tox21_rf_classifier / src /preprocess.py
antoniaebner's picture
adapt load/saving, preprocessing, app, readme, modelcard
97697e0
import copy
import json
from typing import Any
import numpy as np
import pandas as pd
from datasets import load_dataset
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import StandardScaler, FunctionTransformer
from statsmodels.distributions.empirical_distribution import ECDF
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol
from .utils import USED_200_DESCR, TOX_SMARTS_PATH, Standardizer, FeatureDictMixin
class SquashScaler(TransformerMixin, BaseEstimator):
"""
Scaler that performs sequential standardization, nonlinearity (tanh), and
re-standardization. Inspired by DeepTox (Mayr et al., 2016)
"""
def __init__(self):
self.scaler1 = StandardScaler()
self.scaler2 = StandardScaler()
def fit(self, X):
_X = X.copy()
_X = self.scaler1.fit_transform(_X)
_X = np.tanh(_X)
_X = self.scaler2.fit(_X)
self.is_fitted_ = True
return self
def transform(self, X):
_X = X.copy()
_X = self.scaler1.transform(_X)
_X = np.tanh(_X)
return self.scaler2.transform(_X)
SCALER_REGISTRY = {
None: FunctionTransformer,
"standard": StandardScaler,
"squash": SquashScaler,
}
class SubSampler(TransformerMixin, BaseEstimator):
"""
Preprocessor that randomly samples `max_samples` from data.
Args:
max_samples (int): Maximum allowed samples. If -1, all samples are retained.
Input:
np.ndarray: A 2D NumPy array of shape (n_samples, n_features).
Output:
np.ndarray: Subsampled array of shape (min(n_samples, max_samples), n_features).
"""
def __init__(self, *, max_samples=-1):
self.max_samples = max_samples
self.is_fitted_ = True
def fit(self, X: np.ndarray, y: np.ndarray | None = None):
return self
def transform(
self, X: np.ndarray, y: np.ndarray | None = None
) -> np.ndarray | tuple[np.ndarray]:
_X = X.copy()
_y = y.copy() if y is not None else None
if self.max_samples > 0 and _X.shape[0] > self.max_samples:
resample_idxs = np.random.choice(
np.arange(_X.shape[0]), size=(self.max_samples,), replace=True
)
_X = _X[resample_idxs]
_y = _y[resample_idxs] if _y is not None else None
if _y is None:
return _X
return _X, _y
class FeatureSelector(FeatureDictMixin, TransformerMixin, BaseEstimator):
"""
Preprocessor that performs feature selection based on variance and correlation.
This transformer selects features that:
1. Have variance above a specified threshold.
2. Are below a given pairwise correlation threshold.
3. Among the remaining features, keeps only the top `max_features` with the highest variance.
The input and output are both dictionaries mapping feature types to their corresponding
feature matrices.
Args:
min_var (float): Minimum variance required for a feature to be retained.
max_corr (float): Maximum allowed correlation between features.
Features exceeding this threshold with others are removed.
max_features (int): Maximum number of features to keep after filtering.
If -1, all remaining features are retained.
feature_keys (list[str]): Features to apply feature selection to.
independent_keys (bool): Apply filtering only within features types.
Input:
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
and each value is a 2D NumPy array of shape (n_samples, n_features).
Output:
dict[str, np.ndarray]: A dictionary with the same keys as the input,
containing only the selected features for each feature type.
"""
def __init__(
self,
*,
min_var=0.0,
max_corr=1.0,
max_features=-1,
feature_keys=None,
min_var__feature_keys=None,
max_corr__feature_keys=None,
max_features__feature_keys=None,
min_var__independent_keys=False,
max_corr__independent_keys=False,
max_features__independent_keys=False,
):
self.min_var = min_var
self.max_corr = max_corr
self.max_features = max_features
self.min_var__feature_keys = min_var__feature_keys
self.max_corr__feature_keys = max_corr__feature_keys
self.max_features__feature_keys = max_features__feature_keys
self.min_var__independent_keys = min_var__independent_keys
self.max_corr__independent_keys = max_corr__independent_keys
self.max_features__independent_keys = max_features__independent_keys
super().__init__(feature_keys=feature_keys)
def _get_min_var_mask(self, X: np.ndarray, *args) -> np.ndarray:
var_thresh = VarianceThreshold(threshold=self.min_var)
return var_thresh.fit(X).get_support() # mask
def _get_max_corr_mask(
self, X: np.ndarray, prev_feature_mask: np.ndarray
) -> np.ndarray:
_prev_feature_mask = prev_feature_mask.copy()
corr_matrix = np.corrcoef(X[:, _prev_feature_mask], rowvar=False)
upper_tri = np.triu(corr_matrix, k=1)
to_keep = np.ones((sum(_prev_feature_mask),), dtype=bool)
for i in range(upper_tri.shape[0]):
for j in range(upper_tri.shape[1]):
if upper_tri[i, j] > self.max_corr:
to_keep[j] = False
_prev_feature_mask[_prev_feature_mask] = to_keep
return _prev_feature_mask
def _get_max_features_mask(
self, X: np.ndarray, prev_feature_mask: np.ndarray
) -> np.ndarray:
_prev_feature_mask = prev_feature_mask.copy()
# select features with at least max_var variation
feature_vars = np.nanvar(X[:, _prev_feature_mask], axis=0)
order = np.argsort(feature_vars)[: -(self.max_features + 1) : -1]
keep_feat_idx = np.arange(len(_prev_feature_mask))[order]
_prev_feature_mask = np.isin(
np.arange(len(_prev_feature_mask)), keep_feat_idx, assume_unique=True
)
return _prev_feature_mask
def apply_filter(self, filter, X, prev_feature_mask):
mask = prev_feature_mask.copy()
func = self.__getattribute__(f"_get_{filter}_mask")
feature_keys = self.__getattribute__(f"{filter}__feature_keys")
if self.__getattribute__(f"{filter}__independent_keys"):
for key in feature_keys:
key_mask = self._curr_keys == key
mask[key_mask] = func(X[:, key_mask], mask[key_mask])
else:
feature_key_mask = np.isin(self._curr_keys, feature_keys)
mask[feature_key_mask] = func(
X[:, feature_key_mask], mask[feature_key_mask]
)
return mask
def fit(self, X: dict[str, np.ndarray]):
_X = self.dict_to_array(X)
feature_mask = np.ones((_X.shape[1]), dtype=bool)
# select features with at least min_var variation
if self.min_var > 0.0:
if self.min_var__independent_keys:
for key in self.min_var__feature_keys:
key_mask = self._curr_keys == key
feature_mask[key_mask] = self._get_min_var_mask(_X[:, key_mask])
else:
feature_key_mask = np.isin(self._curr_keys, self.min_var__feature_keys)
feature_mask[feature_key_mask] = self._get_min_var_mask(
_X[:, feature_key_mask]
)
# select features with at least max_var variation
if self.max_corr < 1.0:
if self.max_corr__independent_keys:
for key in self.max_corr__feature_keys:
key_mask = self._curr_keys == key
subset = _X[:, key_mask]
feature_mask[key_mask] = self._get_max_corr_mask(
subset, feature_mask[key_mask]
)
else:
feature_key_mask = np.isin(self._curr_keys, self.max_corr__feature_keys)
feature_mask[feature_key_mask] = self._get_max_corr_mask(
_X[:, feature_key_mask], feature_mask[feature_key_mask]
)
if self.max_features == 0:
raise ValueError(
f"max_features (={self.max_features}) must be -1 or larger 0."
)
elif self.max_features > 0:
if self.max_features__independent_keys:
for key in self.max_features__feature_keys:
key_mask = self._curr_keys == key
feature_mask[key_mask] = self._get_max_features_mask(
_X[:, key_mask], feature_mask[key_mask]
)
else:
feature_key_mask = np.isin(
self._curr_keys, self.max_features__feature_keys
)
feature_mask[feature_key_mask] = self._get_max_features_mask(
_X[:, feature_key_mask], feature_mask[feature_key_mask]
)
self._feature_mask = feature_mask
self.is_fitted_ = True
return self
def transform(self, X: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
_X = self.dict_to_array(X)
_X = _X[:, self._feature_mask]
self._curr_keys = self._curr_keys[self._feature_mask]
return self.array_to_dict(_X)
class QuantileCreator(FeatureDictMixin, TransformerMixin, BaseEstimator):
"""
Preprocessor that transforms features into empirical quantiles using ECDFs.
This transformer applies an Empirical Cumulative Distribution Function (ECDF)
to each feature and replaces feature values with their corresponding quantile
ranks. The transformation is applied independently to each feature type.
Both input and output are dictionaries mapping feature types to their
corresponding feature matrices.
Args:
feature_keys (list[str]): Features to apply quantile creation to.
Input:
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
and each value is a 2D NumPy array of shape (n_samples, n_features).
Output:
dict[str, np.ndarray]: A dictionary with the same keys as the input,
where each feature value is replaced by its corresponding ECDF quantile rank.
"""
def __init__(self, *, feature_keys=None):
self._ecdfs = None
super().__init__(feature_keys=feature_keys)
def fit(self, X: dict[str, np.ndarray]):
_X = self.dict_to_array(X)
ecdfs = []
for column in range(_X.shape[1]):
raw_values = _X[:, column].reshape(-1)
ecdfs.append(ECDF(raw_values))
self._ecdfs = ecdfs
self.is_fitted_ = True
return self
def transform(self, X: dict[str, np.ndarray]) -> np.ndarray:
_X = self.dict_to_array(X)
quantiles = np.zeros_like(_X)
for column in range(_X.shape[1]):
raw_values = _X[:, column].reshape(-1)
ecdf = self._ecdfs[column]
q = ecdf(raw_values)
quantiles[:, column] = q
return self.array_to_dict(quantiles)
class FeaturePreprocessor(TransformerMixin, BaseEstimator):
"""This class implements the feature preprocessing from a dictionary of molecule features."""
def __init__(
self,
feature_selection_config: dict[str, Any],
feature_quantilization_config: dict[str, Any],
descriptors: list[str],
max_samples: int = -1,
scaler: str = "standard",
):
self.descriptors = descriptors
self.feature_quantilization_config = copy.deepcopy(
feature_quantilization_config
)
self.use_feat_quant = self.feature_quantilization_config.pop("use")
self.quantile_creator = QuantileCreator(**self.feature_quantilization_config)
self.feature_selection_config = copy.deepcopy(feature_selection_config)
self.use_feat_selec = self.feature_selection_config.pop("use")
self.feature_selection_config["feature_keys"] = descriptors
self.feature_selector = FeatureSelector(**self.feature_selection_config)
self.max_samples = max_samples
self.sub_sampler = SubSampler(max_samples=max_samples)
self.scaler = SCALER_REGISTRY[scaler]()
def __getstate__(self):
state = super().__getstate__()
state["quantile_creator"] = self.quantile_creator.__getstate__()
state["feature_selector"] = self.feature_selector.__getstate__()
state["sub_sampler"] = self.sub_sampler.__getstate__()
state["scaler"] = self.scaler.__getstate__()
return state
def __setstate__(self, state):
_state = copy.deepcopy(state)
self.quantile_creator.__setstate__(_state.pop("quantile_creator"))
self.feature_selector.__setstate__(_state.pop("feature_selector"))
self.sub_sampler.__setstate__(_state.pop("sub_sampler"))
self.scaler.__setstate__(_state.pop("scaler"))
super().__setstate__(_state)
def get_state(self):
return self.__getstate__()
def set_state(self, state):
return self.__setstate__(state)
def fit(self, X: dict[str, np.ndarray]):
"""Fit the processor transformers"""
_X = copy.deepcopy(X)
if self.use_feat_quant:
_X = self.quantile_creator.fit_transform(_X)
if self.use_feat_selec:
_X = self.feature_selector.fit_transform(_X)
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
self.scaler.fit(_X)
return self
def transform(
self, X: np.ndarray, y: np.ndarray | None = None
) -> np.ndarray | tuple[np.ndarray]:
_X = X.copy()
_y = y.copy() if y is not None else None
if self.use_feat_quant:
_X = self.quantile_creator.transform(_X)
if self.use_feat_selec:
_X = self.feature_selector.transform(_X)
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
_X = self.scaler.transform(_X)
if _y is None:
_X = self.sub_sampler.transform(_X)
return _X
_X, _y = self.sub_sampler.transform(_X, _y)
return _X, _y
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
"""This function creates cleaned RDKit mol objects from a list of SMILES.
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Modification by Antonia Ebner:
- skip uncleanable molecules
- return clean molecule mask
Args:
smiles (list[str]): list of SMILES
Returns:
list[Mol]: list of cleaned molecules
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
index `i` could not be cleaned and was removed.
"""
sm = Standardizer(canon_taut=True)
clean_mol_mask = list()
mols = list()
for i, smile in enumerate(smiles):
mol = Chem.MolFromSmiles(smile)
standardized_mol, _ = sm.standardize_mol(mol)
is_cleaned = standardized_mol is not None
clean_mol_mask.append(is_cleaned)
if not is_cleaned:
continue
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
mols.append(can_mol)
return mols, np.array(clean_mol_mask)
def create_ecfp_fps(mols: list[Mol], radius=3, fpsize=2048, **kwargs) -> np.ndarray:
"""This function ECFP fingerprints for a list of molecules.
Inspired by from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: ECFP fingerprints of molecules
"""
ecfps = list()
for mol in mols:
gen = rdFingerprintGenerator.GetMorganGenerator(
countSimulation=True, fpSize=fpsize, radius=radius
)
fp_sparse_vec = gen.GetCountFingerprint(mol)
fp = np.zeros((0,), np.int8)
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
ecfps.append(fp)
return np.array(ecfps)
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
"""This function creates MACCS keys for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: MACCS keys of molecules
"""
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
return np.array(maccs)
def get_tox_patterns(filepath: str):
"""This retrieves the tox features defined in filepath.
Args:
filepath (str): A list of tox features
"""
# load patterns
with open(filepath) as f:
smarts_list = [s[1] for s in json.load(f)]
# Code does not work for this case
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
# and then use them for all molecules. This gives a huge speedup over existing code.
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
all_patterns = []
for smarts in smarts_list:
patterns = [] # list of smarts-patterns
# value for each of the patterns above. Negates the values of the above later.
negations = []
if " AND " in smarts:
smarts = smarts.split(" AND ")
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
else:
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
smarts = smarts.split(" OR ")
merge_any = True
# for all subsmarts check if they are preceded by 'NOT '
for s in smarts:
neg = s.startswith("NOT ")
if neg:
s = s[4:]
patterns.append(Chem.MolFromSmarts(s))
negations.append(neg)
all_patterns.append((patterns, negations, merge_any))
return all_patterns
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
"""Matches the tox patterns against a molecule. Returns a boolean array"""
tox_data = []
for mol in mols:
mol_features = []
for patts, negations, merge_any in patterns:
matches = [mol.HasSubstructMatch(p) for p in patts]
matches = [m != n for m, n in zip(matches, negations)]
if merge_any:
pres = any(matches)
else:
pres = all(matches)
mol_features.append(pres)
tox_data.append(np.array(mol_features))
return np.array(tox_data)
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
"""This function creates RDKit descriptors for a list of molecules.
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: RDKit descriptors of molecules
"""
rdkit_descriptors = list()
for mol in mols:
descrs = []
for _, descr_calc_fn in Descriptors._descList:
descrs.append(descr_calc_fn(mol))
descrs = np.array(descrs)
descrs = descrs[USED_200_DESCR]
rdkit_descriptors.append(descrs)
return np.array(rdkit_descriptors)
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
"""Create quantile values for given features using the columns
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
raw_features (np.ndarray): values to put into quantiles
ecdfs (list): ECDFs to use
Returns:
np.ndarray: computed quantiles
"""
quantiles = np.zeros_like(raw_features)
for column in range(raw_features.shape[1]):
raw_values = raw_features[:, column].reshape(-1)
ecdf = ecdfs[column]
q = ecdf(raw_values)
quantiles[:, column] = q
return quantiles
def fill(features, mask, value=np.nan):
n_mols = len(mask)
n_features = features.shape[1]
data = np.zeros(shape=(n_mols, n_features))
data.fill(value)
data[~mask] = features
return data
def create_descriptors(
smiles,
descriptors,
**ecfp_kwargs,
):
"""Generate molecular descriptors for multiple SMILES strings.
Inspired by https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Each SMILES is processed and sanitized using RDKit.
SMILES that cannot be sanitized are encoded with NaNs, and a corresponding boolean mask
is returned to indicate which inputs were successfully processed.
Args:
smiles (list[str]): List of SMILES strings for which to generate descriptors.
descriptors (list[str]): List of descriptor types to compute.
Supported values include:
['ecfps', 'tox', 'maccs', 'rdkit_descrs'].
Returns:
tuple[dict[str, np.ndarray], np.ndarray]:
- A dictionary mapping descriptor names to their computed arrays.
- A boolean mask of shape (len(smiles),) indicating which SMILES
were successfully sanitized and processed.
"""
# Create cleanded rdkit mol objects
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
print(f"Cleaned molecules, {(~clean_mol_mask).sum()} could not be sanitized")
# Create fingerprints and descriptors
if "ecfps" in descriptors:
ecfps = create_ecfp_fps(mols, **ecfp_kwargs)
ecfps = fill(ecfps, ~clean_mol_mask)
print("Created ECFP fingerprints")
if "tox" in descriptors:
tox_patterns = get_tox_patterns(TOX_SMARTS_PATH)
tox = create_tox_features(mols, tox_patterns)
tox = fill(tox, ~clean_mol_mask)
print("Created Tox features")
if "maccs" in descriptors:
maccs = create_maccs_keys(mols)
maccs = fill(maccs, ~clean_mol_mask)
print("Created MACCS keys")
if "rdkit_descrs" in descriptors:
rdkit_descrs = create_rdkit_descriptors(mols)
rdkit_descrs = fill(rdkit_descrs, ~clean_mol_mask)
print("Created RDKit descriptors")
# concatenate features
features = {}
for descr in descriptors:
features[descr] = vars()[descr]
return features, clean_mol_mask
def get_tox21_split(token, cvfold=None):
"""Retrieve Tox21 splits from HuggingFace with respect to given cvfold."""
ds = load_dataset("ml-jku/tox21", token=token)
train_df = ds["train"].to_pandas()
val_df = ds["validation"].to_pandas()
if cvfold is None:
return {"train": train_df, "validation": val_df}
combined_df = pd.concat([train_df, val_df], ignore_index=True)
cvfold = float(cvfold)
# create new splits
cvfold = float(cvfold)
train_df = combined_df[combined_df.CVfold != cvfold]
val_df = combined_df[combined_df.CVfold == cvfold]
# exclude train mols that occur in the validation split
val_inchikeys = set(val_df["inchikey"])
train_df = train_df[~train_df["inchikey"].isin(val_inchikeys)]
return {
"train": train_df.reset_index(drop=True),
"validation": val_df.reset_index(drop=True),
}