__init__.py +7 -0
- src/training/callbacks.py +74 -0
- src/training/utils.py +115 -0
- src/utils/logging.py +73 -0
src/data/__init__.py
ADDED
|
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .dataset import LLaVADataset, MultimodalCollator
|
| 2 |
+
from .datamodule import LLaVADataModule
|
| 3 |
+
from .processors import ImageProcessor, TextProcessor
|
| 4 |
+
|
| 5 |
+
__all__ = [
|
| 6 |
+
"LLaVADataset",
|
| 7 |
+
"MultimodalCollator",
|
| 8 |
+
"LLaVADataModule",
|
| 9 |
+
"ImageProcessor",
|
| 10 |
+
"TextProcessor"
|
| 11 |
+
]
|
src/data/__pycache__/__init__.cpython-311.pyc
ADDED
|
Binary file (448 Bytes). View file
|
|
|
src/data/__pycache__/datamodule.cpython-311.pyc
ADDED
|
Binary file (8.05 kB). View file
|
|
|
src/data/__pycache__/dataset.cpython-311.pyc
ADDED
|
Binary file (25.2 kB). View file
|
|
|
src/data/__pycache__/processors.cpython-311.pyc
ADDED
|
Binary file (8.77 kB). View file
|
|
|
src/data/datamodule.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
PyTorch Lightning DataModule for LLaVA dataset
|
| 3 |
+
"""
|
| 4 |
+
import lightning as L
|
| 5 |
+
import torch
|
| 6 |
+
from torch.utils.data import DataLoader, random_split
|
| 7 |
+
from typing import Optional, Dict, Any
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
from .dataset import LLaVADataset, MultimodalCollator
|
| 11 |
+
|
| 12 |
+
logger = logging.getLogger(__name__)
|
| 13 |
+
|
| 14 |
+
|
| 15 |
+
class LLaVADataModule(L.LightningDataModule):
|
| 16 |
+
"""Lightning DataModule for LLaVA dataset"""
|
| 17 |
+
|
| 18 |
+
def __init__(
|
| 19 |
+
self,
|
| 20 |
+
tokenizer,
|
| 21 |
+
vision_processor,
|
| 22 |
+
config: Dict[str, Any]
|
| 23 |
+
):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.tokenizer = tokenizer
|
| 26 |
+
self.vision_processor = vision_processor
|
| 27 |
+
self.config = config
|
| 28 |
+
|
| 29 |
+
# Data configuration
|
| 30 |
+
data_config = config["data"]
|
| 31 |
+
self.batch_size = config["training"]["batch_size"]
|
| 32 |
+
self.num_workers = data_config.get("num_workers", 4)
|
| 33 |
+
self.pin_memory = data_config.get("pin_memory", True)
|
| 34 |
+
self.persistent_workers = data_config.get("persistent_workers", True)
|
| 35 |
+
|
| 36 |
+
# Dataset splits
|
| 37 |
+
self.train_split = data_config.get("train_split", "train")
|
| 38 |
+
self.val_split = data_config.get("val_split", "train") # LLaVA doesn't have separate val
|
| 39 |
+
self.val_size = data_config.get("val_size", 0.02)
|
| 40 |
+
|
| 41 |
+
# Initialize datasets to None
|
| 42 |
+
self.train_dataset = None
|
| 43 |
+
self.val_dataset = None
|
| 44 |
+
|
| 45 |
+
# Create collator
|
| 46 |
+
self.collator = MultimodalCollator(
|
| 47 |
+
tokenizer=self.tokenizer,
|
| 48 |
+
vision_processor=self.vision_processor,
|
| 49 |
+
config=self.config
|
| 50 |
+
)
|
| 51 |
+
|
| 52 |
+
logger.info("LLaVADataModule initialized")
|
| 53 |
+
|
| 54 |
+
def prepare_data(self) -> None:
|
| 55 |
+
"""Download and prepare data (called only on rank 0)"""
|
| 56 |
+
# This will download the dataset if not already cached
|
| 57 |
+
try:
|
| 58 |
+
LLaVADataset(
|
| 59 |
+
config=self.config,
|
| 60 |
+
split=self.train_split
|
| 61 |
+
)
|
| 62 |
+
logger.info("Dataset preparation completed")
|
| 63 |
+
except Exception as e:
|
| 64 |
+
logger.error(f"Failed to prepare dataset: {e}")
|
| 65 |
+
raise
|
| 66 |
+
|
| 67 |
+
def setup(self, stage: Optional[str] = None) -> None:
|
| 68 |
+
"""Setup datasets for training/validation/testing"""
|
| 69 |
+
|
| 70 |
+
if stage == "fit" or stage is None:
|
| 71 |
+
# Load full training dataset
|
| 72 |
+
full_dataset = LLaVADataset(
|
| 73 |
+
config=self.config,
|
| 74 |
+
split=self.train_split
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Split into train and validation
|
| 78 |
+
total_size = len(full_dataset)
|
| 79 |
+
val_size = int(total_size * self.val_size)
|
| 80 |
+
train_size = total_size - val_size
|
| 81 |
+
|
| 82 |
+
self.train_dataset, self.val_dataset = random_split(
|
| 83 |
+
full_dataset,
|
| 84 |
+
[train_size, val_size],
|
| 85 |
+
generator=torch.Generator().manual_seed(42) # For reproducibility
|
| 86 |
+
)
|
| 87 |
+
|
| 88 |
+
logger.info(f"Dataset split: {train_size} train, {val_size} validation")
|
| 89 |
+
|
| 90 |
+
if stage == "test":
|
| 91 |
+
# For testing, we'll use a small subset of the training data
|
| 92 |
+
self.test_dataset = LLaVADataset(
|
| 93 |
+
config=self.config,
|
| 94 |
+
split=self.train_split
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
if stage == "predict":
|
| 98 |
+
# For prediction, setup can be done dynamically
|
| 99 |
+
pass
|
| 100 |
+
|
| 101 |
+
def train_dataloader(self) -> DataLoader:
|
| 102 |
+
"""Create training dataloader"""
|
| 103 |
+
if self.train_dataset is None:
|
| 104 |
+
raise RuntimeError("Train dataset not initialized. Call setup() first.")
|
| 105 |
+
|
| 106 |
+
return DataLoader(
|
| 107 |
+
self.train_dataset,
|
| 108 |
+
batch_size=self.batch_size,
|
| 109 |
+
shuffle=True,
|
| 110 |
+
num_workers=self.num_workers,
|
| 111 |
+
pin_memory=self.pin_memory,
|
| 112 |
+
persistent_workers=self.persistent_workers and self.num_workers > 0,
|
| 113 |
+
collate_fn=self.collator,
|
| 114 |
+
drop_last=True # Drop incomplete batches for consistent training
|
| 115 |
+
)
|
| 116 |
+
|
| 117 |
+
def val_dataloader(self) -> DataLoader:
|
| 118 |
+
"""Create validation dataloader"""
|
| 119 |
+
if self.val_dataset is None:
|
| 120 |
+
raise RuntimeError("Validation dataset not initialized. Call setup() first.")
|
| 121 |
+
|
| 122 |
+
return DataLoader(
|
| 123 |
+
self.val_dataset,
|
| 124 |
+
batch_size=self.batch_size,
|
| 125 |
+
shuffle=False,
|
| 126 |
+
num_workers=self.num_workers,
|
| 127 |
+
pin_memory=self.pin_memory,
|
| 128 |
+
persistent_workers=self.persistent_workers and self.num_workers > 0,
|
| 129 |
+
collate_fn=self.collator,
|
| 130 |
+
drop_last=False
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def test_dataloader(self) -> DataLoader:
|
| 134 |
+
"""Create test dataloader"""
|
| 135 |
+
if not hasattr(self, 'test_dataset') or self.test_dataset is None:
|
| 136 |
+
raise RuntimeError("Test dataset not initialized. Call setup() first.")
|
| 137 |
+
|
| 138 |
+
return DataLoader(
|
| 139 |
+
self.test_dataset,
|
| 140 |
+
batch_size=self.batch_size,
|
| 141 |
+
shuffle=False,
|
| 142 |
+
num_workers=self.num_workers,
|
| 143 |
+
pin_memory=self.pin_memory,
|
| 144 |
+
collate_fn=self.collator,
|
| 145 |
+
drop_last=False
|
| 146 |
+
)
|
| 147 |
+
|
| 148 |
+
def predict_dataloader(self) -> DataLoader:
|
| 149 |
+
"""Create prediction dataloader"""
|
| 150 |
+
# This can be implemented based on specific prediction needs
|
| 151 |
+
return self.val_dataloader()
|
| 152 |
+
|
| 153 |
+
def teardown(self, stage: Optional[str] = None) -> None:
|
| 154 |
+
"""Clean up after training/testing"""
|
| 155 |
+
# Log dataset statistics if available
|
| 156 |
+
if hasattr(self, 'train_dataset') and self.train_dataset is not None:
|
| 157 |
+
if hasattr(self.train_dataset.dataset, 'get_stats'):
|
| 158 |
+
stats = self.train_dataset.dataset.get_stats()
|
| 159 |
+
logger.info(f"Training dataset stats: {stats}")
|
| 160 |
+
|
| 161 |
+
if hasattr(self, 'val_dataset') and self.val_dataset is not None:
|
| 162 |
+
if hasattr(self.val_dataset.dataset, 'get_stats'):
|
| 163 |
+
stats = self.val_dataset.dataset.get_stats()
|
| 164 |
+
logger.info(f"Validation dataset stats: {stats}")
|
| 165 |
+
|
| 166 |
+
def get_dataset_info(self) -> Dict[str, Any]:
|
| 167 |
+
"""Get information about the loaded datasets"""
|
| 168 |
+
info = {}
|
| 169 |
+
|
| 170 |
+
if self.train_dataset is not None:
|
| 171 |
+
info["train_size"] = len(self.train_dataset)
|
| 172 |
+
|
| 173 |
+
if self.val_dataset is not None:
|
| 174 |
+
info["val_size"] = len(self.val_dataset)
|
| 175 |
+
|
| 176 |
+
info["batch_size"] = self.batch_size
|
| 177 |
+
info["num_workers"] = self.num_workers
|
| 178 |
+
|
| 179 |
+
return info
|
src/data/dataset.py
ADDED
|
@@ -0,0 +1,543 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Dataset implementation for LLaVA multimodal training
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
from datasets import load_dataset
|
| 7 |
+
import requests
|
| 8 |
+
from PIL import Image
|
| 9 |
+
import io
|
| 10 |
+
from typing import Dict, Any, List, Optional, Union
|
| 11 |
+
import logging
|
| 12 |
+
import time
|
| 13 |
+
from pathlib import Path
|
| 14 |
+
|
| 15 |
+
from .processors import ImageProcessor, TextProcessor
|
| 16 |
+
|
| 17 |
+
logger = logging.getLogger(__name__)
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class LLaVADataset(Dataset):
|
| 21 |
+
"""LLaVA dataset for multimodal training"""
|
| 22 |
+
|
| 23 |
+
def __init__(
|
| 24 |
+
self,
|
| 25 |
+
config: Dict[str, Any],
|
| 26 |
+
split: str = "train",
|
| 27 |
+
transform: Optional[Any] = None
|
| 28 |
+
):
|
| 29 |
+
self.config = config
|
| 30 |
+
self.split = split
|
| 31 |
+
self.transform = transform
|
| 32 |
+
|
| 33 |
+
# Initialize processors
|
| 34 |
+
self.image_processor = ImageProcessor(config)
|
| 35 |
+
self.text_processor = TextProcessor(config)
|
| 36 |
+
|
| 37 |
+
# Dataset configuration
|
| 38 |
+
data_config = config["data"]
|
| 39 |
+
self.cache_dir = data_config.get("cache_dir", "./data/cache")
|
| 40 |
+
self.image_size = data_config["image_size"]
|
| 41 |
+
|
| 42 |
+
# COCO configuration
|
| 43 |
+
coco_config = config.get("coco", {})
|
| 44 |
+
self.coco_base_url = coco_config.get("base_url", "http://images.cocodataset.org/train2017/")
|
| 45 |
+
self.download_timeout = coco_config.get("download_timeout", 30)
|
| 46 |
+
self.retry_attempts = coco_config.get("retry_attempts", 3)
|
| 47 |
+
self.fallback_size = tuple(coco_config.get("fallback_image_size", [224, 224]))
|
| 48 |
+
self.fallback_color = coco_config.get("fallback_image_color", "white")
|
| 49 |
+
|
| 50 |
+
# Load dataset
|
| 51 |
+
self._load_dataset()
|
| 52 |
+
|
| 53 |
+
# Apply filtering optimizations
|
| 54 |
+
if config["data"].get("filter_long_conversations", True):
|
| 55 |
+
self._filter_dataset()
|
| 56 |
+
|
| 57 |
+
# Statistics
|
| 58 |
+
self.successful_images = 0
|
| 59 |
+
self.failed_images = 0
|
| 60 |
+
|
| 61 |
+
logger.info(f"Initialized LLaVADataset with {len(self.dataset)} samples for split '{split}'")
|
| 62 |
+
|
| 63 |
+
def _load_dataset(self):
|
| 64 |
+
"""Load the LLaVA dataset from HuggingFace"""
|
| 65 |
+
dataset_name = self.config["data"]["dataset_name"]
|
| 66 |
+
|
| 67 |
+
# Create cache directory
|
| 68 |
+
Path(self.cache_dir).mkdir(parents=True, exist_ok=True)
|
| 69 |
+
|
| 70 |
+
# Try different loading approaches
|
| 71 |
+
loading_strategies = [
|
| 72 |
+
# Strategy 1: Simple loading without problematic parameters
|
| 73 |
+
lambda: load_dataset(
|
| 74 |
+
dataset_name,
|
| 75 |
+
split=self.split,
|
| 76 |
+
cache_dir=self.cache_dir
|
| 77 |
+
),
|
| 78 |
+
|
| 79 |
+
# Strategy 2: With streaming disabled
|
| 80 |
+
lambda: load_dataset(
|
| 81 |
+
dataset_name,
|
| 82 |
+
split=self.split,
|
| 83 |
+
cache_dir=self.cache_dir,
|
| 84 |
+
streaming=False
|
| 85 |
+
),
|
| 86 |
+
|
| 87 |
+
# Strategy 3: Different data format approach
|
| 88 |
+
lambda: self._load_alternative_format(dataset_name),
|
| 89 |
+
|
| 90 |
+
# Strategy 4: Load from local files if available
|
| 91 |
+
lambda: self._load_local_dataset(dataset_name)
|
| 92 |
+
]
|
| 93 |
+
|
| 94 |
+
for i, strategy in enumerate(loading_strategies):
|
| 95 |
+
try:
|
| 96 |
+
logger.info(f"Trying dataset loading strategy {i+1}...")
|
| 97 |
+
self.dataset = strategy()
|
| 98 |
+
|
| 99 |
+
# Validate dataset
|
| 100 |
+
if len(self.dataset) == 0:
|
| 101 |
+
raise ValueError("Dataset is empty")
|
| 102 |
+
|
| 103 |
+
logger.info(f"Successfully loaded {len(self.dataset)} examples from {dataset_name}")
|
| 104 |
+
return
|
| 105 |
+
|
| 106 |
+
except Exception as e:
|
| 107 |
+
logger.warning(f"Strategy {i+1} failed: {e}")
|
| 108 |
+
# Continue to next strategy
|
| 109 |
+
|
| 110 |
+
# If all strategies fail, create a larger dummy dataset for development
|
| 111 |
+
logger.warning("All loading strategies failed, creating larger dummy dataset...")
|
| 112 |
+
self.dataset = self._create_development_dataset()
|
| 113 |
+
|
| 114 |
+
def _load_alternative_format(self, dataset_name):
|
| 115 |
+
"""Try alternative loading format for LLaVA dataset"""
|
| 116 |
+
try:
|
| 117 |
+
# Try loading with explicit JSON format
|
| 118 |
+
from datasets import load_dataset, DownloadConfig
|
| 119 |
+
|
| 120 |
+
download_config = DownloadConfig(
|
| 121 |
+
resume_download=True,
|
| 122 |
+
force_download=False,
|
| 123 |
+
use_etag=False
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
return load_dataset(
|
| 127 |
+
"json",
|
| 128 |
+
data_files={
|
| 129 |
+
"train": "hf://datasets/liuhaotian/LLaVA-Instruct-150K/llava_instruct_150k.json"
|
| 130 |
+
},
|
| 131 |
+
split=self.split,
|
| 132 |
+
cache_dir=self.cache_dir,
|
| 133 |
+
download_config=download_config
|
| 134 |
+
)
|
| 135 |
+
except Exception as e:
|
| 136 |
+
logger.warning(f"Alternative format loading failed: {e}")
|
| 137 |
+
raise
|
| 138 |
+
|
| 139 |
+
def _load_local_dataset(self, dataset_name):
|
| 140 |
+
"""Try to load dataset from local files or alternative sources"""
|
| 141 |
+
try:
|
| 142 |
+
# Try loading with minimal parameters
|
| 143 |
+
return load_dataset(
|
| 144 |
+
dataset_name,
|
| 145 |
+
split=self.split,
|
| 146 |
+
cache_dir=self.cache_dir
|
| 147 |
+
)
|
| 148 |
+
except Exception:
|
| 149 |
+
# If local loading fails, create dummy data
|
| 150 |
+
logger.warning("Local loading failed, using dummy dataset")
|
| 151 |
+
return self._create_dummy_dataset()
|
| 152 |
+
|
| 153 |
+
def _create_dummy_dataset(self):
|
| 154 |
+
"""Create a small dummy dataset for testing"""
|
| 155 |
+
from datasets import Dataset
|
| 156 |
+
|
| 157 |
+
dummy_data = []
|
| 158 |
+
for i in range(100): # Small dataset for testing
|
| 159 |
+
# Use realistic COCO-style filenames that will trigger fallback
|
| 160 |
+
coco_filename = f"{str(i).zfill(12)}.jpg"
|
| 161 |
+
dummy_data.append({
|
| 162 |
+
"id": str(i),
|
| 163 |
+
"image": coco_filename,
|
| 164 |
+
"conversations": [
|
| 165 |
+
{
|
| 166 |
+
"from": "human",
|
| 167 |
+
"value": f"What do you see in image {i}?"
|
| 168 |
+
},
|
| 169 |
+
{
|
| 170 |
+
"from": "gpt",
|
| 171 |
+
"value": f"I can see an image numbered {i}."
|
| 172 |
+
}
|
| 173 |
+
]
|
| 174 |
+
})
|
| 175 |
+
|
| 176 |
+
return Dataset.from_list(dummy_data)
|
| 177 |
+
|
| 178 |
+
def _create_development_dataset(self):
|
| 179 |
+
"""Create a larger dummy dataset for development/testing"""
|
| 180 |
+
from datasets import Dataset
|
| 181 |
+
import random
|
| 182 |
+
|
| 183 |
+
# Create more realistic sample data for development
|
| 184 |
+
dummy_data = []
|
| 185 |
+
|
| 186 |
+
# Common visual questions and responses
|
| 187 |
+
questions = [
|
| 188 |
+
"What do you see in this image?",
|
| 189 |
+
"Describe the main objects in the picture.",
|
| 190 |
+
"What is the person doing?",
|
| 191 |
+
"What colors are prominent in this image?",
|
| 192 |
+
"Can you identify any animals in the picture?",
|
| 193 |
+
"What's the setting or location of this image?",
|
| 194 |
+
"Are there any vehicles visible?",
|
| 195 |
+
"What's the weather like in the image?",
|
| 196 |
+
"How many people are in the picture?",
|
| 197 |
+
"What objects are on the table?",
|
| 198 |
+
]
|
| 199 |
+
|
| 200 |
+
responses = [
|
| 201 |
+
"I can see a person standing in a park with trees in the background.",
|
| 202 |
+
"The image shows a cat sitting on a windowsill, looking outside.",
|
| 203 |
+
"There's a red car parked on a street with buildings nearby.",
|
| 204 |
+
"I notice several people walking on a busy sidewalk.",
|
| 205 |
+
"The picture contains a bowl of fruit on a wooden table.",
|
| 206 |
+
"I can see a dog playing in a grassy field.",
|
| 207 |
+
"The image shows a bicycle leaning against a wall.",
|
| 208 |
+
"There's a group of children playing in a playground.",
|
| 209 |
+
"I can see mountains in the distance with a clear blue sky.",
|
| 210 |
+
"The picture shows a kitchen with modern appliances.",
|
| 211 |
+
]
|
| 212 |
+
|
| 213 |
+
# Generate realistic sample size for development
|
| 214 |
+
num_samples = self.config["data"].get("subset_size", 10000) if self.config["data"].get("use_subset", False) else 50000
|
| 215 |
+
|
| 216 |
+
for i in range(num_samples):
|
| 217 |
+
# Use realistic COCO-style filenames
|
| 218 |
+
coco_filename = f"{str(i % 1000).zfill(12)}.jpg"
|
| 219 |
+
question = random.choice(questions)
|
| 220 |
+
response = random.choice(responses)
|
| 221 |
+
|
| 222 |
+
dummy_data.append({
|
| 223 |
+
"id": str(i),
|
| 224 |
+
"image": coco_filename,
|
| 225 |
+
"conversations": [
|
| 226 |
+
{
|
| 227 |
+
"from": "human",
|
| 228 |
+
"value": question
|
| 229 |
+
},
|
| 230 |
+
{
|
| 231 |
+
"from": "gpt",
|
| 232 |
+
"value": response
|
| 233 |
+
}
|
| 234 |
+
]
|
| 235 |
+
})
|
| 236 |
+
|
| 237 |
+
logger.info(f"Created development dataset with {len(dummy_data)} samples")
|
| 238 |
+
return Dataset.from_list(dummy_data)
|
| 239 |
+
|
| 240 |
+
def _filter_dataset(self):
|
| 241 |
+
"""Filter dataset for faster training"""
|
| 242 |
+
logger.info("Applying speed optimization filters...")
|
| 243 |
+
|
| 244 |
+
filtering_config = self.config["data"]["filtering"]
|
| 245 |
+
data_config = self.config["data"]
|
| 246 |
+
|
| 247 |
+
original_size = len(self.dataset)
|
| 248 |
+
filtered_indices = []
|
| 249 |
+
|
| 250 |
+
# Use subset for testing if enabled
|
| 251 |
+
if data_config.get("use_subset", False):
|
| 252 |
+
subset_size = data_config.get("subset_size", 10000)
|
| 253 |
+
indices = list(range(min(subset_size, original_size)))
|
| 254 |
+
logger.info(f"Using subset of {len(indices)} samples for testing")
|
| 255 |
+
else:
|
| 256 |
+
indices = list(range(original_size))
|
| 257 |
+
|
| 258 |
+
max_turns = data_config.get("max_conversation_turns", 6)
|
| 259 |
+
max_tokens = filtering_config.get("max_tokens_per_sample", 256)
|
| 260 |
+
max_length = filtering_config.get("max_length", 800)
|
| 261 |
+
|
| 262 |
+
for idx in indices:
|
| 263 |
+
try:
|
| 264 |
+
item = self.dataset[idx]
|
| 265 |
+
conversations = item.get("conversations", [])
|
| 266 |
+
|
| 267 |
+
# Filter by conversation length
|
| 268 |
+
if len(conversations) > max_turns:
|
| 269 |
+
continue
|
| 270 |
+
|
| 271 |
+
# Estimate token count (rough approximation: 1 token ≈ 4 chars)
|
| 272 |
+
total_text = ""
|
| 273 |
+
for conv in conversations:
|
| 274 |
+
total_text += conv.get("value", "")
|
| 275 |
+
|
| 276 |
+
estimated_tokens = len(total_text) // 4
|
| 277 |
+
if estimated_tokens > max_tokens:
|
| 278 |
+
continue
|
| 279 |
+
|
| 280 |
+
# Check if it's image-related (has visual keywords)
|
| 281 |
+
has_visual_content = any(
|
| 282 |
+
keyword in total_text.lower()
|
| 283 |
+
for keyword in ["see", "image", "picture", "photo", "visual", "look", "show", "appear", "visible"]
|
| 284 |
+
)
|
| 285 |
+
|
| 286 |
+
if filtering_config.get("min_image_questions", 1) > 0 and not has_visual_content:
|
| 287 |
+
continue
|
| 288 |
+
|
| 289 |
+
# Check final text length
|
| 290 |
+
if len(total_text) > max_length:
|
| 291 |
+
continue
|
| 292 |
+
|
| 293 |
+
filtered_indices.append(idx)
|
| 294 |
+
|
| 295 |
+
except Exception as e:
|
| 296 |
+
logger.debug(f"Error filtering item {idx}: {e}")
|
| 297 |
+
continue
|
| 298 |
+
|
| 299 |
+
# Apply filtering
|
| 300 |
+
if filtered_indices:
|
| 301 |
+
self.dataset = self.dataset.select(filtered_indices)
|
| 302 |
+
|
| 303 |
+
filtered_size = len(self.dataset)
|
| 304 |
+
reduction_pct = (1 - filtered_size / original_size) * 100
|
| 305 |
+
|
| 306 |
+
logger.info(f"Dataset filtered: {original_size:,} → {filtered_size:,} samples")
|
| 307 |
+
logger.info(f"Reduction: {reduction_pct:.1f}% (faster training!)")
|
| 308 |
+
|
| 309 |
+
return self.dataset
|
| 310 |
+
|
| 311 |
+
def __len__(self) -> int:
|
| 312 |
+
return len(self.dataset)
|
| 313 |
+
|
| 314 |
+
def __getitem__(self, idx: int) -> Dict[str, Any]:
|
| 315 |
+
"""Get a single sample from the dataset with improved error handling"""
|
| 316 |
+
try:
|
| 317 |
+
item = self.dataset[idx]
|
| 318 |
+
|
| 319 |
+
# Load and process image
|
| 320 |
+
image = self._load_image(item.get("image", ""))
|
| 321 |
+
|
| 322 |
+
# Process conversation text with robust handling
|
| 323 |
+
conversations = item.get("conversations", [])
|
| 324 |
+
if not conversations or not isinstance(conversations, list):
|
| 325 |
+
# Fallback if no valid conversations
|
| 326 |
+
conversations = [
|
| 327 |
+
{"from": "human", "value": "What do you see in this image?"},
|
| 328 |
+
{"from": "gpt", "value": "I can see an image that contains various visual elements."}
|
| 329 |
+
]
|
| 330 |
+
|
| 331 |
+
formatted_text = self.text_processor.format_conversation(conversations)
|
| 332 |
+
|
| 333 |
+
# Add image token if image is present
|
| 334 |
+
formatted_text = self.text_processor.add_image_token(formatted_text, image is not None)
|
| 335 |
+
|
| 336 |
+
# More lenient validation - only reject if truly problematic
|
| 337 |
+
if not self.text_processor.validate_text(formatted_text):
|
| 338 |
+
# Create a better fallback based on original conversations
|
| 339 |
+
try:
|
| 340 |
+
# Try to extract any usable content
|
| 341 |
+
fallback_content = "What do you see in this image?"
|
| 342 |
+
if conversations and len(conversations) > 0:
|
| 343 |
+
first_conv = conversations[0]
|
| 344 |
+
if isinstance(first_conv, dict) and "value" in first_conv:
|
| 345 |
+
user_text = str(first_conv["value"]).strip()
|
| 346 |
+
if user_text and len(user_text) > 5:
|
| 347 |
+
fallback_content = user_text
|
| 348 |
+
|
| 349 |
+
formatted_text = f"<image>\nHuman: {fallback_content}\nAssistant: I can see an image."
|
| 350 |
+
except Exception:
|
| 351 |
+
formatted_text = "<image>\nHuman: What do you see?\nAssistant: I see an image."
|
| 352 |
+
|
| 353 |
+
return {
|
| 354 |
+
"image": image,
|
| 355 |
+
"text": formatted_text,
|
| 356 |
+
"conversations": conversations,
|
| 357 |
+
"id": item.get("id", f"sample_{idx}"),
|
| 358 |
+
"image_filename": item.get("image", ""),
|
| 359 |
+
"has_image": image is not None
|
| 360 |
+
}
|
| 361 |
+
|
| 362 |
+
except Exception as e:
|
| 363 |
+
logger.debug(f"Error processing item {idx}: {e}")
|
| 364 |
+
# Return a fallback sample (reduce logging level to debug)
|
| 365 |
+
return self._get_fallback_sample(idx)
|
| 366 |
+
|
| 367 |
+
def _load_image(self, image_filename: str) -> Optional[Image.Image]:
|
| 368 |
+
"""Load image from COCO dataset with retry logic"""
|
| 369 |
+
if not image_filename or not image_filename.strip():
|
| 370 |
+
return None
|
| 371 |
+
|
| 372 |
+
# Check if it's a dummy image (contains "dummy_")
|
| 373 |
+
if "dummy_" in image_filename:
|
| 374 |
+
logger.debug(f"Using placeholder image for {image_filename}")
|
| 375 |
+
return self._create_fallback_image()
|
| 376 |
+
|
| 377 |
+
# For actual dummy filenames from our generated dataset (short numbers), use placeholder
|
| 378 |
+
filename_without_ext = image_filename.replace('.jpg', '').replace('.png', '')
|
| 379 |
+
if image_filename and filename_without_ext.isdigit() and len(filename_without_ext) <= 6:
|
| 380 |
+
logger.debug(f"Using placeholder image for dummy filename: {image_filename}")
|
| 381 |
+
return self._create_fallback_image()
|
| 382 |
+
|
| 383 |
+
# Check cache first
|
| 384 |
+
cache_path = Path(self.cache_dir) / "images" / image_filename
|
| 385 |
+
if cache_path.exists():
|
| 386 |
+
try:
|
| 387 |
+
image = Image.open(cache_path).convert('RGB')
|
| 388 |
+
self.successful_images += 1
|
| 389 |
+
return image
|
| 390 |
+
except Exception:
|
| 391 |
+
cache_path.unlink(missing_ok=True) # Remove corrupted cache
|
| 392 |
+
|
| 393 |
+
image_url = f"{self.coco_base_url}{image_filename}"
|
| 394 |
+
|
| 395 |
+
for attempt in range(self.retry_attempts):
|
| 396 |
+
try:
|
| 397 |
+
response = requests.get(
|
| 398 |
+
image_url,
|
| 399 |
+
timeout=self.download_timeout,
|
| 400 |
+
headers={'User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36'}
|
| 401 |
+
)
|
| 402 |
+
response.raise_for_status()
|
| 403 |
+
|
| 404 |
+
# Load and validate image
|
| 405 |
+
image = Image.open(io.BytesIO(response.content)).convert('RGB')
|
| 406 |
+
|
| 407 |
+
# Basic validation
|
| 408 |
+
if image.size[0] < 10 or image.size[1] < 10:
|
| 409 |
+
raise ValueError("Image too small")
|
| 410 |
+
|
| 411 |
+
# Cache the image
|
| 412 |
+
cache_path.parent.mkdir(parents=True, exist_ok=True)
|
| 413 |
+
image.save(cache_path, "JPEG", quality=85)
|
| 414 |
+
logger.debug(f"Cached image: {cache_path}")
|
| 415 |
+
|
| 416 |
+
self.successful_images += 1
|
| 417 |
+
return image
|
| 418 |
+
|
| 419 |
+
except Exception as e:
|
| 420 |
+
if attempt == self.retry_attempts - 1:
|
| 421 |
+
logger.debug(f"Failed to load image {image_filename} after {self.retry_attempts} attempts: {e}")
|
| 422 |
+
self.failed_images += 1
|
| 423 |
+
return self._create_fallback_image()
|
| 424 |
+
else:
|
| 425 |
+
time.sleep(0.5) # Brief pause before retry
|
| 426 |
+
|
| 427 |
+
return self._create_fallback_image()
|
| 428 |
+
|
| 429 |
+
def _create_fallback_image(self) -> Image.Image:
|
| 430 |
+
"""Create a fallback image when loading fails"""
|
| 431 |
+
return Image.new('RGB', self.fallback_size, color=self.fallback_color)
|
| 432 |
+
|
| 433 |
+
def _get_fallback_sample(self, idx: int) -> Dict[str, Any]:
|
| 434 |
+
"""Get a fallback sample when processing fails"""
|
| 435 |
+
fallback_image = self._create_fallback_image()
|
| 436 |
+
fallback_text = "Human: What do you see in this image?\nAssistant: I can see a simple image."
|
| 437 |
+
|
| 438 |
+
return {
|
| 439 |
+
"image": fallback_image,
|
| 440 |
+
"text": fallback_text,
|
| 441 |
+
"conversations": [
|
| 442 |
+
{"from": "human", "value": "What do you see in this image?"},
|
| 443 |
+
{"from": "gpt", "value": "I can see a simple image."}
|
| 444 |
+
],
|
| 445 |
+
"id": f"fallback_{idx}",
|
| 446 |
+
"image_filename": "",
|
| 447 |
+
"has_image": True
|
| 448 |
+
}
|
| 449 |
+
|
| 450 |
+
def get_stats(self) -> Dict[str, int]:
|
| 451 |
+
"""Get dataset statistics"""
|
| 452 |
+
return {
|
| 453 |
+
"total_samples": len(self),
|
| 454 |
+
"successful_images": self.successful_images,
|
| 455 |
+
"failed_images": self.failed_images,
|
| 456 |
+
"success_rate": self.successful_images / (self.successful_images + self.failed_images) * 100
|
| 457 |
+
if (self.successful_images + self.failed_images) > 0 else 0
|
| 458 |
+
}
|
| 459 |
+
|
| 460 |
+
|
| 461 |
+
class MultimodalCollator:
|
| 462 |
+
"""Custom collator for multimodal data batching"""
|
| 463 |
+
|
| 464 |
+
def __init__(
|
| 465 |
+
self,
|
| 466 |
+
tokenizer,
|
| 467 |
+
vision_processor,
|
| 468 |
+
config: Dict[str, Any],
|
| 469 |
+
max_length: Optional[int] = None
|
| 470 |
+
):
|
| 471 |
+
self.tokenizer = tokenizer
|
| 472 |
+
self.vision_processor = vision_processor
|
| 473 |
+
self.config = config
|
| 474 |
+
self.max_length = max_length or config["data"]["max_length"]
|
| 475 |
+
|
| 476 |
+
# Image token for processing
|
| 477 |
+
self.image_token = config.get("special_tokens", {}).get("image_token", "<image>")
|
| 478 |
+
|
| 479 |
+
def __call__(self, batch: List[Dict[str, Any]]) -> Dict[str, torch.Tensor]:
|
| 480 |
+
"""Collate a batch of samples"""
|
| 481 |
+
|
| 482 |
+
images = []
|
| 483 |
+
texts = []
|
| 484 |
+
has_images = []
|
| 485 |
+
|
| 486 |
+
for sample in batch:
|
| 487 |
+
# Collect images
|
| 488 |
+
if sample["image"] is not None:
|
| 489 |
+
images.append(sample["image"])
|
| 490 |
+
has_images.append(True)
|
| 491 |
+
else:
|
| 492 |
+
# Create placeholder image for samples without images
|
| 493 |
+
placeholder = Image.new('RGB', (224, 224), color='white')
|
| 494 |
+
images.append(placeholder)
|
| 495 |
+
has_images.append(False)
|
| 496 |
+
|
| 497 |
+
# Collect texts
|
| 498 |
+
texts.append(sample["text"])
|
| 499 |
+
|
| 500 |
+
# Process images using vision processor
|
| 501 |
+
try:
|
| 502 |
+
vision_inputs = self.vision_processor(
|
| 503 |
+
images=images,
|
| 504 |
+
return_tensors="pt"
|
| 505 |
+
)
|
| 506 |
+
pixel_values = vision_inputs["pixel_values"]
|
| 507 |
+
except Exception as e:
|
| 508 |
+
logger.error(f"Error processing images: {e}")
|
| 509 |
+
# Create dummy pixel values
|
| 510 |
+
pixel_values = torch.zeros(len(batch), 3, 224, 224)
|
| 511 |
+
|
| 512 |
+
# Tokenize texts
|
| 513 |
+
try:
|
| 514 |
+
text_inputs = self.tokenizer(
|
| 515 |
+
texts,
|
| 516 |
+
padding=True,
|
| 517 |
+
truncation=True,
|
| 518 |
+
max_length=self.max_length,
|
| 519 |
+
return_tensors="pt"
|
| 520 |
+
)
|
| 521 |
+
except Exception as e:
|
| 522 |
+
logger.error(f"Error tokenizing texts: {e}")
|
| 523 |
+
# Create dummy inputs
|
| 524 |
+
text_inputs = {
|
| 525 |
+
"input_ids": torch.zeros(len(batch), self.max_length, dtype=torch.long),
|
| 526 |
+
"attention_mask": torch.ones(len(batch), self.max_length, dtype=torch.long)
|
| 527 |
+
}
|
| 528 |
+
|
| 529 |
+
# Create labels (same as input_ids for causal LM)
|
| 530 |
+
labels = text_inputs["input_ids"].clone()
|
| 531 |
+
|
| 532 |
+
# Mask padding tokens in labels (-100 is ignored by loss function)
|
| 533 |
+
labels[labels == self.tokenizer.pad_token_id] = -100
|
| 534 |
+
|
| 535 |
+
batch_dict = {
|
| 536 |
+
"input_ids": text_inputs["input_ids"],
|
| 537 |
+
"attention_mask": text_inputs["attention_mask"],
|
| 538 |
+
"labels": labels,
|
| 539 |
+
"images": pixel_values,
|
| 540 |
+
"has_images": torch.tensor(has_images, dtype=torch.bool)
|
| 541 |
+
}
|
| 542 |
+
|
| 543 |
+
return batch_dict
|
src/data/processors.py
ADDED
|
@@ -0,0 +1,181 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Data processors for images and text
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
from PIL import Image
|
| 6 |
+
import torchvision.transforms as transforms
|
| 7 |
+
from typing import List, Dict, Any, Optional
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class ImageProcessor:
|
| 14 |
+
"""Image preprocessing for CLIP vision encoder"""
|
| 15 |
+
|
| 16 |
+
def __init__(self, config: Dict[str, Any]):
|
| 17 |
+
self.config = config
|
| 18 |
+
self.image_size = config["data"]["image_size"]
|
| 19 |
+
|
| 20 |
+
# CLIP normalization values
|
| 21 |
+
self.mean = config["data"]["image_mean"]
|
| 22 |
+
self.std = config["data"]["image_std"]
|
| 23 |
+
|
| 24 |
+
# Setup transforms
|
| 25 |
+
self.transform = self._setup_transforms()
|
| 26 |
+
|
| 27 |
+
def _setup_transforms(self):
|
| 28 |
+
"""Setup image transformations"""
|
| 29 |
+
transform_list = [
|
| 30 |
+
transforms.Resize((self.image_size, self.image_size)),
|
| 31 |
+
transforms.ToTensor(),
|
| 32 |
+
transforms.Normalize(mean=self.mean, std=self.std)
|
| 33 |
+
]
|
| 34 |
+
|
| 35 |
+
# Add augmentations if enabled
|
| 36 |
+
if self.config["data"]["augmentation"]["enabled"]:
|
| 37 |
+
aug_transforms = []
|
| 38 |
+
|
| 39 |
+
# Random resized crop
|
| 40 |
+
if self.config["data"]["augmentation"].get("random_resized_crop"):
|
| 41 |
+
scale = self.config["data"]["augmentation"]["random_resized_crop"]
|
| 42 |
+
aug_transforms.append(
|
| 43 |
+
transforms.RandomResizedCrop(
|
| 44 |
+
self.image_size,
|
| 45 |
+
scale=(scale, 1.0)
|
| 46 |
+
)
|
| 47 |
+
)
|
| 48 |
+
|
| 49 |
+
# Color jitter
|
| 50 |
+
if self.config["data"]["augmentation"].get("color_jitter"):
|
| 51 |
+
brightness = self.config["data"]["augmentation"]["color_jitter"]
|
| 52 |
+
aug_transforms.append(
|
| 53 |
+
transforms.ColorJitter(brightness=brightness)
|
| 54 |
+
)
|
| 55 |
+
|
| 56 |
+
# Horizontal flip
|
| 57 |
+
if self.config["data"]["augmentation"].get("horizontal_flip"):
|
| 58 |
+
prob = self.config["data"]["augmentation"]["horizontal_flip"]
|
| 59 |
+
aug_transforms.append(
|
| 60 |
+
transforms.RandomHorizontalFlip(p=prob)
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
# Insert augmentations before normalization
|
| 64 |
+
transform_list = (
|
| 65 |
+
transform_list[:-2] + # Resize, ToTensor
|
| 66 |
+
aug_transforms +
|
| 67 |
+
transform_list[-2:] # Normalize
|
| 68 |
+
)
|
| 69 |
+
|
| 70 |
+
return transforms.Compose(transform_list)
|
| 71 |
+
|
| 72 |
+
def __call__(self, image: Image.Image) -> torch.Tensor:
|
| 73 |
+
"""Process a single image"""
|
| 74 |
+
if not isinstance(image, Image.Image):
|
| 75 |
+
raise ValueError(f"Expected PIL Image, got {type(image)}")
|
| 76 |
+
|
| 77 |
+
return self.transform(image)
|
| 78 |
+
|
| 79 |
+
def process_batch(self, images: List[Image.Image]) -> torch.Tensor:
|
| 80 |
+
"""Process a batch of images"""
|
| 81 |
+
processed = []
|
| 82 |
+
for img in images:
|
| 83 |
+
processed.append(self(img))
|
| 84 |
+
return torch.stack(processed)
|
| 85 |
+
|
| 86 |
+
|
| 87 |
+
class TextProcessor:
|
| 88 |
+
"""Text preprocessing for conversations"""
|
| 89 |
+
|
| 90 |
+
def __init__(self, config: Dict[str, Any]):
|
| 91 |
+
self.config = config
|
| 92 |
+
self.max_length = config["data"]["max_length"]
|
| 93 |
+
|
| 94 |
+
# Conversation formatting
|
| 95 |
+
conv_config = config["data"]["conversation"]
|
| 96 |
+
self.system_message = conv_config.get("system_message", "")
|
| 97 |
+
self.user_prefix = conv_config.get("user_prefix", "Human: ")
|
| 98 |
+
self.assistant_prefix = conv_config.get("assistant_prefix", "Assistant: ")
|
| 99 |
+
self.turn_separator = conv_config.get("turn_separator", "\n")
|
| 100 |
+
|
| 101 |
+
def format_conversation(self, conversations: List[Dict[str, str]]) -> str:
|
| 102 |
+
"""Format conversation into training text with robust error handling"""
|
| 103 |
+
formatted_parts = []
|
| 104 |
+
|
| 105 |
+
# Add system message if present
|
| 106 |
+
if self.system_message:
|
| 107 |
+
formatted_parts.append(self.system_message)
|
| 108 |
+
|
| 109 |
+
# Ensure conversations is a valid list
|
| 110 |
+
if not isinstance(conversations, list):
|
| 111 |
+
conversations = []
|
| 112 |
+
|
| 113 |
+
# Process conversation turns with error handling
|
| 114 |
+
for turn in conversations:
|
| 115 |
+
try:
|
| 116 |
+
if not isinstance(turn, dict):
|
| 117 |
+
continue
|
| 118 |
+
|
| 119 |
+
role = turn.get("from", "").lower().strip()
|
| 120 |
+
content = turn.get("value", "")
|
| 121 |
+
|
| 122 |
+
# Clean and validate content
|
| 123 |
+
if not isinstance(content, str):
|
| 124 |
+
content = str(content) if content else ""
|
| 125 |
+
|
| 126 |
+
content = content.strip()
|
| 127 |
+
if not content:
|
| 128 |
+
continue
|
| 129 |
+
|
| 130 |
+
# Remove problematic characters that might cause issues
|
| 131 |
+
content = content.replace('\x00', '').replace('\n\n\n', '\n\n')
|
| 132 |
+
|
| 133 |
+
if role in ["human", "user"]:
|
| 134 |
+
formatted_parts.append(f"{self.user_prefix}{content}")
|
| 135 |
+
elif role in ["gpt", "assistant", "ai"]:
|
| 136 |
+
formatted_parts.append(f"{self.assistant_prefix}{content}")
|
| 137 |
+
else:
|
| 138 |
+
# Default to human if role is unclear
|
| 139 |
+
formatted_parts.append(f"{self.user_prefix}{content}")
|
| 140 |
+
|
| 141 |
+
except Exception as e:
|
| 142 |
+
logger.debug(f"Error processing conversation turn: {e}")
|
| 143 |
+
continue
|
| 144 |
+
|
| 145 |
+
# Ensure we have at least some content
|
| 146 |
+
if not formatted_parts:
|
| 147 |
+
return f"{self.user_prefix}What do you see in this image?{self.turn_separator}{self.assistant_prefix}I can see an image."
|
| 148 |
+
|
| 149 |
+
return self.turn_separator.join(formatted_parts)
|
| 150 |
+
|
| 151 |
+
def add_image_token(self, text: str, has_image: bool = True) -> str:
|
| 152 |
+
"""Add image token to text if image is present"""
|
| 153 |
+
if has_image:
|
| 154 |
+
image_token = self.config.get("special_tokens", {}).get("image_token", "<image>")
|
| 155 |
+
return f"{image_token}\n{text}"
|
| 156 |
+
return text
|
| 157 |
+
|
| 158 |
+
def validate_text(self, text: str) -> bool:
|
| 159 |
+
"""Validate text meets filtering criteria - more lenient validation"""
|
| 160 |
+
if not isinstance(text, str):
|
| 161 |
+
return False
|
| 162 |
+
|
| 163 |
+
# Basic cleanup
|
| 164 |
+
text = text.strip()
|
| 165 |
+
|
| 166 |
+
# Check for completely empty content
|
| 167 |
+
if not text:
|
| 168 |
+
return False
|
| 169 |
+
|
| 170 |
+
# More lenient length check - just ensure it's not absurdly long or short
|
| 171 |
+
text_length = len(text)
|
| 172 |
+
if text_length < 5: # Very short
|
| 173 |
+
return False
|
| 174 |
+
if text_length > 2000: # Very long
|
| 175 |
+
return False
|
| 176 |
+
|
| 177 |
+
# Check for basic structure (should have some content)
|
| 178 |
+
if len(text.split()) < 2: # Less than 2 words
|
| 179 |
+
return False
|
| 180 |
+
|
| 181 |
+
return True
|
src/training/__init__.py
ADDED
|
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from .callbacks import CustomCallback
|
| 2 |
+
from .utils import TrainingUtils
|
| 3 |
+
|
| 4 |
+
__all__ = [
|
| 5 |
+
"CustomCallback",
|
| 6 |
+
"TrainingUtils"
|
| 7 |
+
]
|
src/training/callbacks.py
ADDED
|
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Custom Lightning callbacks
|
| 3 |
+
"""
|
| 4 |
+
import lightning as L
|
| 5 |
+
from lightning.pytorch.callbacks import Callback
|
| 6 |
+
import torch
|
| 7 |
+
from typing import Any
|
| 8 |
+
import logging
|
| 9 |
+
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
class CustomCallback(Callback):
|
| 14 |
+
"""Custom callback for monitoring training progress"""
|
| 15 |
+
|
| 16 |
+
def __init__(self):
|
| 17 |
+
super().__init__()
|
| 18 |
+
self.start_time = None
|
| 19 |
+
|
| 20 |
+
def on_train_start(self, trainer: L.Trainer, pl_module: L.LightningModule) -> None:
|
| 21 |
+
"""Called when training starts"""
|
| 22 |
+
import time
|
| 23 |
+
self.start_time = time.time()
|
| 24 |
+
logger.info("Training started")
|
| 25 |
+
|
| 26 |
+
# Log model info
|
| 27 |
+
total_params = sum(p.numel() for p in pl_module.parameters())
|
| 28 |
+
trainable_params = sum(p.numel() for p in pl_module.parameters() if p.requires_grad)
|
| 29 |
+
|
| 30 |
+
logger.info(f"Total parameters: {total_params:,}")
|
| 31 |
+
logger.info(f"Trainable parameters: {trainable_params:,}")
|
| 32 |
+
logger.info(f"Trainable ratio: {trainable_params/total_params:.2%}")
|
| 33 |
+
|
| 34 |
+
def on_train_end(self, trainer: L.Trainer, pl_module: L.LightningModule) -> None:
|
| 35 |
+
"""Called when training ends"""
|
| 36 |
+
if self.start_time:
|
| 37 |
+
import time
|
| 38 |
+
duration = time.time() - self.start_time
|
| 39 |
+
logger.info(f"Training completed in {duration:.2f} seconds")
|
| 40 |
+
|
| 41 |
+
def on_train_epoch_start(self, trainer: L.Trainer, pl_module: L.LightningModule) -> None:
|
| 42 |
+
"""Called at the start of each training epoch"""
|
| 43 |
+
logger.info(f"Starting epoch {trainer.current_epoch + 1}/{trainer.max_epochs}")
|
| 44 |
+
|
| 45 |
+
def on_validation_epoch_end(self, trainer: L.Trainer, pl_module: L.LightningModule) -> None:
|
| 46 |
+
"""Called at the end of validation epoch"""
|
| 47 |
+
if trainer.logged_metrics:
|
| 48 |
+
val_loss = trainer.logged_metrics.get("val/loss", None)
|
| 49 |
+
if val_loss is not None:
|
| 50 |
+
logger.info(f"Validation loss: {val_loss:.4f}")
|
| 51 |
+
|
| 52 |
+
|
| 53 |
+
class MemoryMonitorCallback(Callback):
|
| 54 |
+
"""Monitor GPU memory usage during training"""
|
| 55 |
+
|
| 56 |
+
def __init__(self, log_every_n_steps: int = 100):
|
| 57 |
+
super().__init__()
|
| 58 |
+
self.log_every_n_steps = log_every_n_steps
|
| 59 |
+
|
| 60 |
+
def on_train_batch_end(
|
| 61 |
+
self,
|
| 62 |
+
trainer: L.Trainer,
|
| 63 |
+
pl_module: L.LightningModule,
|
| 64 |
+
outputs: Any,
|
| 65 |
+
batch: Any,
|
| 66 |
+
batch_idx: int
|
| 67 |
+
) -> None:
|
| 68 |
+
"""Log memory usage"""
|
| 69 |
+
if batch_idx % self.log_every_n_steps == 0 and torch.cuda.is_available():
|
| 70 |
+
memory_allocated = torch.cuda.memory_allocated() / 1024**3 # GB
|
| 71 |
+
memory_reserved = torch.cuda.memory_reserved() / 1024**3 # GB
|
| 72 |
+
|
| 73 |
+
pl_module.log("train/memory_allocated_gb", memory_allocated, on_step=True)
|
| 74 |
+
pl_module.log("train/memory_reserved_gb", memory_reserved, on_step=True)
|
src/training/utils.py
ADDED
|
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Training utilities
|
| 3 |
+
"""
|
| 4 |
+
import torch
|
| 5 |
+
import logging
|
| 6 |
+
from typing import Dict, Any, Optional
|
| 7 |
+
from pathlib import Path
|
| 8 |
+
|
| 9 |
+
logger = logging.getLogger(__name__)
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
class TrainingUtils:
|
| 13 |
+
"""Utility functions for training"""
|
| 14 |
+
|
| 15 |
+
@staticmethod
|
| 16 |
+
def count_parameters(model: torch.nn.Module) -> Dict[str, int]:
|
| 17 |
+
"""Count model parameters"""
|
| 18 |
+
total_params = sum(p.numel() for p in model.parameters())
|
| 19 |
+
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
|
| 20 |
+
frozen_params = total_params - trainable_params
|
| 21 |
+
|
| 22 |
+
return {
|
| 23 |
+
"total": total_params,
|
| 24 |
+
"trainable": trainable_params,
|
| 25 |
+
"frozen": frozen_params,
|
| 26 |
+
"trainable_percentage": (trainable_params / total_params) * 100 if total_params > 0 else 0
|
| 27 |
+
}
|
| 28 |
+
|
| 29 |
+
@staticmethod
|
| 30 |
+
def print_model_summary(model: torch.nn.Module, model_name: str = "Model") -> None:
|
| 31 |
+
"""Print detailed model summary"""
|
| 32 |
+
params = TrainingUtils.count_parameters(model)
|
| 33 |
+
|
| 34 |
+
logger.info(f"\n{model_name} Summary:")
|
| 35 |
+
logger.info(f" Total parameters: {params['total']:,}")
|
| 36 |
+
logger.info(f" Trainable parameters: {params['trainable']:,}")
|
| 37 |
+
logger.info(f" Frozen parameters: {params['frozen']:,}")
|
| 38 |
+
logger.info(f" Trainable percentage: {params['trainable_percentage']:.2f}%")
|
| 39 |
+
|
| 40 |
+
@staticmethod
|
| 41 |
+
def save_model_state(
|
| 42 |
+
model: torch.nn.Module,
|
| 43 |
+
path: str,
|
| 44 |
+
additional_info: Optional[Dict[str, Any]] = None
|
| 45 |
+
) -> None:
|
| 46 |
+
"""Save model state with additional information"""
|
| 47 |
+
save_path = Path(path)
|
| 48 |
+
save_path.parent.mkdir(parents=True, exist_ok=True)
|
| 49 |
+
|
| 50 |
+
state_dict = {
|
| 51 |
+
"model_state_dict": model.state_dict(),
|
| 52 |
+
"model_class": model.__class__.__name__,
|
| 53 |
+
}
|
| 54 |
+
|
| 55 |
+
if additional_info:
|
| 56 |
+
state_dict.update(additional_info)
|
| 57 |
+
|
| 58 |
+
torch.save(state_dict, save_path)
|
| 59 |
+
logger.info(f"Model state saved to: {save_path}")
|
| 60 |
+
|
| 61 |
+
@staticmethod
|
| 62 |
+
def load_model_state(model: torch.nn.Module, path: str, strict: bool = True) -> Dict[str, Any]:
|
| 63 |
+
"""Load model state and return additional information"""
|
| 64 |
+
checkpoint = torch.load(path, map_location="cpu")
|
| 65 |
+
|
| 66 |
+
if "model_state_dict" in checkpoint:
|
| 67 |
+
model.load_state_dict(checkpoint["model_state_dict"], strict=strict)
|
| 68 |
+
logger.info(f"Model state loaded from: {path}")
|
| 69 |
+
|
| 70 |
+
# Return additional info
|
| 71 |
+
additional_info = {k: v for k, v in checkpoint.items() if k != "model_state_dict"}
|
| 72 |
+
return additional_info
|
| 73 |
+
else:
|
| 74 |
+
# Assume the checkpoint is just the state dict
|
| 75 |
+
model.load_state_dict(checkpoint, strict=strict)
|
| 76 |
+
logger.info(f"Model state loaded from: {path}")
|
| 77 |
+
return {}
|
| 78 |
+
|
| 79 |
+
@staticmethod
|
| 80 |
+
def get_device_info() -> Dict[str, Any]:
|
| 81 |
+
"""Get information about available devices"""
|
| 82 |
+
info = {
|
| 83 |
+
"cuda_available": torch.cuda.is_available(),
|
| 84 |
+
"cuda_device_count": torch.cuda.device_count() if torch.cuda.is_available() else 0,
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
if torch.cuda.is_available():
|
| 88 |
+
info["cuda_current_device"] = torch.cuda.current_device()
|
| 89 |
+
info["cuda_device_name"] = torch.cuda.get_device_name()
|
| 90 |
+
info["cuda_memory_total"] = torch.cuda.get_device_properties(0).total_memory / 1024**3 # GB
|
| 91 |
+
|
| 92 |
+
return info
|
| 93 |
+
|
| 94 |
+
@staticmethod
|
| 95 |
+
def log_device_info() -> None:
|
| 96 |
+
"""Log device information"""
|
| 97 |
+
info = TrainingUtils.get_device_info()
|
| 98 |
+
|
| 99 |
+
logger.info("\nDevice Information:")
|
| 100 |
+
logger.info(f" CUDA Available: {info['cuda_available']}")
|
| 101 |
+
|
| 102 |
+
if info['cuda_available']:
|
| 103 |
+
logger.info(f" CUDA Device Count: {info['cuda_device_count']}")
|
| 104 |
+
logger.info(f" Current Device: {info['cuda_current_device']}")
|
| 105 |
+
logger.info(f" Device Name: {info['cuda_device_name']}")
|
| 106 |
+
logger.info(f" Total Memory: {info['cuda_memory_total']:.2f} GB")
|
| 107 |
+
else:
|
| 108 |
+
logger.info(" Using CPU for training")
|
| 109 |
+
|
| 110 |
+
@staticmethod
|
| 111 |
+
def cleanup_memory() -> None:
|
| 112 |
+
"""Clean up GPU memory"""
|
| 113 |
+
if torch.cuda.is_available():
|
| 114 |
+
torch.cuda.empty_cache()
|
| 115 |
+
logger.info("GPU memory cache cleared")
|
src/utils/logging.py
ADDED
|
@@ -0,0 +1,73 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
"""
|
| 2 |
+
Logging utilities
|
| 3 |
+
"""
|
| 4 |
+
import logging
|
| 5 |
+
import sys
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from typing import Optional
|
| 8 |
+
from rich.logging import RichHandler
|
| 9 |
+
from rich.console import Console
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
def setup_logging(
|
| 13 |
+
level: int = logging.INFO,
|
| 14 |
+
log_file: Optional[str] = None,
|
| 15 |
+
use_rich: bool = True
|
| 16 |
+
) -> None:
|
| 17 |
+
"""Setup logging configuration"""
|
| 18 |
+
|
| 19 |
+
# Create logs directory if needed
|
| 20 |
+
if log_file:
|
| 21 |
+
log_path = Path(log_file)
|
| 22 |
+
log_path.parent.mkdir(parents=True, exist_ok=True)
|
| 23 |
+
|
| 24 |
+
# Clear existing handlers
|
| 25 |
+
root_logger = logging.getLogger()
|
| 26 |
+
root_logger.handlers.clear()
|
| 27 |
+
|
| 28 |
+
# Setup formatters
|
| 29 |
+
if use_rich:
|
| 30 |
+
# Rich handler for console output
|
| 31 |
+
console_handler = RichHandler(
|
| 32 |
+
console=Console(stderr=True),
|
| 33 |
+
show_time=True,
|
| 34 |
+
show_path=True,
|
| 35 |
+
rich_tracebacks=True
|
| 36 |
+
)
|
| 37 |
+
console_handler.setLevel(level)
|
| 38 |
+
root_logger.addHandler(console_handler)
|
| 39 |
+
else:
|
| 40 |
+
# Standard console handler
|
| 41 |
+
console_handler = logging.StreamHandler(sys.stdout)
|
| 42 |
+
console_handler.setLevel(level)
|
| 43 |
+
console_formatter = logging.Formatter(
|
| 44 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(message)s'
|
| 45 |
+
)
|
| 46 |
+
console_handler.setFormatter(console_formatter)
|
| 47 |
+
root_logger.addHandler(console_handler)
|
| 48 |
+
|
| 49 |
+
# File handler if specified
|
| 50 |
+
if log_file:
|
| 51 |
+
file_handler = logging.FileHandler(log_file)
|
| 52 |
+
file_handler.setLevel(level)
|
| 53 |
+
file_formatter = logging.Formatter(
|
| 54 |
+
'%(asctime)s - %(name)s - %(levelname)s - %(funcName)s:%(lineno)d - %(message)s'
|
| 55 |
+
)
|
| 56 |
+
file_handler.setFormatter(file_formatter)
|
| 57 |
+
root_logger.addHandler(file_handler)
|
| 58 |
+
|
| 59 |
+
# Set root logger level
|
| 60 |
+
root_logger.setLevel(level)
|
| 61 |
+
|
| 62 |
+
# Reduce noise from some libraries
|
| 63 |
+
logging.getLogger("transformers").setLevel(logging.WARNING)
|
| 64 |
+
logging.getLogger("datasets").setLevel(logging.WARNING)
|
| 65 |
+
logging.getLogger("urllib3").setLevel(logging.WARNING)
|
| 66 |
+
logging.getLogger("requests").setLevel(logging.WARNING)
|
| 67 |
+
|
| 68 |
+
logging.info("Logging setup completed")
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def get_logger(name: str) -> logging.Logger:
|
| 72 |
+
"""Get a logger with the specified name"""
|
| 73 |
+
return logging.getLogger(name)
|