Spaces:
Sleeping
Sleeping
Commit
·
593848b
1
Parent(s):
6eb59be
update pipeline
Browse files- predict.py +25 -17
- src/data.py +74 -170
- src/model.py +17 -7
- src/preprocess.py +405 -0
- src/utils.py +2 -0
predict.py
CHANGED
|
@@ -8,13 +8,14 @@ SMILES and target names as keys.
|
|
| 8 |
# Dependencies
|
| 9 |
from collections import defaultdict
|
| 10 |
|
| 11 |
-
from
|
| 12 |
-
from
|
|
|
|
| 13 |
|
| 14 |
# ---------------------------------------------------------------------------------------
|
| 15 |
|
| 16 |
|
| 17 |
-
def predict(smiles_list: list[str]) -> dict:
|
| 18 |
"""Applies the classifier to a list of SMILES strings. Returns prediction=0.0 for
|
| 19 |
any molecule that could not be cleaned.
|
| 20 |
|
|
@@ -26,29 +27,36 @@ def predict(smiles_list: list[str]) -> dict:
|
|
| 26 |
"""
|
| 27 |
print(f"Received {len(smiles_list)} SMILES strings")
|
| 28 |
# preprocessing pipeline
|
| 29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 30 |
smiles_list,
|
| 31 |
-
|
| 32 |
-
|
|
|
|
| 33 |
)
|
| 34 |
-
print(f"{
|
|
|
|
| 35 |
|
| 36 |
# setup model
|
| 37 |
model = Tox21RFClassifier(seed=42)
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
|
| 40 |
# make predicitons
|
| 41 |
predictions = defaultdict(dict)
|
| 42 |
-
#
|
| 43 |
-
|
| 44 |
-
no_pred_smiles = [smi for i, smi in enumerate(smiles_list) if i in removed_idxs]
|
| 45 |
|
| 46 |
for target in model.tasks:
|
| 47 |
target_pred = model.predict(target, features)
|
| 48 |
-
for
|
| 49 |
-
predictions[smiles][target] = target_pred[i]
|
| 50 |
-
|
| 51 |
-
for smiles in no_pred_smiles:
|
| 52 |
-
predictions[smiles][target] = 0.0
|
| 53 |
-
|
| 54 |
return predictions
|
|
|
|
| 8 |
# Dependencies
|
| 9 |
from collections import defaultdict
|
| 10 |
|
| 11 |
+
from .data import create_descriptors
|
| 12 |
+
from .utils import load_pickle, KNOWN_DESCR
|
| 13 |
+
from .model import Tox21RFClassifier
|
| 14 |
|
| 15 |
# ---------------------------------------------------------------------------------------
|
| 16 |
|
| 17 |
|
| 18 |
+
def predict(smiles_list: list[str]) -> dict[str, dict[str, float]]:
|
| 19 |
"""Applies the classifier to a list of SMILES strings. Returns prediction=0.0 for
|
| 20 |
any molecule that could not be cleaned.
|
| 21 |
|
|
|
|
| 27 |
"""
|
| 28 |
print(f"Received {len(smiles_list)} SMILES strings")
|
| 29 |
# preprocessing pipeline
|
| 30 |
+
ecdfs_path = "assets/ecdfs.pkl"
|
| 31 |
+
scaler_path = "assets/scaler.pkl"
|
| 32 |
+
ecdfs = load_pickle(ecdfs_path)
|
| 33 |
+
scaler = load_pickle(scaler_path)
|
| 34 |
+
print(f"Loaded ecdfs from {ecdfs_path}")
|
| 35 |
+
print(f"Loaded scaler from {scaler_path}")
|
| 36 |
+
|
| 37 |
+
descriptors = KNOWN_DESCR
|
| 38 |
+
features, mol_mask = create_descriptors(
|
| 39 |
smiles_list,
|
| 40 |
+
ecdfs=ecdfs,
|
| 41 |
+
scaler=scaler,
|
| 42 |
+
descriptors=descriptors,
|
| 43 |
)
|
| 44 |
+
print(f"Created descriptors {descriptors} for molecules.")
|
| 45 |
+
print(f"{len(mol_mask) - sum(mol_mask)} molecules removed during cleaning")
|
| 46 |
|
| 47 |
# setup model
|
| 48 |
model = Tox21RFClassifier(seed=42)
|
| 49 |
+
model_path = "assets/rf_alltasks.joblib"
|
| 50 |
+
model.load_model(model_path)
|
| 51 |
+
print(f"Loaded model from {model_path}")
|
| 52 |
|
| 53 |
# make predicitons
|
| 54 |
predictions = defaultdict(dict)
|
| 55 |
+
# create a list with same length as smiles_list to obtain indices for respective features
|
| 56 |
+
feat_indices = np.cumsum(mol_mask) - 1
|
|
|
|
| 57 |
|
| 58 |
for target in model.tasks:
|
| 59 |
target_pred = model.predict(target, features)
|
| 60 |
+
for smiles, is_clean, i in zip(smiles_list, mol_mask, feat_indices):
|
| 61 |
+
predictions[smiles][target] = float(target_pred[i]) if is_clean else 0.0
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
return predictions
|
src/data.py
CHANGED
|
@@ -7,8 +7,10 @@ SMILES and target names as keys.
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import os
|
|
|
|
| 10 |
|
| 11 |
import numpy as np
|
|
|
|
| 12 |
|
| 13 |
from sklearn.preprocessing import StandardScaler
|
| 14 |
from statsmodels.distributions.empirical_distribution import ECDF
|
|
@@ -17,177 +19,79 @@ from rdkit import Chem, DataStructs
|
|
| 17 |
from rdkit.Chem import Descriptors, rdFingerprintGenerator
|
| 18 |
from rdkit.Chem.rdchem import Mol
|
| 19 |
|
| 20 |
-
from .utils import USED_200_DESCR, Standardizer, load_pickle, write_pickle
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
save_scaler_path: str = "",
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
)
|
| 56 |
-
scaler = (
|
| 57 |
-
load_pickle(load_scaler_path)
|
| 58 |
-
if load_scaler_path and os.path.exists(load_scaler_path)
|
| 59 |
-
else None
|
| 60 |
-
)
|
| 61 |
-
|
| 62 |
-
# Create cleanded rdkit mol objects
|
| 63 |
-
mols, removed_idxs = create_cleaned_mol_objects(smiles_list)
|
| 64 |
-
print("Cleaned molecules")
|
| 65 |
-
|
| 66 |
-
# Create fingerprints and descriptors
|
| 67 |
-
ecfps = create_ecfp_fps(mols)
|
| 68 |
-
print("Created ECFP fingerprints")
|
| 69 |
-
rdkit_descrs = create_rdkit_descriptors(mols)
|
| 70 |
-
print("Created RDKit descriptors")
|
| 71 |
-
|
| 72 |
-
# Create and save ecdfs
|
| 73 |
-
if ecdfs is None:
|
| 74 |
-
print("Create ECDFs")
|
| 75 |
-
ecdfs = []
|
| 76 |
-
for column in range(rdkit_descrs.shape[1]):
|
| 77 |
-
raw_values = rdkit_descrs[:, column].reshape(-1)
|
| 78 |
-
ecdfs.append(ECDF(raw_values))
|
| 79 |
-
if save_ecdf_path:
|
| 80 |
-
write_pickle(save_ecdf_path, ecdfs)
|
| 81 |
-
print(f"Saved ECDFs under {save_ecdf_path}")
|
| 82 |
-
|
| 83 |
-
# Create quantiles
|
| 84 |
-
rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
|
| 85 |
-
print("Created quantiles of RDKit descriptors")
|
| 86 |
-
|
| 87 |
-
# Concatenate features
|
| 88 |
-
raw_features = np.concatenate((ecfps, rdkit_descr_quantiles), axis=1)
|
| 89 |
-
|
| 90 |
-
if scaler is None:
|
| 91 |
-
scaler = StandardScaler()
|
| 92 |
-
scaler.fit(raw_features)
|
| 93 |
-
print("Fitted the StandardScaler")
|
| 94 |
-
if save_scaler_path:
|
| 95 |
-
write_pickle(save_scaler_path, scaler)
|
| 96 |
-
print(f"Saved the StandardScaler under {save_scaler_path}")
|
| 97 |
-
|
| 98 |
-
# Normalize feature vectors
|
| 99 |
-
normalized_features = scaler.transform(raw_features)
|
| 100 |
-
print("Normalized the molecule features")
|
| 101 |
-
|
| 102 |
-
return normalized_features, removed_idxs
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
def create_cleaned_mol_objects(smiles: list[str]) -> list[Mol]:
|
| 106 |
-
"""This function creates cleaned RDKit mol objects from a list of SMILES.
|
| 107 |
-
|
| 108 |
-
Args:
|
| 109 |
-
smiles (list[str]): list of SMILES
|
| 110 |
-
|
| 111 |
-
Returns:
|
| 112 |
-
list[Mol]: list of cleaned molecules
|
| 113 |
-
"""
|
| 114 |
-
sm = Standardizer(canon_taut=True)
|
| 115 |
-
|
| 116 |
-
removed_idxs = list()
|
| 117 |
-
mols = list()
|
| 118 |
-
for i, smile in enumerate(smiles):
|
| 119 |
-
mol = Chem.MolFromSmiles(smile)
|
| 120 |
-
standardized_mol, _ = sm.standardize_mol(mol)
|
| 121 |
-
if standardized_mol is None:
|
| 122 |
-
removed_idxs.append(i)
|
| 123 |
-
continue
|
| 124 |
-
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
|
| 125 |
-
mols.append(can_mol)
|
| 126 |
-
return mols, removed_idxs
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
def create_ecfp_fps(mols: list[Mol]) -> np.ndarray:
|
| 130 |
-
"""This function ECFP fingerprints for a list of molecules.
|
| 131 |
-
|
| 132 |
-
Args:
|
| 133 |
-
mols (list[Mol]): list of molecules
|
| 134 |
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
|
| 151 |
-
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
Args:
|
| 156 |
-
mols (list[Mol]): list of molecules
|
| 157 |
-
|
| 158 |
-
Returns:
|
| 159 |
-
np.ndarray: RDKit descriptors of molecules
|
| 160 |
-
"""
|
| 161 |
-
rdkit_descriptors = list()
|
| 162 |
-
|
| 163 |
-
for mol in mols:
|
| 164 |
-
descrs = []
|
| 165 |
-
for _, descr_calc_fn in Descriptors._descList:
|
| 166 |
-
descrs.append(descr_calc_fn(mol))
|
| 167 |
-
|
| 168 |
-
descrs = np.array(descrs)
|
| 169 |
-
descrs = descrs[USED_200_DESCR]
|
| 170 |
-
rdkit_descriptors.append(descrs)
|
| 171 |
-
|
| 172 |
-
return np.array(rdkit_descriptors)
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
|
| 176 |
-
"""Create quantile values for given features using the columns
|
| 177 |
-
|
| 178 |
-
Args:
|
| 179 |
-
raw_features (np.ndarray): values to put into quantiles
|
| 180 |
-
ecdfs (list): ECDFs to use
|
| 181 |
-
|
| 182 |
-
Returns:
|
| 183 |
-
np.ndarray: computed quantiles
|
| 184 |
-
"""
|
| 185 |
-
quantiles = np.zeros_like(raw_features)
|
| 186 |
|
| 187 |
-
|
| 188 |
-
raw_values = raw_features[:, column].reshape(-1)
|
| 189 |
-
ecdf = ecdfs[column]
|
| 190 |
-
q = ecdf(raw_values)
|
| 191 |
-
quantiles[:, column] = q
|
| 192 |
|
| 193 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
"""
|
| 8 |
|
| 9 |
import os
|
| 10 |
+
from typing import Iterable, Literal
|
| 11 |
|
| 12 |
import numpy as np
|
| 13 |
+
import torch
|
| 14 |
|
| 15 |
from sklearn.preprocessing import StandardScaler
|
| 16 |
from statsmodels.distributions.empirical_distribution import ECDF
|
|
|
|
| 19 |
from rdkit.Chem import Descriptors, rdFingerprintGenerator
|
| 20 |
from rdkit.Chem.rdchem import Mol
|
| 21 |
|
| 22 |
+
from .utils import USED_200_DESCR, Standardizer, load_pickle, write_pickle, KNOWN_DESCR
|
| 23 |
+
from .preprocess import normalize_features
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def get_descriptor_dataset(
|
| 27 |
+
data_path: str,
|
| 28 |
+
descriptors: Iterable[str] | Literal["all"],
|
| 29 |
+
scaler=None,
|
| 30 |
+
save_scaler_path: str = "data/scaler.pkl",
|
| 31 |
+
verbose=True,
|
| 32 |
+
normalize=True,
|
| 33 |
+
):
|
| 34 |
+
if descriptors == "all":
|
| 35 |
+
descriptors = KNOWN_DESCR
|
| 36 |
+
|
| 37 |
+
assert isinstance(descriptors, Iterable), "Passed descriptors are not iterable!"
|
| 38 |
+
assert all(
|
| 39 |
+
[descr in KNOWN_DESCR for descr in descriptors]
|
| 40 |
+
), f"Passed descriptors contains unknown descriptor types. Allowed descriptors: {KNOWN_DESCR}"
|
| 41 |
+
|
| 42 |
+
datafile = np.load(data_path)
|
| 43 |
+
|
| 44 |
+
if not isinstance(datafile, np.ndarray):
|
| 45 |
+
# concatenate all descriptors and normalize
|
| 46 |
+
data = np.concatenate([datafile[descr] for descr in descriptors], axis=1)
|
| 47 |
+
labels = datafile["labels"]
|
| 48 |
+
|
| 49 |
+
else:
|
| 50 |
+
print("NPY file passed, cannot select specific descriptors")
|
| 51 |
+
data, labels = datafile[:, :-12], datafile[:, -12:]
|
| 52 |
+
|
| 53 |
+
if normalize:
|
| 54 |
+
data, scaler = normalize_features(
|
| 55 |
+
data,
|
| 56 |
+
scaler=scaler,
|
| 57 |
+
save_scaler_path=save_scaler_path,
|
| 58 |
+
verbose=verbose,
|
| 59 |
+
)
|
| 60 |
+
|
| 61 |
+
# filter out unsanitized molecules
|
| 62 |
+
mask = ~np.isnan(data).any(axis=1)
|
| 63 |
+
data = data[mask]
|
| 64 |
+
labels = labels[mask]
|
| 65 |
+
|
| 66 |
+
assert data.shape[0] == labels.shape[0], (
|
| 67 |
+
f"Mismatch between data and labels: "
|
| 68 |
+
f"data has {data.shape[0]} samples, but labels has {labels.shape[0]} samples."
|
| 69 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 70 |
|
| 71 |
+
return (data, labels, scaler)
|
| 72 |
+
|
| 73 |
+
|
| 74 |
+
def get_torch_descriptor_dataset(
|
| 75 |
+
data_path: str,
|
| 76 |
+
descriptors: list[str],
|
| 77 |
+
scaler=None,
|
| 78 |
+
save_scaler_path: str = "data/scaler.pkl",
|
| 79 |
+
nan_to_num: int = -100,
|
| 80 |
+
verbose=True,
|
| 81 |
+
normalize=True,
|
| 82 |
+
) -> torch.utils.data.TensorDataset:
|
| 83 |
+
data, labels, scaler = get_descriptor_dataset(
|
| 84 |
+
data_path,
|
| 85 |
+
descriptors,
|
| 86 |
+
scaler,
|
| 87 |
+
save_scaler_path,
|
| 88 |
+
verbose=verbose,
|
| 89 |
+
normalize=normalize,
|
| 90 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
+
labels = np.nan_to_num(labels, nan=nan_to_num)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
+
dataset = torch.utils.data.TensorDataset(
|
| 95 |
+
torch.FloatTensor(data), torch.LongTensor(labels)
|
| 96 |
+
)
|
| 97 |
+
return dataset, scaler
|
src/model.py
CHANGED
|
@@ -19,17 +19,27 @@ from .utils import TASKS
|
|
| 19 |
class Tox21RFClassifier:
|
| 20 |
"""A random forest classifier that assigns a toxicity score to a given SMILES string."""
|
| 21 |
|
| 22 |
-
def __init__(self, seed: int = 42):
|
| 23 |
"""Initialize a random forest classifier for each of the 12 Tox21 tasks.
|
| 24 |
|
| 25 |
Args:
|
| 26 |
seed (int, optional): seed for RF to ensure reproducibility. Defaults to 42.
|
| 27 |
"""
|
| 28 |
self.tasks = TASKS
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
|
| 34 |
def load_model(self, path: str) -> None:
|
| 35 |
"""Loads the model from a given path
|
|
@@ -45,8 +55,8 @@ class Tox21RFClassifier:
|
|
| 45 |
Args:
|
| 46 |
path (str): path to save model to
|
| 47 |
"""
|
| 48 |
-
if not os.path.exists(os.path.
|
| 49 |
-
os.makedirs(os.path.
|
| 50 |
|
| 51 |
joblib.dump(self.model, path)
|
| 52 |
|
|
|
|
| 19 |
class Tox21RFClassifier:
|
| 20 |
"""A random forest classifier that assigns a toxicity score to a given SMILES string."""
|
| 21 |
|
| 22 |
+
def __init__(self, seed: int = 42, task_config: dict = None):
|
| 23 |
"""Initialize a random forest classifier for each of the 12 Tox21 tasks.
|
| 24 |
|
| 25 |
Args:
|
| 26 |
seed (int, optional): seed for RF to ensure reproducibility. Defaults to 42.
|
| 27 |
"""
|
| 28 |
self.tasks = TASKS
|
| 29 |
+
if task_config is None:
|
| 30 |
+
self.model = {
|
| 31 |
+
task: RandomForestClassifier(
|
| 32 |
+
n_estimators=1000, random_state=seed, n_jobs=8
|
| 33 |
+
)
|
| 34 |
+
for task in self.tasks
|
| 35 |
+
}
|
| 36 |
+
else:
|
| 37 |
+
self.model = {
|
| 38 |
+
task: RandomForestClassifier(
|
| 39 |
+
**task_config[task], random_state=seed, n_jobs=8
|
| 40 |
+
)
|
| 41 |
+
for task in self.tasks
|
| 42 |
+
}
|
| 43 |
|
| 44 |
def load_model(self, path: str) -> None:
|
| 45 |
"""Loads the model from a given path
|
|
|
|
| 55 |
Args:
|
| 56 |
path (str): path to save model to
|
| 57 |
"""
|
| 58 |
+
if not os.path.exists(os.path.dirname(path)):
|
| 59 |
+
os.makedirs(os.path.dirname(path))
|
| 60 |
|
| 61 |
joblib.dump(self.model, path)
|
| 62 |
|
src/preprocess.py
ADDED
|
@@ -0,0 +1,405 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# pipeline taken from https://huggingface.co/spaces/ml-jku/mhnfs/blob/main/src/data_preprocessing/create_descriptors.py
|
| 2 |
+
|
| 3 |
+
"""
|
| 4 |
+
This files includes a the data processing for Tox21.
|
| 5 |
+
As an input it takes a list of SMILES and it outputs a nested dictionary with
|
| 6 |
+
SMILES and target names as keys.
|
| 7 |
+
"""
|
| 8 |
+
|
| 9 |
+
import os
|
| 10 |
+
import argparse
|
| 11 |
+
import json
|
| 12 |
+
from typing import Iterable
|
| 13 |
+
|
| 14 |
+
import numpy as np
|
| 15 |
+
import pandas as pd
|
| 16 |
+
|
| 17 |
+
from sklearn.preprocessing import StandardScaler
|
| 18 |
+
from statsmodels.distributions.empirical_distribution import ECDF
|
| 19 |
+
from datasets import load_dataset
|
| 20 |
+
|
| 21 |
+
from rdkit import Chem, DataStructs
|
| 22 |
+
from rdkit.Chem import Descriptors, rdFingerprintGenerator, MACCSkeys
|
| 23 |
+
from rdkit.Chem.rdchem import Mol
|
| 24 |
+
|
| 25 |
+
from .utils import (
|
| 26 |
+
TASKS,
|
| 27 |
+
KNOWN_DESCR,
|
| 28 |
+
HF_TOKEN,
|
| 29 |
+
USED_200_DESCR,
|
| 30 |
+
Standardizer,
|
| 31 |
+
load_pickle,
|
| 32 |
+
write_pickle,
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
parser = argparse.ArgumentParser(
|
| 36 |
+
description="Data preprocessing script for the Tox21 dataset"
|
| 37 |
+
)
|
| 38 |
+
|
| 39 |
+
parser.add_argument(
|
| 40 |
+
"--save_folder",
|
| 41 |
+
type=str,
|
| 42 |
+
default="data/",
|
| 43 |
+
)
|
| 44 |
+
|
| 45 |
+
parser.add_argument(
|
| 46 |
+
"--use_hf",
|
| 47 |
+
type=int,
|
| 48 |
+
default=0,
|
| 49 |
+
)
|
| 50 |
+
|
| 51 |
+
parser.add_argument(
|
| 52 |
+
"--path_ecdfs",
|
| 53 |
+
type=str,
|
| 54 |
+
default="data/ecdfs.pkl",
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
parser.add_argument(
|
| 58 |
+
"--tox_smarts_filepath",
|
| 59 |
+
type=str,
|
| 60 |
+
default="data/tox_smarts.json",
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def create_cleaned_mol_objects(smiles: list[str]) -> tuple[list[Mol], np.ndarray]:
|
| 65 |
+
"""This function creates cleaned RDKit mol objects from a list of SMILES.
|
| 66 |
+
|
| 67 |
+
Args:
|
| 68 |
+
smiles (list[str]): list of SMILES
|
| 69 |
+
|
| 70 |
+
Returns:
|
| 71 |
+
list[Mol]: list of cleaned molecules
|
| 72 |
+
np.ndarray[bool]: mask that contains False at index `i`, if molecule in `smiles` at
|
| 73 |
+
index `i` could not be cleaned and was removed.
|
| 74 |
+
"""
|
| 75 |
+
sm = Standardizer(canon_taut=True)
|
| 76 |
+
|
| 77 |
+
clean_mol_mask = list()
|
| 78 |
+
mols = list()
|
| 79 |
+
for i, smile in enumerate(smiles):
|
| 80 |
+
mol = Chem.MolFromSmiles(smile)
|
| 81 |
+
standardized_mol, _ = sm.standardize_mol(mol)
|
| 82 |
+
is_cleaned = standardized_mol is not None
|
| 83 |
+
clean_mol_mask.append(is_cleaned)
|
| 84 |
+
if not is_cleaned:
|
| 85 |
+
continue
|
| 86 |
+
can_mol = Chem.MolFromSmiles(Chem.MolToSmiles(standardized_mol))
|
| 87 |
+
mols.append(can_mol)
|
| 88 |
+
|
| 89 |
+
return mols, np.array(clean_mol_mask)
|
| 90 |
+
|
| 91 |
+
|
| 92 |
+
def create_ecfp_fps(mols: list[Mol]) -> np.ndarray:
|
| 93 |
+
"""This function ECFP fingerprints for a list of molecules.
|
| 94 |
+
|
| 95 |
+
Args:
|
| 96 |
+
mols (list[Mol]): list of molecules
|
| 97 |
+
|
| 98 |
+
Returns:
|
| 99 |
+
np.ndarray: ECFP fingerprints of molecules
|
| 100 |
+
"""
|
| 101 |
+
ecfps = list()
|
| 102 |
+
|
| 103 |
+
for mol in mols:
|
| 104 |
+
fp_sparse_vec = rdFingerprintGenerator.GetCountFPs(
|
| 105 |
+
[mol], fpType=rdFingerprintGenerator.MorganFP
|
| 106 |
+
)[0]
|
| 107 |
+
fp = np.zeros((0,), np.int8)
|
| 108 |
+
DataStructs.ConvertToNumpyArray(fp_sparse_vec, fp)
|
| 109 |
+
|
| 110 |
+
ecfps.append(fp)
|
| 111 |
+
|
| 112 |
+
return np.array(ecfps)
|
| 113 |
+
|
| 114 |
+
|
| 115 |
+
def create_maccs_keys(mols: list[Mol]) -> np.ndarray:
|
| 116 |
+
maccs = [MACCSkeys.GenMACCSKeys(x) for x in mols]
|
| 117 |
+
return np.array(maccs)
|
| 118 |
+
|
| 119 |
+
|
| 120 |
+
def get_tox_patterns(filepath: str):
|
| 121 |
+
"""This calculates tox features defined in tox_smarts.json.
|
| 122 |
+
Args:
|
| 123 |
+
mols: A list of Mol
|
| 124 |
+
n_jobs: If >1 multiprocessing is used
|
| 125 |
+
"""
|
| 126 |
+
# load patterns
|
| 127 |
+
with open(filepath) as f:
|
| 128 |
+
smarts_list = [s[1] for s in json.load(f)]
|
| 129 |
+
|
| 130 |
+
# Code does not work for this case
|
| 131 |
+
assert len([s for s in smarts_list if ("AND" in s) and ("OR" in s)]) == 0
|
| 132 |
+
|
| 133 |
+
# Chem.MolFromSmarts takes a long time so it pays of to parse all the smarts first
|
| 134 |
+
# and then use them for all molecules. This gives a huge speedup over existing code.
|
| 135 |
+
# a list of patterns, whether to negate the match result and how to join them to obtain one boolean value
|
| 136 |
+
all_patterns = []
|
| 137 |
+
for smarts in smarts_list:
|
| 138 |
+
patterns = [] # list of smarts-patterns
|
| 139 |
+
# value for each of the patterns above. Negates the values of the above later.
|
| 140 |
+
negations = []
|
| 141 |
+
|
| 142 |
+
if " AND " in smarts:
|
| 143 |
+
smarts = smarts.split(" AND ")
|
| 144 |
+
merge_any = False # If an ' AND ' is found all 'subsmarts' have to match
|
| 145 |
+
else:
|
| 146 |
+
# If there is an ' OR ' present it's enough is any of the 'subsmarts' match.
|
| 147 |
+
# This also accumulates smarts where neither ' OR ' nor ' AND ' occur
|
| 148 |
+
smarts = smarts.split(" OR ")
|
| 149 |
+
merge_any = True
|
| 150 |
+
|
| 151 |
+
# for all subsmarts check if they are preceded by 'NOT '
|
| 152 |
+
for s in smarts:
|
| 153 |
+
neg = s.startswith("NOT ")
|
| 154 |
+
if neg:
|
| 155 |
+
s = s[4:]
|
| 156 |
+
patterns.append(Chem.MolFromSmarts(s))
|
| 157 |
+
negations.append(neg)
|
| 158 |
+
|
| 159 |
+
all_patterns.append((patterns, negations, merge_any))
|
| 160 |
+
return all_patterns
|
| 161 |
+
|
| 162 |
+
|
| 163 |
+
def create_tox_features(mols: list[Mol], patterns: list) -> np.ndarray:
|
| 164 |
+
"""Matches the tox patterns against a molecule. Returns a boolean array"""
|
| 165 |
+
tox_data = []
|
| 166 |
+
for mol in mols:
|
| 167 |
+
mol_features = []
|
| 168 |
+
for patts, negations, merge_any in patterns:
|
| 169 |
+
matches = [mol.HasSubstructMatch(p) for p in patts]
|
| 170 |
+
matches = [m != n for m, n in zip(matches, negations)]
|
| 171 |
+
if merge_any:
|
| 172 |
+
pres = any(matches)
|
| 173 |
+
else:
|
| 174 |
+
pres = all(matches)
|
| 175 |
+
mol_features.append(pres)
|
| 176 |
+
|
| 177 |
+
tox_data.append(np.array(mol_features))
|
| 178 |
+
|
| 179 |
+
return np.array(tox_data)
|
| 180 |
+
|
| 181 |
+
|
| 182 |
+
def create_rdkit_descriptors(mols: list[Mol]) -> np.ndarray:
|
| 183 |
+
"""This function creates RDKit descriptors for a list of molecules.
|
| 184 |
+
|
| 185 |
+
Args:
|
| 186 |
+
mols (list[Mol]): list of molecules
|
| 187 |
+
|
| 188 |
+
Returns:
|
| 189 |
+
np.ndarray: RDKit descriptors of molecules
|
| 190 |
+
"""
|
| 191 |
+
rdkit_descriptors = list()
|
| 192 |
+
|
| 193 |
+
for mol in mols:
|
| 194 |
+
descrs = []
|
| 195 |
+
for _, descr_calc_fn in Descriptors._descList:
|
| 196 |
+
descrs.append(descr_calc_fn(mol))
|
| 197 |
+
|
| 198 |
+
descrs = np.array(descrs)
|
| 199 |
+
descrs = descrs[USED_200_DESCR]
|
| 200 |
+
rdkit_descriptors.append(descrs)
|
| 201 |
+
|
| 202 |
+
return np.array(rdkit_descriptors)
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
def create_quantiles(raw_features: np.ndarray, ecdfs: list) -> np.ndarray:
|
| 206 |
+
"""Create quantile values for given features using the columns
|
| 207 |
+
|
| 208 |
+
Args:
|
| 209 |
+
raw_features (np.ndarray): values to put into quantiles
|
| 210 |
+
ecdfs (list): ECDFs to use
|
| 211 |
+
|
| 212 |
+
Returns:
|
| 213 |
+
np.ndarray: computed quantiles
|
| 214 |
+
"""
|
| 215 |
+
quantiles = np.zeros_like(raw_features)
|
| 216 |
+
|
| 217 |
+
for column in range(raw_features.shape[1]):
|
| 218 |
+
raw_values = raw_features[:, column].reshape(-1)
|
| 219 |
+
ecdf = ecdfs[column]
|
| 220 |
+
q = ecdf(raw_values)
|
| 221 |
+
quantiles[:, column] = q
|
| 222 |
+
|
| 223 |
+
return quantiles
|
| 224 |
+
|
| 225 |
+
|
| 226 |
+
def fill(features, mask, value=np.nan):
|
| 227 |
+
n_mols = len(mask)
|
| 228 |
+
n_features = features.shape[1]
|
| 229 |
+
|
| 230 |
+
data = np.zeros(shape=(n_mols, n_features))
|
| 231 |
+
data.fill(value)
|
| 232 |
+
data[~mask] = features
|
| 233 |
+
return data
|
| 234 |
+
|
| 235 |
+
|
| 236 |
+
def normalize_features(
|
| 237 |
+
raw_features,
|
| 238 |
+
scaler=None,
|
| 239 |
+
save_scaler_path: str = "",
|
| 240 |
+
verbose=True,
|
| 241 |
+
):
|
| 242 |
+
if scaler is None:
|
| 243 |
+
scaler = StandardScaler()
|
| 244 |
+
scaler.fit(raw_features)
|
| 245 |
+
if verbose:
|
| 246 |
+
print("Fitted the StandardScaler")
|
| 247 |
+
if save_scaler_path:
|
| 248 |
+
write_pickle(save_scaler_path, scaler)
|
| 249 |
+
if verbose:
|
| 250 |
+
print(f"Saved the StandardScaler under {save_scaler_path}")
|
| 251 |
+
|
| 252 |
+
# Normalize feature vectors
|
| 253 |
+
normalized_features = scaler.transform(raw_features)
|
| 254 |
+
if verbose:
|
| 255 |
+
print("Normalized molecule features")
|
| 256 |
+
return normalized_features, scaler
|
| 257 |
+
|
| 258 |
+
|
| 259 |
+
def create_descriptors(
|
| 260 |
+
smiles,
|
| 261 |
+
ecdfs=None,
|
| 262 |
+
scaler=None,
|
| 263 |
+
descriptors: Iterable = KNOWN_DESCR,
|
| 264 |
+
):
|
| 265 |
+
# Create cleanded rdkit mol objects
|
| 266 |
+
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
|
| 267 |
+
print("Cleaned molecules")
|
| 268 |
+
|
| 269 |
+
features = []
|
| 270 |
+
if "ecfps" in descriptors:
|
| 271 |
+
# Create fingerprints and descriptors
|
| 272 |
+
ecfps = create_ecfp_fps(mols)
|
| 273 |
+
# expand using mol_mask
|
| 274 |
+
ecfps = fill(ecfps, ~clean_mol_mask)
|
| 275 |
+
features.append(ecfps)
|
| 276 |
+
print("Created ECFP fingerprints")
|
| 277 |
+
|
| 278 |
+
if "rdkit_descr_quantiles" in descriptors:
|
| 279 |
+
rdkit_descrs = create_rdkit_descriptors(mols)
|
| 280 |
+
print("Created RDKit descriptors")
|
| 281 |
+
|
| 282 |
+
# Create and save ecdfs
|
| 283 |
+
if ecdfs is None:
|
| 284 |
+
print("Create ECDFs")
|
| 285 |
+
ecdfs = []
|
| 286 |
+
for column in range(rdkit_descrs.shape[1]):
|
| 287 |
+
raw_values = rdkit_descrs[:, column].reshape(-1)
|
| 288 |
+
ecdfs.append(ECDF(raw_values))
|
| 289 |
+
|
| 290 |
+
# Create quantiles
|
| 291 |
+
rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
|
| 292 |
+
# expand using mol_mask
|
| 293 |
+
rdkit_descr_quantiles = fill(rdkit_descr_quantiles, ~clean_mol_mask)
|
| 294 |
+
features.append(rdkit_descr_quantiles)
|
| 295 |
+
print("Created quantiles of RDKit descriptors")
|
| 296 |
+
|
| 297 |
+
if "maccs" in descriptors:
|
| 298 |
+
maccs = create_maccs_keys(mols)
|
| 299 |
+
maccs = fill(maccs, ~clean_mol_mask)
|
| 300 |
+
features.append(maccs)
|
| 301 |
+
print("Created MACCS keys")
|
| 302 |
+
|
| 303 |
+
if "tox" in descriptors:
|
| 304 |
+
tox_patterns = get_tox_patterns("assets/tox_smarts.json")
|
| 305 |
+
tox = create_tox_features(mols, tox_patterns)
|
| 306 |
+
tox = fill(tox, ~clean_mol_mask)
|
| 307 |
+
features.append(tox)
|
| 308 |
+
print("Created Tox features")
|
| 309 |
+
|
| 310 |
+
# concatenate features
|
| 311 |
+
raw_features = np.concatenate(features, axis=1)
|
| 312 |
+
|
| 313 |
+
# normalize with scaler if scaler is passed, else create scaler
|
| 314 |
+
features, _ = normalize_features(
|
| 315 |
+
raw_features,
|
| 316 |
+
scaler=scaler,
|
| 317 |
+
verbose=True,
|
| 318 |
+
)
|
| 319 |
+
|
| 320 |
+
return features, clean_mol_mask
|
| 321 |
+
|
| 322 |
+
|
| 323 |
+
def main(args):
|
| 324 |
+
splits = ["train", "validation"]
|
| 325 |
+
ds = load_dataset("tschouis/tox21", token=HF_TOKEN)
|
| 326 |
+
|
| 327 |
+
for split in splits:
|
| 328 |
+
|
| 329 |
+
print(f"Preprocess {split} molecules")
|
| 330 |
+
smiles = list(ds[split]["smiles"])
|
| 331 |
+
|
| 332 |
+
# Create cleanded rdkit mol objects
|
| 333 |
+
mols, clean_mol_mask = create_cleaned_mol_objects(smiles)
|
| 334 |
+
print("Cleaned molecules")
|
| 335 |
+
|
| 336 |
+
tox_patterns = get_tox_patterns(args.tox_smarts_filepath)
|
| 337 |
+
|
| 338 |
+
# Create fingerprints and descriptors
|
| 339 |
+
ecfps = create_ecfp_fps(mols)
|
| 340 |
+
# expand using mol_mask
|
| 341 |
+
ecfps = fill(ecfps, ~clean_mol_mask)
|
| 342 |
+
print("Created ECFP fingerprints")
|
| 343 |
+
|
| 344 |
+
rdkit_descrs = create_rdkit_descriptors(mols)
|
| 345 |
+
print("Created RDKit descriptors")
|
| 346 |
+
|
| 347 |
+
# Create and save ecdfs
|
| 348 |
+
if split == "train":
|
| 349 |
+
print("Create ECDFs")
|
| 350 |
+
ecdfs = []
|
| 351 |
+
for column in range(rdkit_descrs.shape[1]):
|
| 352 |
+
raw_values = rdkit_descrs[:, column].reshape(-1)
|
| 353 |
+
ecdfs.append(ECDF(raw_values))
|
| 354 |
+
|
| 355 |
+
write_pickle(args.path_ecdfs, ecdfs)
|
| 356 |
+
print(f"Saved ECDFs under {args.path_ecdfs}")
|
| 357 |
+
else:
|
| 358 |
+
print(f"Load ECDFs from {args.path_ecdfs}")
|
| 359 |
+
ecdfs = load_pickle(args.path_ecdfs)
|
| 360 |
+
|
| 361 |
+
# Create quantiles
|
| 362 |
+
rdkit_descr_quantiles = create_quantiles(rdkit_descrs, ecdfs)
|
| 363 |
+
# expand using mol_mask
|
| 364 |
+
rdkit_descr_quantiles = fill(rdkit_descr_quantiles, ~clean_mol_mask)
|
| 365 |
+
print("Created quantiles of RDKit descriptors")
|
| 366 |
+
|
| 367 |
+
maccs = create_maccs_keys(mols)
|
| 368 |
+
maccs = fill(maccs, ~clean_mol_mask)
|
| 369 |
+
print("Created MACCS keys")
|
| 370 |
+
|
| 371 |
+
tox = create_tox_features(mols, tox_patterns)
|
| 372 |
+
tox = fill(tox, ~clean_mol_mask)
|
| 373 |
+
print("Created Tox features")
|
| 374 |
+
|
| 375 |
+
labels = []
|
| 376 |
+
for task in TASKS:
|
| 377 |
+
datasplit = ds[split].to_pandas() if args.use_hf else ds[split]
|
| 378 |
+
labels.append(datasplit[task].to_numpy())
|
| 379 |
+
labels = np.stack(labels, axis=1)
|
| 380 |
+
|
| 381 |
+
save_path = os.path.join(args.save_folder, f"tox21_{split}.npz")
|
| 382 |
+
with open(save_path, "wb") as f:
|
| 383 |
+
np.savez(
|
| 384 |
+
f,
|
| 385 |
+
labels=labels,
|
| 386 |
+
ecfps=ecfps,
|
| 387 |
+
rdkit_descr_quantiles=rdkit_descr_quantiles,
|
| 388 |
+
maccs=maccs,
|
| 389 |
+
tox=tox,
|
| 390 |
+
)
|
| 391 |
+
print(f"Saved preprocessed {split} split under {save_path}")
|
| 392 |
+
|
| 393 |
+
print("Preprocessing finished successfully")
|
| 394 |
+
|
| 395 |
+
|
| 396 |
+
if __name__ == "__main__":
|
| 397 |
+
args = parser.parse_args()
|
| 398 |
+
|
| 399 |
+
if not os.path.exists(args.save_folder):
|
| 400 |
+
os.makedirs(args.save_folder)
|
| 401 |
+
|
| 402 |
+
if not os.path.exists(os.path.dirname(args.path_ecdfs)):
|
| 403 |
+
os.makedirs(os.path.dirname(args.path_ecdfs))
|
| 404 |
+
|
| 405 |
+
main(args)
|
src/utils.py
CHANGED
|
@@ -28,6 +28,8 @@ TASKS = [
|
|
| 28 |
"SR-p53",
|
| 29 |
]
|
| 30 |
|
|
|
|
|
|
|
| 31 |
USED_200_DESCR = [
|
| 32 |
0,
|
| 33 |
1,
|
|
|
|
| 28 |
"SR-p53",
|
| 29 |
]
|
| 30 |
|
| 31 |
+
KNOWN_DESCR = ["ecfps", "rdkit_descr_quantiles", "maccs", "tox"]
|
| 32 |
+
|
| 33 |
USED_200_DESCR = [
|
| 34 |
0,
|
| 35 |
1,
|