IP-Assist-Lite-T4 / src /orchestration /langgraph_agent.py
russellmiller49's picture
Add enhanced version with full Qdrant support and smart citations
efd6737
#!/usr/bin/env python3
"""
LangGraph 1.0 orchestration for IP Assist Lite
Implements intelligent query routing, safety checks, and hierarchy-aware retrieval
"""
from __future__ import annotations
import sys
import json
import re
from typing import Dict, Any, List, Optional, TypedDict, Annotated, Literal
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent.parent))
from langgraph.graph import StateGraph, START, END
from retrieval.hybrid_retriever import HybridRetriever, RetrievalResult
from llm.gpt5_medical import GPT5Medical
# State definition (LangGraph 1.0 canonical)
class AgentState(TypedDict):
"""Canonical state for the IP Assist graph."""
user_id: str
messages: List[Dict[str, str]] # chat history
query: str
retrieved: List[Dict[str, Any]]
draft: str
safety: Dict[str, Any]
# Additional fields for IP Assist specific needs
is_emergency: bool
query_type: str # 'clinical', 'procedure', 'coding', 'emergency', 'safety'
safety_flags: List[str]
citations: List[Dict[str, Any]]
confidence_score: float
needs_review: bool
# LLM telemetry
llm_model_used: Optional[str]
llm_warning_banner: Optional[str]
llm_error: Optional[str]
@dataclass
class SafetyGuard:
"""Safety checks for medical information."""
CRITICAL_PATTERNS = {
'dosage': r'\d+\s*(?:mg|mcg|ml|cc|units?|IU)\b',
'pediatric': r'\b(?:child|children|pediatric|infant|neonate)\b',
'pregnancy': r'\b(?:pregnan|gestation|fetal|maternal)\b',
'contraindication': r'\b(?:contraindic|absolute(?:ly)?\s+contraindic|must not|never)\b',
'allergy': r'\b(?:allerg|anaphyla|hypersensitiv)\b',
'emergency': r'\b(?:emergency|urgent|stat|immediate|life.?threatening)\b'
}
@classmethod
def check_query(cls, query: str) -> List[str]:
"""Check query for safety-critical terms."""
flags = []
query_lower = query.lower()
for flag_type, pattern in cls.CRITICAL_PATTERNS.items():
if re.search(pattern, query_lower):
flags.append(flag_type)
return flags
@classmethod
def validate_response(cls, response: str, flags: List[str]) -> Dict[str, Any]:
"""Validate response for safety concerns."""
warnings = []
# Check for dose/setting information
if 'dosage' in flags:
if not re.search(r'verify|confirm|consult|check', response.lower()):
warnings.append("⚠️ Dose information provided - verify with official guidelines")
# Check for pediatric considerations
if 'pediatric' in flags:
if not re.search(r'pediatric|child|weight.?based|age.?appropriate', response.lower()):
warnings.append("⚠️ Pediatric query - ensure age-appropriate information")
# Check for contraindications
if 'contraindication' in flags:
if not re.search(r'contraindic|caution|avoid|risk', response.lower()):
warnings.append("⚠️ Safety check - contraindication information may be incomplete")
return {
'has_warnings': len(warnings) > 0,
'warnings': warnings,
'needs_review': len(warnings) > 2
}
class IPAssistOrchestrator:
"""LangGraph orchestration for IP Assist Lite."""
def __init__(self, retriever: Optional[HybridRetriever] = None, model: str = "gpt-5-mini"):
"""Initialize the orchestrator.
Args:
retriever: Optional HybridRetriever instance
model: OpenAI model to use (gpt-5-nano, gpt-5-mini, gpt-5, etc.)
"""
# Initialize retriever
if retriever is None:
self.retriever = HybridRetriever(
chunks_file=Path(__file__).parent.parent.parent / "data" / "chunks" / "chunks.jsonl",
cpt_index_file=Path(__file__).parent.parent.parent / "data" / "term_index" / "cpt_codes.jsonl",
alias_index_file=Path(__file__).parent.parent.parent / "data" / "term_index" / "aliases.jsonl"
)
else:
self.retriever = retriever
# Store model for dynamic switching
self.current_model = model
# Initialize LLM wrapper
self.llm = GPT5Medical(
model=model,
max_out=1500,
# Use Responses API for GPT-5 family; Chat for others
use_responses=str(model or "").startswith("gpt-5")
)
# Build the graph
self.graph = self._build_graph()
self.app = self.graph.compile()
def set_model(self, model: str):
"""Switch to a different model dynamically.
Args:
model: Model name (e.g., 'gpt-4o-mini', 'gpt-4o', 'o1-mini', 'o1-preview')
"""
if model != self.current_model:
self.current_model = model
self.llm = GPT5Medical(
model=model,
max_out=1500,
use_responses=str(model or "").startswith("gpt-5")
)
def _classify_query(self, state: AgentState) -> AgentState:
"""Classify the query type and check for emergencies."""
query = state["query"]
# Check for emergency
state["is_emergency"] = self.retriever.detect_emergency(query)
# Check safety flags
state["safety_flags"] = SafetyGuard.check_query(query)
# Classify query type
query_lower = query.lower()
if state["is_emergency"]:
state["query_type"] = "emergency"
elif re.search(r'\b(?:cpt|code|bill|reimburs|rvu)\b', query_lower):
state["query_type"] = "coding"
elif re.search(r'\b(?:procedure|technique|step|how to|perform)\b', query_lower):
state["query_type"] = "procedure"
elif any(flag in state["safety_flags"] for flag in ['contraindication', 'allergy', 'pregnancy']):
state["query_type"] = "safety"
else:
state["query_type"] = "clinical"
# Add classification message (canonical format)
state["messages"].append(
{"role": "assistant", "content": f"Query classified as: {state['query_type']}"}
)
return state
def _retrieve_information(self, state: AgentState) -> AgentState:
"""Retrieve relevant information based on query type."""
query = state["query"]
query_type = state["query_type"]
# Set retrieval parameters based on query type
filters = {}
top_k = 5
if query_type == "emergency":
# For emergencies, prioritize high authority and recent guidelines
filters = {"authority_tier": "A1"}
top_k = 10
elif query_type == "coding":
# For coding, look for tables and exact matches
filters = {"has_table": True}
top_k = 5
elif query_type == "safety":
# For safety, look for contraindications
filters = {"has_contraindication": True}
top_k = 8
# Perform retrieval
results = self.retriever.retrieve(
query=query,
top_k=top_k,
use_reranker=True,
filters=filters if query_type in ["emergency", "coding", "safety"] else None
)
# Store in canonical 'retrieved' field
state["retrieved"] = [r.__dict__ for r in results] if results else []
# Add retrieval message (canonical format)
if results:
state["messages"].append(
{"role": "assistant", "content": f"Retrieved {len(results)} relevant documents"}
)
else:
state["messages"].append(
{"role": "assistant", "content": "No relevant documents found"}
)
return state
def _synthesize_response(self, state: AgentState) -> AgentState:
"""Synthesize response from retrieved information."""
# Convert back from dict format
from types import SimpleNamespace
results = [SimpleNamespace(**r) for r in state["retrieved"]]
query_type = state["query_type"]
if not results:
state["draft"] = "I couldn't find relevant information for your query. Please try rephrasing or provide more context."
state["confidence_score"] = 0.0
return state
# Build response based on query type
response_parts = []
citations = []
# Add emergency warning if needed
if state["is_emergency"]:
response_parts.append("🚨 **EMERGENCY DETECTED** - Immediate action required\n")
# Collect context from top results
context_parts = []
for i, result in enumerate(results[:3], 1):
# Build citation
citation = {
"doc_id": result.doc_id,
"section": result.section_title,
"authority": result.authority_tier,
"evidence": result.evidence_level,
"year": result.year,
"score": result.score
}
citations.append(citation)
# Add to context for LLM
source_label = {
"A1": "PAPOIP 2025",
"A2": "Practical Guide 2022",
"A3": "BACADA 2012"
}.get(result.authority_tier, result.doc_id[:30])
context_parts.append(f"[{source_label}]: {result.text}")
# Use LLM to synthesize response
if context_parts:
context = "\n\n".join(context_parts)
prompt = f"""Based on the following authoritative medical sources, provide a comprehensive answer to: {state['query']}
Sources:
{context}
Please synthesize this information into a clear, professional response. Prioritize information from higher authority sources (A1 > A2 > A3 > A4). Include specific details like doses, contraindications, and techniques when mentioned."""
try:
# Send a clean, minimal context (avoid noisy assistant history)
synth_messages = [
{"role": "system", "content": (
"You are an expert interventional pulmonology assistant. "
"Synthesize a clinically useful answer using only the retrieved Sources. "
"Cite sources inline as [A1], [A2], [A3] where relevant. "
"Be concise but complete; include key complications/contraindications/doses when applicable."
)}
]
llm_response = self.llm.generate_response(prompt, synth_messages)
response_parts.append(llm_response)
# Capture LLM telemetry
state["llm_model_used"] = getattr(self.llm, "last_used_model", self.current_model)
banner = getattr(self.llm, "last_warning_banner", None)
if banner:
state["llm_warning_banner"] = banner
except Exception as e:
# Fallback: Show the raw context if LLM fails
response_parts.append("**Retrieved Information:**\n")
for i, part in enumerate(context_parts[:3], 1):
response_parts.append(f"\n{i}. {part[:500]}...")
# Surface error details for UI/metadata
state["llm_error"] = str(e)
banner = getattr(self.llm, "last_warning_banner", None)
if banner:
state["llm_warning_banner"] = banner
else:
response_parts.append("No relevant information found for your query.")
# Add safety warnings if needed
if state["safety_flags"]:
response_parts.append("\n⚠️ **Safety Considerations:**")
for flag in state["safety_flags"]:
if flag == "dosage":
response_parts.append("• Verify all doses with official guidelines")
elif flag == "pediatric":
response_parts.append("• Ensure pediatric-appropriate dosing and techniques")
elif flag == "contraindication":
response_parts.append("• Review all contraindications before proceeding")
# Calculate confidence based on result quality
top_score = results[0].score if results else 0
avg_precedence = sum(r.precedence_score for r in results[:3]) / min(3, len(results))
# Clamp confidence to [0,1]
conf = (top_score + avg_precedence) / 2
state["confidence_score"] = max(0.0, min(1.0, conf))
# Store in canonical 'draft' field
state["draft"] = "\n\n".join(response_parts)
state["citations"] = citations
return state
def _apply_safety_checks(self, state: AgentState) -> AgentState:
"""Apply final safety checks to the response."""
validation = SafetyGuard.validate_response(
state["draft"],
state["safety_flags"]
)
if validation["has_warnings"]:
warnings_text = "\n".join(validation["warnings"])
state["draft"] += f"\n\n---\n**Safety Notes:**\n{warnings_text}"
# Store safety information in canonical field
state["safety"] = validation
state["needs_review"] = validation["needs_review"]
# Add safety message (canonical format)
if state["needs_review"]:
state["messages"].append(
{"role": "assistant", "content": "⚠️ Response flagged for review due to safety concerns"}
)
return state
def _route_after_classification(self, state: AgentState) -> str:
"""Route to appropriate node based on classification."""
if state["is_emergency"]:
return "retrieve" # Skip directly to retrieval for emergencies
return "retrieve"
def _route_after_retrieval(self, state: AgentState) -> str:
"""Route after retrieval."""
if not state["retrieved"]:
return "synthesize" # Will generate "no results" response
return "synthesize"
def _route_after_synthesis(self, state: AgentState) -> str:
"""Route after synthesis."""
if state["safety_flags"]:
return "safety_check"
return "end"
def _build_graph(self) -> StateGraph:
"""Build the LangGraph workflow."""
# Create the graph (canonical LangGraph 1.0)
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("classify", self._classify_query)
workflow.add_node("retrieve", self._retrieve_information)
workflow.add_node("synthesize", self._synthesize_response)
workflow.add_node("safety_check", self._apply_safety_checks)
# Add edges
workflow.add_edge(START, "classify")
workflow.add_conditional_edges(
"classify",
self._route_after_classification,
{"retrieve": "retrieve"}
)
workflow.add_conditional_edges(
"retrieve",
self._route_after_retrieval,
{"synthesize": "synthesize"}
)
workflow.add_conditional_edges(
"synthesize",
self._route_after_synthesis,
{"safety_check": "safety_check", "end": END}
)
workflow.add_edge("safety_check", END)
return workflow
def process_query(self, query: str) -> Dict[str, Any]:
"""Process a query through the orchestration graph."""
# Initialize state (canonical format)
initial_state = {
"user_id": "default", # Can be passed as parameter
"messages": [{"role": "user", "content": query}],
"query": query,
"retrieved": [],
"draft": "",
"safety": {},
# IP Assist specific
"is_emergency": False,
"query_type": "",
"safety_flags": [],
"citations": [],
"confidence_score": 0.0,
"needs_review": False
}
# Run the graph
result = self.app.invoke(initial_state)
# Format output
output = {
"query": query,
"response": result["draft"], # Use draft field
"query_type": result["query_type"],
"is_emergency": result["is_emergency"],
"confidence_score": result["confidence_score"],
"citations": result["citations"],
"safety_flags": result["safety_flags"],
"needs_review": result["needs_review"],
# LLM telemetry
"model_requested": self.current_model,
"model_used": result.get("llm_model_used"),
"llm_warning": result.get("llm_warning_banner"),
"llm_error": result.get("llm_error"),
}
return output
def main():
"""Test the orchestrator."""
orchestrator = IPAssistOrchestrator()
# Test queries
test_queries = [
"What are the contraindications for bronchoscopy?",
"Massive hemoptysis management protocol",
"CPT code for EBUS-TBNA",
"Pediatric bronchoscopy dosing for lidocaine",
"How to place fiducial markers for SBRT?"
]
for query in test_queries:
print(f"\n{'='*60}")
print(f"Query: {query}")
print('='*60)
result = orchestrator.process_query(query)
print(f"\n📊 Query Type: {result['query_type']}")
if result['is_emergency']:
print("🚨 EMERGENCY DETECTED")
print(f"🎯 Confidence: {result['confidence_score']:.2%}")
if result['safety_flags']:
print(f"⚠️ Safety Flags: {', '.join(result['safety_flags'])}")
print(f"\n📝 Response:")
print(result['response'])
if result['citations']:
print(f"\n📚 Sources:")
for i, cite in enumerate(result['citations'], 1):
print(f" [{i}] {cite['doc_id']} ({cite['authority']}/{cite['evidence']}, {cite['year']})")
if result['needs_review']:
print("\n⚠️ This response has been flagged for review")
if __name__ == "__main__":
main()