Spaces:
Sleeping
Sleeping
File size: 23,699 Bytes
1994acc 28424e6 1994acc 81226cb 28424e6 81226cb 28424e6 1994acc 28424e6 1994acc 9b322e1 593848b 28424e6 08f5009 1994acc 60782a2 1994acc 60782a2 1994acc 97697e0 1994acc 60782a2 1994acc 60782a2 97697e0 1994acc 97697e0 1994acc 97697e0 60782a2 97697e0 60782a2 97697e0 1994acc 60782a2 1994acc 97697e0 60782a2 97697e0 60782a2 97697e0 1994acc 97697e0 60782a2 97697e0 60782a2 97697e0 1994acc 97697e0 1994acc 60782a2 1994acc 60782a2 1994acc 60782a2 1994acc 60782a2 1994acc 97697e0 60782a2 1994acc 60782a2 1994acc 593848b 28424e6 60782a2 28424e6 60782a2 28424e6 593848b 28424e6 60782a2 28424e6 60782a2 28424e6 60782a2 28424e6 60782a2 28424e6 60782a2 28424e6 1994acc 28424e6 1994acc 60782a2 1994acc 28424e6 1994acc 28424e6 1994acc 28424e6 1994acc 28424e6 1994acc 28424e6 60782a2 28424e6 593848b 28424e6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 |
import copy
import json
from typing import Any
import numpy as np
import pandas as pd
from datasets import load_dataset
from sklearn.base import BaseEstimator, TransformerMixin
from sklearn.feature_selection import VarianceThreshold
from sklearn.preprocessing import StandardScaler, FunctionTransformer
from statsmodels.distributions.empirical_distribution import ECDF
from rdkit import Chem, DataStructs
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
from rdkit.Chem.rdchem import Mol
from .utils import USED_200_DESCR, TOX_SMARTS_PATH, Standardizer, FeatureDictMixin
class SquashScaler(TransformerMixin, BaseEstimator):
"""
Scaler that performs sequential standardization, nonlinearity (tanh), and
re-standardization. Inspired by DeepTox (Mayr et al., 2016)
"""
def __init__(self):
self.scaler1 = StandardScaler()
self.scaler2 = StandardScaler()
def fit(self, X):
_X = X.copy()
_X = self.scaler1.fit_transform(_X)
_X = np.tanh(_X)
_X = self.scaler2.fit(_X)
self.is_fitted_ = True
return self
def transform(self, X):
_X = X.copy()
_X = self.scaler1.transform(_X)
_X = np.tanh(_X)
return self.scaler2.transform(_X)
SCALER_REGISTRY = {
None: FunctionTransformer,
"standard": StandardScaler,
"squash": SquashScaler,
}
class SubSampler(TransformerMixin, BaseEstimator):
"""
Preprocessor that randomly samples `max_samples` from data.
Args:
max_samples (int): Maximum allowed samples. If -1, all samples are retained.
Input:
np.ndarray: A 2D NumPy array of shape (n_samples, n_features).
Output:
np.ndarray: Subsampled array of shape (min(n_samples, max_samples), n_features).
"""
def __init__(self, *, max_samples=-1):
self.max_samples = max_samples
self.is_fitted_ = True
def fit(self, X: np.ndarray, y: np.ndarray | None = None):
return self
def transform(
self, X: np.ndarray, y: np.ndarray | None = None
) -> np.ndarray | tuple[np.ndarray]:
_X = X.copy()
_y = y.copy() if y is not None else None
if self.max_samples > 0 and _X.shape[0] > self.max_samples:
resample_idxs = np.random.choice(
np.arange(_X.shape[0]), size=(self.max_samples,), replace=True
)
_X = _X[resample_idxs]
_y = _y[resample_idxs] if _y is not None else None
if _y is None:
return _X
return _X, _y
class FeatureSelector(FeatureDictMixin, TransformerMixin, BaseEstimator):
"""
Preprocessor that performs feature selection based on variance and correlation.
This transformer selects features that:
1. Have variance above a specified threshold.
2. Are below a given pairwise correlation threshold.
3. Among the remaining features, keeps only the top `max_features` with the highest variance.
The input and output are both dictionaries mapping feature types to their corresponding
feature matrices.
Args:
min_var (float): Minimum variance required for a feature to be retained.
max_corr (float): Maximum allowed correlation between features.
Features exceeding this threshold with others are removed.
max_features (int): Maximum number of features to keep after filtering.
If -1, all remaining features are retained.
feature_keys (list[str]): Features to apply feature selection to.
independent_keys (bool): Apply filtering only within features types.
Input:
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
and each value is a 2D NumPy array of shape (n_samples, n_features).
Output:
dict[str, np.ndarray]: A dictionary with the same keys as the input,
containing only the selected features for each feature type.
"""
def __init__(
self,
*,
min_var=0.0,
max_corr=1.0,
max_features=-1,
feature_keys=None,
min_var__feature_keys=None,
max_corr__feature_keys=None,
max_features__feature_keys=None,
min_var__independent_keys=False,
max_corr__independent_keys=False,
max_features__independent_keys=False,
):
self.min_var = min_var
self.max_corr = max_corr
self.max_features = max_features
self.min_var__feature_keys = min_var__feature_keys
self.max_corr__feature_keys = max_corr__feature_keys
self.max_features__feature_keys = max_features__feature_keys
self.min_var__independent_keys = min_var__independent_keys
self.max_corr__independent_keys = max_corr__independent_keys
self.max_features__independent_keys = max_features__independent_keys
super().__init__(feature_keys=feature_keys)
def _get_min_var_mask(self, X: np.ndarray, *args) -> np.ndarray:
var_thresh = VarianceThreshold(threshold=self.min_var)
return var_thresh.fit(X).get_support() # mask
def _get_max_corr_mask(
self, X: np.ndarray, prev_feature_mask: np.ndarray
) -> np.ndarray:
_prev_feature_mask = prev_feature_mask.copy()
corr_matrix = np.corrcoef(X[:, _prev_feature_mask], rowvar=False)
upper_tri = np.triu(corr_matrix, k=1)
to_keep = np.ones((sum(_prev_feature_mask),), dtype=bool)
for i in range(upper_tri.shape[0]):
for j in range(upper_tri.shape[1]):
if upper_tri[i, j] > self.max_corr:
to_keep[j] = False
_prev_feature_mask[_prev_feature_mask] = to_keep
return _prev_feature_mask
def _get_max_features_mask(
self, X: np.ndarray, prev_feature_mask: np.ndarray
) -> np.ndarray:
_prev_feature_mask = prev_feature_mask.copy()
# select features with at least max_var variation
feature_vars = np.nanvar(X[:, _prev_feature_mask], axis=0)
order = np.argsort(feature_vars)[: -(self.max_features + 1) : -1]
keep_feat_idx = np.arange(len(_prev_feature_mask))[order]
_prev_feature_mask = np.isin(
np.arange(len(_prev_feature_mask)), keep_feat_idx, assume_unique=True
)
return _prev_feature_mask
def apply_filter(self, filter, X, prev_feature_mask):
mask = prev_feature_mask.copy()
func = self.__getattribute__(f"_get_{filter}_mask")
feature_keys = self.__getattribute__(f"{filter}__feature_keys")
if self.__getattribute__(f"{filter}__independent_keys"):
for key in feature_keys:
key_mask = self._curr_keys == key
mask[key_mask] = func(X[:, key_mask], mask[key_mask])
else:
feature_key_mask = np.isin(self._curr_keys, feature_keys)
mask[feature_key_mask] = func(
X[:, feature_key_mask], mask[feature_key_mask]
)
return mask
def fit(self, X: dict[str, np.ndarray]):
_X = self.dict_to_array(X)
feature_mask = np.ones((_X.shape[1]), dtype=bool)
# select features with at least min_var variation
if self.min_var > 0.0:
if self.min_var__independent_keys:
for key in self.min_var__feature_keys:
key_mask = self._curr_keys == key
feature_mask[key_mask] = self._get_min_var_mask(_X[:, key_mask])
else:
feature_key_mask = np.isin(self._curr_keys, self.min_var__feature_keys)
feature_mask[feature_key_mask] = self._get_min_var_mask(
_X[:, feature_key_mask]
)
# select features with at least max_var variation
if self.max_corr < 1.0:
if self.max_corr__independent_keys:
for key in self.max_corr__feature_keys:
key_mask = self._curr_keys == key
subset = _X[:, key_mask]
feature_mask[key_mask] = self._get_max_corr_mask(
subset, feature_mask[key_mask]
)
else:
feature_key_mask = np.isin(self._curr_keys, self.max_corr__feature_keys)
feature_mask[feature_key_mask] = self._get_max_corr_mask(
_X[:, feature_key_mask], feature_mask[feature_key_mask]
)
if self.max_features == 0:
raise ValueError(
f"max_features (={self.max_features}) must be -1 or larger 0."
)
elif self.max_features > 0:
if self.max_features__independent_keys:
for key in self.max_features__feature_keys:
key_mask = self._curr_keys == key
feature_mask[key_mask] = self._get_max_features_mask(
_X[:, key_mask], feature_mask[key_mask]
)
else:
feature_key_mask = np.isin(
self._curr_keys, self.max_features__feature_keys
)
feature_mask[feature_key_mask] = self._get_max_features_mask(
_X[:, feature_key_mask], feature_mask[feature_key_mask]
)
self._feature_mask = feature_mask
self.is_fitted_ = True
return self
def transform(self, X: dict[str, np.ndarray]) -> dict[str, np.ndarray]:
_X = self.dict_to_array(X)
_X = _X[:, self._feature_mask]
self._curr_keys = self._curr_keys[self._feature_mask]
return self.array_to_dict(_X)
class QuantileCreator(FeatureDictMixin, TransformerMixin, BaseEstimator):
"""
Preprocessor that transforms features into empirical quantiles using ECDFs.
This transformer applies an Empirical Cumulative Distribution Function (ECDF)
to each feature and replaces feature values with their corresponding quantile
ranks. The transformation is applied independently to each feature type.
Both input and output are dictionaries mapping feature types to their
corresponding feature matrices.
Args:
feature_keys (list[str]): Features to apply quantile creation to.
Input:
dict[str, np.ndarray]: A dictionary where each key corresponds to a feature type
and each value is a 2D NumPy array of shape (n_samples, n_features).
Output:
dict[str, np.ndarray]: A dictionary with the same keys as the input,
where each feature value is replaced by its corresponding ECDF quantile rank.
"""
def __init__(self, *, feature_keys=None):
self._ecdfs = None
super().__init__(feature_keys=feature_keys)
def fit(self, X: dict[str, np.ndarray]):
_X = self.dict_to_array(X)
ecdfs = []
for column in range(_X.shape[1]):
raw_values = _X[:, column].reshape(-1)
ecdfs.append(ECDF(raw_values))
self._ecdfs = ecdfs
self.is_fitted_ = True
return self
def transform(self, X: dict[str, np.ndarray]) -> np.ndarray:
_X = self.dict_to_array(X)
quantiles = np.zeros_like(_X)
for column in range(_X.shape[1]):
raw_values = _X[:, column].reshape(-1)
ecdf = self._ecdfs[column]
q = ecdf(raw_values)
quantiles[:, column] = q
return self.array_to_dict(quantiles)
class FeaturePreprocessor(TransformerMixin, BaseEstimator):
"""This class implements the feature preprocessing from a dictionary of molecule features."""
def __init__(
self,
feature_selection_config: dict[str, Any],
feature_quantilization_config: dict[str, Any],
descriptors: list[str],
max_samples: int = -1,
scaler: str = "standard",
):
self.descriptors = descriptors
self.feature_quantilization_config = copy.deepcopy(
feature_quantilization_config
)
self.use_feat_quant = self.feature_quantilization_config.pop("use")
self.quantile_creator = QuantileCreator(**self.feature_quantilization_config)
self.feature_selection_config = copy.deepcopy(feature_selection_config)
self.use_feat_selec = self.feature_selection_config.pop("use")
self.feature_selection_config["feature_keys"] = descriptors
self.feature_selector = FeatureSelector(**self.feature_selection_config)
self.max_samples = max_samples
self.sub_sampler = SubSampler(max_samples=max_samples)
self.scaler = SCALER_REGISTRY[scaler]()
def __getstate__(self):
state = super().__getstate__()
state["quantile_creator"] = self.quantile_creator.__getstate__()
state["feature_selector"] = self.feature_selector.__getstate__()
state["sub_sampler"] = self.sub_sampler.__getstate__()
state["scaler"] = self.scaler.__getstate__()
return state
def __setstate__(self, state):
_state = copy.deepcopy(state)
self.quantile_creator.__setstate__(_state.pop("quantile_creator"))
self.feature_selector.__setstate__(_state.pop("feature_selector"))
self.sub_sampler.__setstate__(_state.pop("sub_sampler"))
self.scaler.__setstate__(_state.pop("scaler"))
super().__setstate__(_state)
def get_state(self):
return self.__getstate__()
def set_state(self, state):
return self.__setstate__(state)
def fit(self, X: dict[str, np.ndarray]):
"""Fit the processor transformers"""
_X = copy.deepcopy(X)
if self.use_feat_quant:
_X = self.quantile_creator.fit_transform(_X)
if self.use_feat_selec:
_X = self.feature_selector.fit_transform(_X)
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
self.scaler.fit(_X)
return self
def transform(
self, X: np.ndarray, y: np.ndarray | None = None
) -> np.ndarray | tuple[np.ndarray]:
_X = X.copy()
_y = y.copy() if y is not None else None
if self.use_feat_quant:
_X = self.quantile_creator.transform(_X)
if self.use_feat_selec:
_X = self.feature_selector.transform(_X)
_X = np.concatenate([_X[descr] for descr in self.descriptors], axis=1)
_X = self.scaler.transform(_X)
if _y is None:
_X = self.sub_sampler.transform(_X)
return _X
_X, _y = self.sub_sampler.transform(_X, _y)
return _X, _y
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
"""This function creates cleaned RDKit mol objects from a list of SMILES.
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Modification by Antonia Ebner:
- skip uncleanable molecules
- return clean molecule mask
Args:
smiles (list[str]): list of SMILES
Returns:
list[Mol]: list of cleaned molecules
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
index `i` could not be cleaned and was removed.
"""
sm = Standardizer(canon_taut=True)
clean_mol_mask = list()
mols = list()
for i, smile in enumerate(smiles):
mol = Chem.MolFromSmiles(smile)
standardized_mol, _ = sm.standardize_mol(mol)
is_cleaned = standardized_mol is not None
clean_mol_mask.append(is_cleaned)
if not is_cleaned:
continue
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
mols.append(can_mol)
return mols, np.array(clean_mol_mask)
def create_ecfp_fps(mols: list[Mol], radius=3, fpsize=2048, **kwargs) -> np.ndarray:
"""This function ECFP fingerprints for a list of molecules.
Inspired by from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: ECFP fingerprints of molecules
"""
ecfps = list()
for mol in mols:
gen = rdFingerprintGenerator.GetMorganGenerator(
countSimulation=True, fpSize=fpsize, radius=radius
)
fp_sparse_vec = gen.GetCountFingerprint(mol)
fp = np.zeros((0,), np.int8)
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
ecfps.append(fp)
return np.array(ecfps)
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
"""This function creates MACCS keys for a list of molecules.
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: MACCS keys of molecules
"""
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
return np.array(maccs)
def get_tox_patterns(filepath: str):
"""This retrieves the tox features defined in filepath.
Args:
filepath (str): A list of tox features
"""
# load patterns
with open(filepath) as f:
smarts_list = [s[1] for s in json.load(f)]
# Code does not work for this case
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
# and then use them for all molecules. This gives a huge speedup over existing code.
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
all_patterns = []
for smarts in smarts_list:
patterns = [] # list of smarts-patterns
# value for each of the patterns above. Negates the values of the above later.
negations = []
if " AND " in smarts:
smarts = smarts.split(" AND ")
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
else:
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
smarts = smarts.split(" OR ")
merge_any = True
# for all subsmarts check if they are preceded by 'NOT '
for s in smarts:
neg = s.startswith("NOT ")
if neg:
s = s[4:]
patterns.append(Chem.MolFromSmarts(s))
negations.append(neg)
all_patterns.append((patterns, negations, merge_any))
return all_patterns
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
"""Matches the tox patterns against a molecule. Returns a boolean array"""
tox_data = []
for mol in mols:
mol_features = []
for patts, negations, merge_any in patterns:
matches = [mol.HasSubstructMatch(p) for p in patts]
matches = [m != n for m, n in zip(matches, negations)]
if merge_any:
pres = any(matches)
else:
pres = all(matches)
mol_features.append(pres)
tox_data.append(np.array(mol_features))
return np.array(tox_data)
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
"""This function creates RDKit descriptors for a list of molecules.
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
mols (list[Mol]): list of molecules
Returns:
np.ndarray: RDKit descriptors of molecules
"""
rdkit_descriptors = list()
for mol in mols:
descrs = []
for _, descr_calc_fn in Descriptors._descList:
descrs.append(descr_calc_fn(mol))
descrs = np.array(descrs)
descrs = descrs[USED_200_DESCR]
rdkit_descriptors.append(descrs)
return np.array(rdkit_descriptors)
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
"""Create quantile values for given features using the columns
Taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Args:
raw_features (np.ndarray): values to put into quantiles
ecdfs (list): ECDFs to use
Returns:
np.ndarray: computed quantiles
"""
quantiles = np.zeros_like(raw_features)
for column in range(raw_features.shape[1]):
raw_values = raw_features[:, column].reshape(-1)
ecdf = ecdfs[column]
q = ecdf(raw_values)
quantiles[:, column] = q
return quantiles
def fill(features, mask, value=np.nan):
n_mols = len(mask)
n_features = features.shape[1]
data = np.zeros(shape=(n_mols, n_features))
data.fill(value)
data[~mask] = features
return data
def create_descriptors(
smiles,
descriptors,
**ecfp_kwargs,
):
"""Generate molecular descriptors for multiple SMILES strings.
Inspired by https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
Each SMILES is processed and sanitized using RDKit.
SMILES that cannot be sanitized are encoded with NaNs, and a corresponding boolean mask
is returned to indicate which inputs were successfully processed.
Args:
smiles (list[str]): List of SMILES strings for which to generate descriptors.
descriptors (list[str]): List of descriptor types to compute.
Supported values include:
['ecfps', 'tox', 'maccs', 'rdkit_descrs'].
Returns:
tuple[dict[str, np.ndarray], np.ndarray]:
- A dictionary mapping descriptor names to their computed arrays.
- A boolean mask of shape (len(smiles),) indicating which SMILES
were successfully sanitized and processed.
"""
# Create cleanded rdkit mol objects
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
print(f"Cleaned molecules, {(~clean_mol_mask).sum()} could not be sanitized")
# Create fingerprints and descriptors
if "ecfps" in descriptors:
ecfps = create_ecfp_fps(mols, **ecfp_kwargs)
ecfps = fill(ecfps, ~clean_mol_mask)
print("Created ECFP fingerprints")
if "tox" in descriptors:
tox_patterns = get_tox_patterns(TOX_SMARTS_PATH)
tox = create_tox_features(mols, tox_patterns)
tox = fill(tox, ~clean_mol_mask)
print("Created Tox features")
if "maccs" in descriptors:
maccs = create_maccs_keys(mols)
maccs = fill(maccs, ~clean_mol_mask)
print("Created MACCS keys")
if "rdkit_descrs" in descriptors:
rdkit_descrs = create_rdkit_descriptors(mols)
rdkit_descrs = fill(rdkit_descrs, ~clean_mol_mask)
print("Created RDKit descriptors")
# concatenate features
features = {}
for descr in descriptors:
features[descr] = vars()[descr]
return features, clean_mol_mask
def get_tox21_split(token, cvfold=None):
"""Retrieve Tox21 splits from HuggingFace with respect to given cvfold."""
ds = load_dataset("ml-jku/tox21", token=token)
train_df = ds["train"].to_pandas()
val_df = ds["validation"].to_pandas()
if cvfold is None:
return {"train": train_df, "validation": val_df}
combined_df = pd.concat([train_df, val_df], ignore_index=True)
cvfold = float(cvfold)
# create new splits
cvfold = float(cvfold)
train_df = combined_df[combined_df.CVfold != cvfold]
val_df = combined_df[combined_df.CVfold == cvfold]
# exclude train mols that occur in the validation split
val_inchikeys = set(val_df["inchikey"])
train_df = train_df[~train_df["inchikey"].isin(val_inchikeys)]
return {
"train": train_df.reset_index(drop=True),
"validation": val_df.reset_index(drop=True),
}
|