botsi's picture
Upload 14 files
6890fdc verified
raw
history blame
6.77 kB
# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat
# Modified for trust game purposes
import os
from threading import Thread
from typing import Iterator
import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
# For Prompt Engineering
import requests
from huggingface_hub import AsyncInferenceClient
from system_prompt_config import construct_input_prompt
# Save chat history as JSON
import json
import atexit
# From 70B code
system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe. Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."
# Add this global variable to store the chat history
global_chat_history = []
MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))
DESCRIPTION = """\
# Llama-2 7B Chat
This is your personal space to chat.
You can ask anything from strategic questions regarding the game or just chat as you like.
"""
'''LICENSE = """
<p/>
---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""
if not torch.cuda.is_available():
DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-13b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
'''
#if not torch.cuda.is_available():
# DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"
if torch.cuda.is_available():
model_id = "meta-llama/Llama-2-7b-chat-hf"
model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
tokenizer = AutoTokenizer.from_pretrained(model_id)
tokenizer.use_default_system_prompt = False
# Add this function to store the chat history
def save_chat_history():
"""Save the chat history to a JSON file."""
with open("chat_history.json", "w") as json_file:
json.dump(global_chat_history, json_file)
@spaces.GPU
# From 70B code
# async def generate(
def generate(
message: str,
chat_history: list[tuple[str, str]],
# system_prompt: str,
max_new_tokens: int = 1024,
temperature: float = 0.6,
top_p: float = 0.9,
top_k: int = 50,
repetition_penalty: float = 1.2,
) -> Iterator[str]:
# Use the global variable to store the chat history
global global_chat_history
conversation = []
#if system_prompt:
# conversation.append({"role": "system", "content": system_prompt})
# Construct the input prompt using the functions from the system_prompt_config module
input_prompt = construct_input_prompt(chat_history, message)
# Convert input prompt to tensor
input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device)
for user, assistant in chat_history:
conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
conversation.append({"role": "user", "content": message})
input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
input_ids = input_ids.to(model.device)
# Set up the TextIteratorStreamer
streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
# Set up the generation arguments
generate_kwargs = dict(
{"input_ids": input_ids},
streamer=streamer,
max_new_tokens=max_new_tokens,
do_sample=True,
top_p=top_p,
top_k=top_k,
temperature=temperature,
num_beams=1,
repetition_penalty=repetition_penalty,
)
# Start the model generation thread
t = Thread(target=model.generate, kwargs=generate_kwargs)
t.start()
# Yield generated text chunks
outputs = []
for text in streamer:
outputs.append(text)
yield "".join(outputs)
# Update the global_chat_history with the current conversation
global_chat_history.append({
"message": message,
"chat_history": chat_history,
"system_prompt": system_prompt,
"output": outputs[-1], # Assuming you want to save the latest model output
})
# The modification above starting with "global_chat.history.append" introduces a global_chat_history variable to store the chat history globally.
# The save_chat_history function is registered to be called when the program exits
# using atexit.register(save_chat_history).
# It saves the chat history to a JSON file named "chat_history.json".
# The generate function is updated to append the current conversation to global_chat_history
# after generating each response.
chat_interface = gr.ChatInterface(
fn=generate,
theme="soft",
retry_btn=None,
clear_btn=None,
undo_btn=None,
chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False),
examples=[
["How much should I invest in order to win?"],
["What happened in the last round?"],
["What is my probability to win if I do not invest anything?"],
["What is my probability to win if I do not share anything?"],
["Can you explain the rules very briefly again?"],
],
)
with gr.Blocks(css="style.css") as demo:
gr.Markdown(DESCRIPTION)
#gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
chat_interface.render()
#gr.Markdown(LICENSE)
if __name__ == "__main__":
#demo.queue(max_size=20).launch()
demo.queue(max_size=20)
demo.launch(share=True, debug=True)
# Register the function to be called when the program exits
atexit.register(save_chat_history)