Spaces:
Sleeping
Sleeping
File size: 18,794 Bytes
efd6737 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 |
#!/usr/bin/env python3
"""
LangGraph 1.0 orchestration for IP Assist Lite
Implements intelligent query routing, safety checks, and hierarchy-aware retrieval
"""
from __future__ import annotations
import sys
import json
import re
from typing import Dict, Any, List, Optional, TypedDict, Annotated, Literal
from dataclasses import dataclass
from datetime import datetime
from pathlib import Path
# Add parent directory to path for imports
sys.path.insert(0, str(Path(__file__).parent.parent))
from langgraph.graph import StateGraph, START, END
from retrieval.hybrid_retriever import HybridRetriever, RetrievalResult
from llm.gpt5_medical import GPT5Medical
# State definition (LangGraph 1.0 canonical)
class AgentState(TypedDict):
"""Canonical state for the IP Assist graph."""
user_id: str
messages: List[Dict[str, str]] # chat history
query: str
retrieved: List[Dict[str, Any]]
draft: str
safety: Dict[str, Any]
# Additional fields for IP Assist specific needs
is_emergency: bool
query_type: str # 'clinical', 'procedure', 'coding', 'emergency', 'safety'
safety_flags: List[str]
citations: List[Dict[str, Any]]
confidence_score: float
needs_review: bool
# LLM telemetry
llm_model_used: Optional[str]
llm_warning_banner: Optional[str]
llm_error: Optional[str]
@dataclass
class SafetyGuard:
"""Safety checks for medical information."""
CRITICAL_PATTERNS = {
'dosage': r'\d+\s*(?:mg|mcg|ml|cc|units?|IU)\b',
'pediatric': r'\b(?:child|children|pediatric|infant|neonate)\b',
'pregnancy': r'\b(?:pregnan|gestation|fetal|maternal)\b',
'contraindication': r'\b(?:contraindic|absolute(?:ly)?\s+contraindic|must not|never)\b',
'allergy': r'\b(?:allerg|anaphyla|hypersensitiv)\b',
'emergency': r'\b(?:emergency|urgent|stat|immediate|life.?threatening)\b'
}
@classmethod
def check_query(cls, query: str) -> List[str]:
"""Check query for safety-critical terms."""
flags = []
query_lower = query.lower()
for flag_type, pattern in cls.CRITICAL_PATTERNS.items():
if re.search(pattern, query_lower):
flags.append(flag_type)
return flags
@classmethod
def validate_response(cls, response: str, flags: List[str]) -> Dict[str, Any]:
"""Validate response for safety concerns."""
warnings = []
# Check for dose/setting information
if 'dosage' in flags:
if not re.search(r'verify|confirm|consult|check', response.lower()):
warnings.append("⚠️ Dose information provided - verify with official guidelines")
# Check for pediatric considerations
if 'pediatric' in flags:
if not re.search(r'pediatric|child|weight.?based|age.?appropriate', response.lower()):
warnings.append("⚠️ Pediatric query - ensure age-appropriate information")
# Check for contraindications
if 'contraindication' in flags:
if not re.search(r'contraindic|caution|avoid|risk', response.lower()):
warnings.append("⚠️ Safety check - contraindication information may be incomplete")
return {
'has_warnings': len(warnings) > 0,
'warnings': warnings,
'needs_review': len(warnings) > 2
}
class IPAssistOrchestrator:
"""LangGraph orchestration for IP Assist Lite."""
def __init__(self, retriever: Optional[HybridRetriever] = None, model: str = "gpt-5-mini"):
"""Initialize the orchestrator.
Args:
retriever: Optional HybridRetriever instance
model: OpenAI model to use (gpt-5-nano, gpt-5-mini, gpt-5, etc.)
"""
# Initialize retriever
if retriever is None:
self.retriever = HybridRetriever(
chunks_file=Path(__file__).parent.parent.parent / "data" / "chunks" / "chunks.jsonl",
cpt_index_file=Path(__file__).parent.parent.parent / "data" / "term_index" / "cpt_codes.jsonl",
alias_index_file=Path(__file__).parent.parent.parent / "data" / "term_index" / "aliases.jsonl"
)
else:
self.retriever = retriever
# Store model for dynamic switching
self.current_model = model
# Initialize LLM wrapper
self.llm = GPT5Medical(
model=model,
max_out=1500,
# Use Responses API for GPT-5 family; Chat for others
use_responses=str(model or "").startswith("gpt-5")
)
# Build the graph
self.graph = self._build_graph()
self.app = self.graph.compile()
def set_model(self, model: str):
"""Switch to a different model dynamically.
Args:
model: Model name (e.g., 'gpt-4o-mini', 'gpt-4o', 'o1-mini', 'o1-preview')
"""
if model != self.current_model:
self.current_model = model
self.llm = GPT5Medical(
model=model,
max_out=1500,
use_responses=str(model or "").startswith("gpt-5")
)
def _classify_query(self, state: AgentState) -> AgentState:
"""Classify the query type and check for emergencies."""
query = state["query"]
# Check for emergency
state["is_emergency"] = self.retriever.detect_emergency(query)
# Check safety flags
state["safety_flags"] = SafetyGuard.check_query(query)
# Classify query type
query_lower = query.lower()
if state["is_emergency"]:
state["query_type"] = "emergency"
elif re.search(r'\b(?:cpt|code|bill|reimburs|rvu)\b', query_lower):
state["query_type"] = "coding"
elif re.search(r'\b(?:procedure|technique|step|how to|perform)\b', query_lower):
state["query_type"] = "procedure"
elif any(flag in state["safety_flags"] for flag in ['contraindication', 'allergy', 'pregnancy']):
state["query_type"] = "safety"
else:
state["query_type"] = "clinical"
# Add classification message (canonical format)
state["messages"].append(
{"role": "assistant", "content": f"Query classified as: {state['query_type']}"}
)
return state
def _retrieve_information(self, state: AgentState) -> AgentState:
"""Retrieve relevant information based on query type."""
query = state["query"]
query_type = state["query_type"]
# Set retrieval parameters based on query type
filters = {}
top_k = 5
if query_type == "emergency":
# For emergencies, prioritize high authority and recent guidelines
filters = {"authority_tier": "A1"}
top_k = 10
elif query_type == "coding":
# For coding, look for tables and exact matches
filters = {"has_table": True}
top_k = 5
elif query_type == "safety":
# For safety, look for contraindications
filters = {"has_contraindication": True}
top_k = 8
# Perform retrieval
results = self.retriever.retrieve(
query=query,
top_k=top_k,
use_reranker=True,
filters=filters if query_type in ["emergency", "coding", "safety"] else None
)
# Store in canonical 'retrieved' field
state["retrieved"] = [r.__dict__ for r in results] if results else []
# Add retrieval message (canonical format)
if results:
state["messages"].append(
{"role": "assistant", "content": f"Retrieved {len(results)} relevant documents"}
)
else:
state["messages"].append(
{"role": "assistant", "content": "No relevant documents found"}
)
return state
def _synthesize_response(self, state: AgentState) -> AgentState:
"""Synthesize response from retrieved information."""
# Convert back from dict format
from types import SimpleNamespace
results = [SimpleNamespace(**r) for r in state["retrieved"]]
query_type = state["query_type"]
if not results:
state["draft"] = "I couldn't find relevant information for your query. Please try rephrasing or provide more context."
state["confidence_score"] = 0.0
return state
# Build response based on query type
response_parts = []
citations = []
# Add emergency warning if needed
if state["is_emergency"]:
response_parts.append("🚨 **EMERGENCY DETECTED** - Immediate action required\n")
# Collect context from top results
context_parts = []
for i, result in enumerate(results[:3], 1):
# Build citation
citation = {
"doc_id": result.doc_id,
"section": result.section_title,
"authority": result.authority_tier,
"evidence": result.evidence_level,
"year": result.year,
"score": result.score
}
citations.append(citation)
# Add to context for LLM
source_label = {
"A1": "PAPOIP 2025",
"A2": "Practical Guide 2022",
"A3": "BACADA 2012"
}.get(result.authority_tier, result.doc_id[:30])
context_parts.append(f"[{source_label}]: {result.text}")
# Use LLM to synthesize response
if context_parts:
context = "\n\n".join(context_parts)
prompt = f"""Based on the following authoritative medical sources, provide a comprehensive answer to: {state['query']}
Sources:
{context}
Please synthesize this information into a clear, professional response. Prioritize information from higher authority sources (A1 > A2 > A3 > A4). Include specific details like doses, contraindications, and techniques when mentioned."""
try:
# Send a clean, minimal context (avoid noisy assistant history)
synth_messages = [
{"role": "system", "content": (
"You are an expert interventional pulmonology assistant. "
"Synthesize a clinically useful answer using only the retrieved Sources. "
"Cite sources inline as [A1], [A2], [A3] where relevant. "
"Be concise but complete; include key complications/contraindications/doses when applicable."
)}
]
llm_response = self.llm.generate_response(prompt, synth_messages)
response_parts.append(llm_response)
# Capture LLM telemetry
state["llm_model_used"] = getattr(self.llm, "last_used_model", self.current_model)
banner = getattr(self.llm, "last_warning_banner", None)
if banner:
state["llm_warning_banner"] = banner
except Exception as e:
# Fallback: Show the raw context if LLM fails
response_parts.append("**Retrieved Information:**\n")
for i, part in enumerate(context_parts[:3], 1):
response_parts.append(f"\n{i}. {part[:500]}...")
# Surface error details for UI/metadata
state["llm_error"] = str(e)
banner = getattr(self.llm, "last_warning_banner", None)
if banner:
state["llm_warning_banner"] = banner
else:
response_parts.append("No relevant information found for your query.")
# Add safety warnings if needed
if state["safety_flags"]:
response_parts.append("\n⚠️ **Safety Considerations:**")
for flag in state["safety_flags"]:
if flag == "dosage":
response_parts.append("• Verify all doses with official guidelines")
elif flag == "pediatric":
response_parts.append("• Ensure pediatric-appropriate dosing and techniques")
elif flag == "contraindication":
response_parts.append("• Review all contraindications before proceeding")
# Calculate confidence based on result quality
top_score = results[0].score if results else 0
avg_precedence = sum(r.precedence_score for r in results[:3]) / min(3, len(results))
# Clamp confidence to [0,1]
conf = (top_score + avg_precedence) / 2
state["confidence_score"] = max(0.0, min(1.0, conf))
# Store in canonical 'draft' field
state["draft"] = "\n\n".join(response_parts)
state["citations"] = citations
return state
def _apply_safety_checks(self, state: AgentState) -> AgentState:
"""Apply final safety checks to the response."""
validation = SafetyGuard.validate_response(
state["draft"],
state["safety_flags"]
)
if validation["has_warnings"]:
warnings_text = "\n".join(validation["warnings"])
state["draft"] += f"\n\n---\n**Safety Notes:**\n{warnings_text}"
# Store safety information in canonical field
state["safety"] = validation
state["needs_review"] = validation["needs_review"]
# Add safety message (canonical format)
if state["needs_review"]:
state["messages"].append(
{"role": "assistant", "content": "⚠️ Response flagged for review due to safety concerns"}
)
return state
def _route_after_classification(self, state: AgentState) -> str:
"""Route to appropriate node based on classification."""
if state["is_emergency"]:
return "retrieve" # Skip directly to retrieval for emergencies
return "retrieve"
def _route_after_retrieval(self, state: AgentState) -> str:
"""Route after retrieval."""
if not state["retrieved"]:
return "synthesize" # Will generate "no results" response
return "synthesize"
def _route_after_synthesis(self, state: AgentState) -> str:
"""Route after synthesis."""
if state["safety_flags"]:
return "safety_check"
return "end"
def _build_graph(self) -> StateGraph:
"""Build the LangGraph workflow."""
# Create the graph (canonical LangGraph 1.0)
workflow = StateGraph(AgentState)
# Add nodes
workflow.add_node("classify", self._classify_query)
workflow.add_node("retrieve", self._retrieve_information)
workflow.add_node("synthesize", self._synthesize_response)
workflow.add_node("safety_check", self._apply_safety_checks)
# Add edges
workflow.add_edge(START, "classify")
workflow.add_conditional_edges(
"classify",
self._route_after_classification,
{"retrieve": "retrieve"}
)
workflow.add_conditional_edges(
"retrieve",
self._route_after_retrieval,
{"synthesize": "synthesize"}
)
workflow.add_conditional_edges(
"synthesize",
self._route_after_synthesis,
{"safety_check": "safety_check", "end": END}
)
workflow.add_edge("safety_check", END)
return workflow
def process_query(self, query: str) -> Dict[str, Any]:
"""Process a query through the orchestration graph."""
# Initialize state (canonical format)
initial_state = {
"user_id": "default", # Can be passed as parameter
"messages": [{"role": "user", "content": query}],
"query": query,
"retrieved": [],
"draft": "",
"safety": {},
# IP Assist specific
"is_emergency": False,
"query_type": "",
"safety_flags": [],
"citations": [],
"confidence_score": 0.0,
"needs_review": False
}
# Run the graph
result = self.app.invoke(initial_state)
# Format output
output = {
"query": query,
"response": result["draft"], # Use draft field
"query_type": result["query_type"],
"is_emergency": result["is_emergency"],
"confidence_score": result["confidence_score"],
"citations": result["citations"],
"safety_flags": result["safety_flags"],
"needs_review": result["needs_review"],
# LLM telemetry
"model_requested": self.current_model,
"model_used": result.get("llm_model_used"),
"llm_warning": result.get("llm_warning_banner"),
"llm_error": result.get("llm_error"),
}
return output
def main():
"""Test the orchestrator."""
orchestrator = IPAssistOrchestrator()
# Test queries
test_queries = [
"What are the contraindications for bronchoscopy?",
"Massive hemoptysis management protocol",
"CPT code for EBUS-TBNA",
"Pediatric bronchoscopy dosing for lidocaine",
"How to place fiducial markers for SBRT?"
]
for query in test_queries:
print(f"\n{'='*60}")
print(f"Query: {query}")
print('='*60)
result = orchestrator.process_query(query)
print(f"\n📊 Query Type: {result['query_type']}")
if result['is_emergency']:
print("🚨 EMERGENCY DETECTED")
print(f"🎯 Confidence: {result['confidence_score']:.2%}")
if result['safety_flags']:
print(f"⚠️ Safety Flags: {', '.join(result['safety_flags'])}")
print(f"\n📝 Response:")
print(result['response'])
if result['citations']:
print(f"\n📚 Sources:")
for i, cite in enumerate(result['citations'], 1):
print(f" [{i}] {cite['doc_id']} ({cite['authority']}/{cite['evidence']}, {cite['year']})")
if result['needs_review']:
print("\n⚠️ This response has been flagged for review")
if __name__ == "__main__":
main()
|