File size: 6,774 Bytes
0fbb687
59b7ed0
59812f5
141ba59
c86c2f3
 
 
d2d3f64
c86c2f3
141ba59
c86c2f3
6890fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4522cd0
 
59812f5
4522cd0
141ba59
d7a2665
59b7ed0
 
4522cd0
 
59b7ed0
e6dd388
 
 
59b7ed0
 
e6dd388
 
906b1dc
09b3f75
1827259
c86c2f3
59b7ed0
 
 
 
 
 
 
 
 
 
 
 
906b1dc
 
 
 
 
6890fdc
 
 
 
 
 
 
d2d3f64
6890fdc
 
4522cd0
c86c2f3
141ba59
6890fdc
141ba59
 
 
 
 
 
6890fdc
 
 
 
141ba59
6890fdc
 
 
 
 
 
 
 
 
 
 
141ba59
 
 
 
54995d2
 
 
6bc8e25
54995d2
141ba59
6890fdc
 
 
 
 
141ba59
6890fdc
 
141ba59
54995d2
141ba59
 
 
 
 
 
 
 
 
6890fdc
 
141ba59
 
c86c2f3
6890fdc
141ba59
 
 
 
c86c2f3
6890fdc
 
 
 
 
 
 
 
 
 
 
 
 
 
c86c2f3
141ba59
 
d7001d5
 
 
 
6890fdc
141ba59
59b7ed0
 
 
 
 
141ba59
 
1827259
6890fdc
141ba59
59b7ed0
141ba59
59b7ed0
e6dd388
89f9579
59b7ed0
 
 
6890fdc
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Original code from https://huggingface.co/spaces/huggingface-projects/llama-2-7b-chat
# Modified for trust game purposes
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer

# For Prompt Engineering 
import requests
from huggingface_hub import AsyncInferenceClient

from system_prompt_config import construct_input_prompt

# Save chat history as JSON
import json
import atexit

# From 70B code 
system_message = "\nYou are a helpful, respectful and honest assistant. Always answer as helpfully as possible, while being safe.  Your answers should not include any harmful, unethical, racist, sexist, toxic, dangerous, or illegal content. Please ensure that your responses are socially unbiased and positive in nature.\n\nIf a question does not make any sense, or is not factually coherent, explain why instead of answering something not correct. If you don't know the answer to a question, please don't share false information."

# Add this global variable to store the chat history
global_chat_history = []

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

DESCRIPTION = """\
# Llama-2 7B Chat
This is your personal space to chat. 
You can ask anything from strategic questions regarding the game or just chat as you like. 
"""

'''LICENSE = """
<p/>

---
As a derivate work of [Llama-2-13b-chat](https://huggingface.co/meta-llama/Llama-2-13b-chat) by Meta,
this demo is governed by the original [license](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/LICENSE.txt) and [acceptable use policy](https://huggingface.co/spaces/huggingface-projects/llama-2-13b-chat/blob/main/USE_POLICY.md).
"""

if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-13b-chat-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, device_map="auto", load_in_4bit=True)
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False
'''


#if not torch.cuda.is_available():
#    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"


if torch.cuda.is_available():
    model_id = "meta-llama/Llama-2-7b-chat-hf"
    model = AutoModelForCausalLM.from_pretrained(model_id, torch_dtype=torch.float16, device_map="auto")
    tokenizer = AutoTokenizer.from_pretrained(model_id)
    tokenizer.use_default_system_prompt = False

# Add this function to store the chat history
def save_chat_history():
    """Save the chat history to a JSON file."""
    with open("chat_history.json", "w") as json_file:
        json.dump(global_chat_history, json_file)

@spaces.GPU
# From 70B code 
# async def generate(
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    # system_prompt: str,
    max_new_tokens: int = 1024,
    temperature: float = 0.6,
    top_p: float = 0.9,
    top_k: int = 50,
    repetition_penalty: float = 1.2,
) -> Iterator[str]:
    
    # Use the global variable to store the chat history
    global global_chat_history  

    conversation = []

    #if system_prompt:
    #   conversation.append({"role": "system", "content": system_prompt})
    
    # Construct the input prompt using the functions from the system_prompt_config module
    input_prompt = construct_input_prompt(chat_history, message)

    # Convert input prompt to tensor
    input_ids = tokenizer(input_prompt, return_tensors="pt").to(model.device)


    for user, assistant in chat_history:
        conversation.extend([{"role": "user", "content": user}, {"role": "assistant", "content": assistant}])
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)





    # Set up the TextIteratorStreamer
    streamer = TextIteratorStreamer(tokenizer, timeout=10.0, skip_prompt=True, skip_special_tokens=True)
    
    # Set up the generation arguments
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )

    # Start the model generation thread
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    # Yield generated text chunks
    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)

    # Update the global_chat_history with the current conversation
    global_chat_history.append({
        "message": message,
        "chat_history": chat_history,
        "system_prompt": system_prompt,
        "output": outputs[-1],  # Assuming you want to save the latest model output
    })
 
# The modification above starting with "global_chat.history.append" introduces a global_chat_history variable to store the chat history globally. 
# The save_chat_history function is registered to be called when the program exits 
# using atexit.register(save_chat_history). 
# It saves the chat history to a JSON file named "chat_history.json". 
# The generate function is updated to append the current conversation to global_chat_history 
# after generating each response.

chat_interface = gr.ChatInterface(
    fn=generate,
    theme="soft",
    retry_btn=None,
    clear_btn=None,
    undo_btn=None,
    chatbot=gr.Chatbot(avatar_images=('user.png', 'bot.png'), bubble_full_width = False), 
    examples=[
        ["How much should I invest in order to win?"],
        ["What happened in the last round?"],
        ["What is my probability to win if I do not invest anything?"],
        ["What is my probability to win if I do not share anything?"],
        ["Can you explain the rules very briefly again?"],
    ],
)

with gr.Blocks(css="style.css") as demo:  
    gr.Markdown(DESCRIPTION)
    #gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()
    #gr.Markdown(LICENSE)

if __name__ == "__main__":
    #demo.queue(max_size=20).launch()
    demo.queue(max_size=20)
    demo.launch(share=True, debug=True)

# Register the function to be called when the program exits
atexit.register(save_chat_history)