Tas01's picture
Update app.py
44768da verified
raw
history blame
21.3 kB
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import (
CLIPProcessor, CLIPModel,
LlamaForCausalLM, LlamaTokenizer,
pipeline
)
import requests
from io import BytesIO
import os
class ImageStoryteller:
def __init__(self):
print("Initializing Image Storyteller with CLIP-ViT + LLaMA...")
# Load CLIP model for image understanding
try:
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("CLIP-ViT model loaded successfully!")
except Exception as e:
print(f"CLIP loading failed: {e}")
self.clip_model = None
self.clip_processor = None
# Initialize LLaMA for text generation
try:
# Using a smaller LLaMA variant that works on Hugging Face Spaces
self.llama_model = LlamaForCausalLM.from_pretrained(
"huggyllama/llama-7b", # Using a smaller variant
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True # For memory efficiency
)
self.llama_tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b")
print("LLaMA model loaded successfully!")
except Exception as e:
print(f"LLaMA loading failed: {e}")
# Fallback to smaller model
try:
self.story_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-medium",
torch_dtype=torch.float32
)
print("Fallback story pipeline initialized!")
except Exception as e:
print(f"Fallback pipeline failed: {e}")
self.story_pipeline = None
# Common objects for scene understanding
self.common_objects = [
'person', 'people', 'human', 'man', 'woman', 'child', 'baby',
'dog', 'cat', 'animal', 'bird', 'horse', 'cow', 'sheep',
'car', 'vehicle', 'bus', 'truck', 'bicycle', 'motorcycle',
'building', 'house', 'skyscraper', 'architecture',
'tree', 'forest', 'nature', 'mountain', 'sky', 'clouds',
'water', 'ocean', 'river', 'lake', 'beach',
'food', 'fruit', 'vegetable', 'meal',
'indoor', 'outdoor', 'urban', 'rural'
]
# Scene categories for classification
self.scene_categories = [
"portrait", "landscape", "cityscape", "indoor scene", "outdoor scene",
"nature", "urban", "beach", "mountain", "forest", "street",
"party", "celebration", "sports", "action", "still life",
"abstract", "art", "architecture", "wildlife", "pet"
]
def analyze_image_with_clip(self, image):
"""Analyze image using CLIP to understand content and scene"""
if self.clip_model is None or self.clip_processor is None:
return self.fallback_image_analysis(image)
try:
# Convert PIL to RGB
image_rgb = image.convert('RGB')
# Analyze objects in the image
object_inputs = self.clip_processor(
text=self.common_objects,
images=image_rgb,
return_tensors="pt",
padding=True
)
with torch.no_grad():
object_outputs = self.clip_model(**object_inputs)
object_logits = object_outputs.logits_per_image
object_probs = object_logits.softmax(dim=1)
# Get top objects
top_object_indices = torch.topk(object_probs, 5, dim=1).indices[0]
detected_objects = []
for idx in top_object_indices:
obj_name = self.common_objects[idx]
confidence = object_probs[0][idx].item()
if confidence > 0.1: # Confidence threshold
detected_objects.append({
'name': obj_name,
'confidence': confidence
})
# Analyze scene type
scene_inputs = self.clip_processor(
text=self.scene_categories,
images=image_rgb,
return_tensors="pt",
padding=True
)
with torch.no_grad():
scene_outputs = self.clip_model(**scene_inputs)
scene_logits = scene_outputs.logits_per_image
scene_probs = scene_logits.softmax(dim=1)
top_scene_indices = torch.topk(scene_probs, 3, dim=1).indices[0]
scene_types = []
for idx in top_scene_indices:
scene_name = self.scene_categories[idx]
confidence = scene_probs[0][idx].item()
scene_types.append({
'type': scene_name,
'confidence': confidence
})
return {
'objects': detected_objects,
'scenes': scene_types,
'success': True
}
except Exception as e:
print(f"CLIP analysis failed: {e}")
return self.fallback_image_analysis(image)
def fallback_image_analysis(self, image):
"""Fallback image analysis when CLIP fails"""
img_np = np.array(image)
height, width = img_np.shape[:2]
# Simple color-based analysis
hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
objects = []
scenes = []
# Detect blue areas (sky/water)
blue_mask = cv2.inRange(hsv, (100, 50, 50), (130, 255, 255))
if np.sum(blue_mask) > height * width * 0.1:
objects.append({'name': 'sky', 'confidence': 0.6})
scenes.append({'type': 'outdoor scene', 'confidence': 0.7})
# Detect green areas (nature)
green_mask = cv2.inRange(hsv, (35, 50, 50), (85, 255, 255))
if np.sum(green_mask) > height * width * 0.1:
objects.append({'name': 'nature', 'confidence': 0.6})
scenes.append({'type': 'nature', 'confidence': 0.7})
# Detect skin tones (people)
skin_mask = cv2.inRange(hsv, (0, 30, 60), (20, 150, 255))
if np.sum(skin_mask) > 1000:
objects.append({'name': 'person', 'confidence': 0.5})
scenes.append({'type': 'portrait', 'confidence': 0.6})
# Detect edges (buildings/structures)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray, 50, 150)
if np.sum(edges) > height * width * 0.05:
objects.append({'name': 'building', 'confidence': 0.5})
scenes.append({'type': 'urban', 'confidence': 0.6})
return {
'objects': objects,
'scenes': scenes,
'success': False
}
def create_visualization(self, image, analysis_result):
"""Create a visualization showing detected elements"""
img_np = np.array(image)
viz_image = img_np.copy()
height, width = img_np.shape[:2]
# Add text overlay with analysis results
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
font_color = (255, 255, 255)
background_color = (0, 0, 0)
thickness = 2
# Prepare text lines
text_lines = ["CLIP-ViT Analysis:"]
# Add objects
if analysis_result['objects']:
text_lines.append("Objects:")
for obj in analysis_result['objects'][:3]: # Top 3 objects
text_lines.append(f" {obj['name']} ({obj['confidence']:.2f})")
# Add scenes
if analysis_result['scenes']:
text_lines.append("Scene:")
for scene in analysis_result['scenes'][:2]: # Top 2 scenes
text_lines.append(f" {scene['type']} ({scene['confidence']:.2f})")
# Add text to image
y_offset = 30
for i, line in enumerate(text_lines):
text_size = cv2.getTextSize(line, font, font_scale, thickness)[0]
# Add background for text
cv2.rectangle(viz_image,
(10, y_offset - text_size[1] - 5),
(10 + text_size[0] + 10, y_offset + 5),
background_color, -1)
# Add text
cv2.putText(viz_image, line, (15, y_offset),
font, font_scale, font_color, thickness)
y_offset += 25
return Image.fromarray(viz_image)
def generate_narrative_with_llama(self, analysis_result, image_size):
"""Generate narrative using LLaMA based on CLIP analysis"""
# Prepare context from analysis
objects_text = ", ".join([obj['name'] for obj in analysis_result['objects'][:5]])
scenes_text = analysis_result['scenes'][0]['type'] if analysis_result['scenes'] else "unknown scene"
width, height = image_size
# Create prompt for LLaMA
prompt = f"""Based on this image analysis:
Image Size: {width}x{height}
Detected Objects: {objects_text}
Scene Type: {scenes_text}
Please write a beautiful, descriptive narrative story about this image. Focus on the emotional and visual elements, creating a compelling story that brings the scene to life."""
try:
if hasattr(self, 'llama_model') and self.llama_model is not None:
# Tokenize input
inputs = self.llama_tokenizer(prompt, return_tensors="pt")
# Generate with LLaMA
with torch.no_grad():
outputs = self.llama_model.generate(
inputs.input_ids,
max_length=300,
temperature=0.7,
do_sample=True,
top_p=0.9,
pad_token_id=self.llama_tokenizer.eos_token_id
)
# Decode response
narrative = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part (after prompt)
if narrative.startswith(prompt):
narrative = narrative[len(prompt):].strip()
return narrative
elif hasattr(self, 'story_pipeline') and self.story_pipeline is not None:
# Use fallback pipeline
result = self.story_pipeline(
prompt,
max_length=250,
temperature=0.7,
do_sample=True,
pad_token_id=50256
)
return result[0]['generated_text']
except Exception as e:
print(f"LLaMA narrative generation failed: {e}")
# Fallback narrative
return self.fallback_narrative(analysis_result, image_size)
def fallback_narrative(self, analysis_result, image_size):
"""Fallback narrative generation"""
width, height = image_size
objects = [obj['name'] for obj in analysis_result['objects']]
scene = analysis_result['scenes'][0]['type'] if analysis_result['scenes'] else "scene"
if 'person' in objects:
return f"In this captivating {width}x{height} {scene}, human presence tells a story of connection and experience. " \
f"The composition speaks of moments frozen in time, where light and shadow dance together to reveal " \
f"the beauty of ordinary moments made extraordinary through the lens of perception."
elif 'nature' in objects:
return f"This breathtaking {width}x{height} natural landscape captures the essence of Earth's timeless beauty. " \
f"Each element harmonizes with the next, creating a symphony of visual poetry that whispers " \
f"ancient stories of growth, change, and the enduring power of the natural world."
elif 'building' in objects:
return f"Architectural elegance defines this {width}x{height} {scene}, where human ingenuity meets artistic vision. " \
f"The structures stand as silent witnesses to countless stories, their forms telling tales " \
f"of aspiration, community, and the relentless march of progress through time."
else:
return f"In this compelling {width}x{height} composition, visual elements converge to create a unique narrative. " \
f"The scene invites contemplation, asking viewers to explore the relationships between forms, " \
f"colors, and spaces that together tell a story beyond words."
def generate_poetry(self, narrative):
"""Generate poetic verses based on the narrative"""
prompt = f"""Based on this image description: "{narrative}"
Create a beautiful 6-line poem that captures the essence and emotion of the scene:"""
try:
if hasattr(self, 'llama_model') and self.llama_model is not None:
inputs = self.llama_tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.llama_model.generate(
inputs.input_ids,
max_length=200,
temperature=0.8,
do_sample=True,
top_p=0.9,
pad_token_id=self.llama_tokenizer.eos_token_id
)
poetry = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
if poetry.startswith(prompt):
poetry = poetry[len(prompt):].strip()
# Format as 6 lines
lines = [line.strip() for line in poetry.split('.') if line.strip()]
if len(lines) >= 4:
return '\n'.join(lines[:6])
return poetry
elif hasattr(self, 'story_pipeline') and self.story_pipeline is not None:
result = self.story_pipeline(
prompt,
max_length=150,
temperature=0.8,
do_sample=True
)
poetry = result[0]['generated_text']
lines = [line.strip() for line in poetry.split('.') if line.strip()]
if len(lines) >= 4:
return '\n'.join(lines[:6])
return poetry
except Exception as e:
print(f"Poetry generation failed: {e}")
# Fallback poetry
return self.fallback_poetry(narrative)
def fallback_poetry(self, narrative):
"""Fallback poetry generation"""
if 'person' in narrative.lower():
return """A figure stands where light does fall
Their silent story captures all
In moments caught by lens and eye
Where truth and beauty never die
Each breath a verse, each glance a call
To understand, to stand in awe"""
elif 'nature' in narrative.lower():
return """Where trees reach up to touch the sky
And gentle streams go flowing by
The earth reveals her ancient art
In every leaf, in every part
Nature's truth will never die
In landscape's soul, we learn to fly"""
elif 'building' in narrative.lower():
return """Stone and glass against the blue
Tell stories old and stories new
Where human hands have shaped the space
With vision, time, and careful grace
Each structure holds a different view
Of dreams that humans can pursue"""
else:
return """In frames of light and color bold
A thousand stories wait untold
Each element with voice unique
In visual language they all speak
Of mysteries that unfold
More precious than the purest gold"""
def process_image(self, image):
"""Main processing function"""
try:
# Analyze image with CLIP-ViT
analysis_result = self.analyze_image_with_clip(image)
# Generate narrative with LLaMA
narrative = self.generate_narrative_with_llama(analysis_result, image.size)
# Generate poetry
poetry = self.generate_poetry(narrative)
# Create visualization
viz_image = self.create_visualization(image, analysis_result)
return narrative, poetry, viz_image
except Exception as e:
error_msg = f"An error occurred while processing the image: {str(e)}"
return error_msg, "Unable to generate poetry due to processing error.", image
# Initialize the storyteller
storyteller = ImageStoryteller()
# Check for local example images
example_images = []
for i in range(1, 10):
filename = f"obj_{i:02d}.jpg"
if os.path.exists(filename):
example_images.append([filename])
print(f"Found example image: {filename}")
if not example_images:
print("No local example images found, using placeholder")
# Create a placeholder if no local images
example_images = [[np.ones((300, 300, 3), dtype=np.uint8) * 100]]
# Create Gradio interface
with gr.Blocks(title="CLIP + LLaMA Image Storyteller", theme="soft") as demo:
gr.Markdown("# 🎨 CLIP + LLaMA Image Storyteller")
gr.Markdown("**Upload any image and watch AI understand the scene using CLIP-ViT and create beautiful stories with LLaMA!**")
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="πŸ–ΌοΈ Upload Your Image",
height=300
)
process_btn = gr.Button("✨ Analyze Image & Create Story", variant="primary", size="lg")
with gr.Column():
analysis_output = gr.Image(
label="πŸ” CLIP-ViT Analysis",
height=300,
show_download_button=True
)
with gr.Row():
with gr.Column():
with gr.Tab("πŸ“– Narrative Story"):
narrative_output = gr.Textbox(
label="Image Narrative",
lines=5,
max_lines=8,
placeholder="Your image's story will appear here...",
show_copy_button=True
)
with gr.Tab("🎭 Poetic Verses"):
poetry_output = gr.Textbox(
label="6-Line Poetry",
lines=6,
max_lines=7,
placeholder="Poetic interpretation will appear here...",
show_copy_button=True
)
# Examples section
gr.Markdown("### 🎯 Try These Examples")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=[narrative_output, poetry_output, analysis_output],
fn=storyteller.process_image,
cache_examples=True
)
# How it works section
with gr.Accordion("πŸ” How It Works", open=False):
gr.Markdown("""
**The Magic Behind the Stories:**
1. **CLIP-ViT Analysis**: OpenAI's CLIP model understands image content and scene types
2. **Object Recognition**: Identifies objects, people, scenery with confidence scores
3. **Scene Classification**: Determines the overall scene type (portrait, landscape, urban, etc.)
4. **LLaMA Storytelling**: Meta's LLaMA model generates compelling narratives
5. **Poetic Creation**: Transforms analysis into beautiful 6-line verses
**Technical Stack:**
- **CLIP-ViT**: Vision transformer for image understanding
- **LLaMA**: Large language model for text generation
- **Transformers**: Hugging Face library for model inference
**Features:**
- Semantic image understanding
- Context-aware storytelling
- Emotional narrative generation
- Beautiful poetic interpretations
- Real-time analysis visualization
**Perfect for:**
- Personal photography
- Landscape and nature scenes
- Urban and architectural photography
- Artistic compositions
- Memory preservation
""")
# Set up the processing
process_btn.click(
fn=storyteller.process_image,
inputs=input_image,
outputs=[narrative_output, poetry_output, analysis_output]
)
# Launch the application
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
)