File size: 21,266 Bytes
0b29680 6b076b4 0b29680 8f01c45 41470df a6d1b34 2b56642 0b29680 8f01c45 6b076b4 41470df a6d1b34 41470df a6d1b34 41470df a6d1b34 41470df 8f01c45 41470df b9319b8 41470df 8f01c45 41470df 2b56642 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 a6d1b34 41470df a26413b 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 2b56642 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df fcc2ffb 41470df 2b56642 41470df 8f01c45 41470df a26413b 41470df 8f01c45 41470df 2b56642 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df a26413b 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 fcc2ffb 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df a6d1b34 8f01c45 41470df 8f01c45 41470df 8f01c45 41470df 2b56642 41470df 8f01c45 2b56642 b9319b8 8f01c45 b9319b8 2b56642 44768da 857391b 2b56642 8f01c45 41470df 6b076b4 8f01c45 2b56642 8f01c45 2b56642 8f01c45 2b56642 41470df 2b56642 8f01c45 2b56642 8f01c45 6b076b4 8f01c45 2b56642 8f01c45 6b076b4 41470df 8f01c45 2b56642 8f01c45 41470df 8f01c45 2b56642 8f01c45 6b076b4 8f01c45 b9319b8 8f01c45 41470df 2b56642 41470df 2b56642 41470df 8f01c45 41470df b9319b8 8f01c45 41470df b9319b8 8f01c45 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 |
import gradio as gr
import cv2
import numpy as np
from PIL import Image
import torch
from transformers import (
CLIPProcessor, CLIPModel,
LlamaForCausalLM, LlamaTokenizer,
pipeline
)
import requests
from io import BytesIO
import os
class ImageStoryteller:
def __init__(self):
print("Initializing Image Storyteller with CLIP-ViT + LLaMA...")
# Load CLIP model for image understanding
try:
self.clip_model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
self.clip_processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
print("CLIP-ViT model loaded successfully!")
except Exception as e:
print(f"CLIP loading failed: {e}")
self.clip_model = None
self.clip_processor = None
# Initialize LLaMA for text generation
try:
# Using a smaller LLaMA variant that works on Hugging Face Spaces
self.llama_model = LlamaForCausalLM.from_pretrained(
"huggyllama/llama-7b", # Using a smaller variant
torch_dtype=torch.float16,
device_map="auto",
load_in_8bit=True # For memory efficiency
)
self.llama_tokenizer = LlamaTokenizer.from_pretrained("huggyllama/llama-7b")
print("LLaMA model loaded successfully!")
except Exception as e:
print(f"LLaMA loading failed: {e}")
# Fallback to smaller model
try:
self.story_pipeline = pipeline(
"text-generation",
model="microsoft/DialoGPT-medium",
torch_dtype=torch.float32
)
print("Fallback story pipeline initialized!")
except Exception as e:
print(f"Fallback pipeline failed: {e}")
self.story_pipeline = None
# Common objects for scene understanding
self.common_objects = [
'person', 'people', 'human', 'man', 'woman', 'child', 'baby',
'dog', 'cat', 'animal', 'bird', 'horse', 'cow', 'sheep',
'car', 'vehicle', 'bus', 'truck', 'bicycle', 'motorcycle',
'building', 'house', 'skyscraper', 'architecture',
'tree', 'forest', 'nature', 'mountain', 'sky', 'clouds',
'water', 'ocean', 'river', 'lake', 'beach',
'food', 'fruit', 'vegetable', 'meal',
'indoor', 'outdoor', 'urban', 'rural'
]
# Scene categories for classification
self.scene_categories = [
"portrait", "landscape", "cityscape", "indoor scene", "outdoor scene",
"nature", "urban", "beach", "mountain", "forest", "street",
"party", "celebration", "sports", "action", "still life",
"abstract", "art", "architecture", "wildlife", "pet"
]
def analyze_image_with_clip(self, image):
"""Analyze image using CLIP to understand content and scene"""
if self.clip_model is None or self.clip_processor is None:
return self.fallback_image_analysis(image)
try:
# Convert PIL to RGB
image_rgb = image.convert('RGB')
# Analyze objects in the image
object_inputs = self.clip_processor(
text=self.common_objects,
images=image_rgb,
return_tensors="pt",
padding=True
)
with torch.no_grad():
object_outputs = self.clip_model(**object_inputs)
object_logits = object_outputs.logits_per_image
object_probs = object_logits.softmax(dim=1)
# Get top objects
top_object_indices = torch.topk(object_probs, 5, dim=1).indices[0]
detected_objects = []
for idx in top_object_indices:
obj_name = self.common_objects[idx]
confidence = object_probs[0][idx].item()
if confidence > 0.1: # Confidence threshold
detected_objects.append({
'name': obj_name,
'confidence': confidence
})
# Analyze scene type
scene_inputs = self.clip_processor(
text=self.scene_categories,
images=image_rgb,
return_tensors="pt",
padding=True
)
with torch.no_grad():
scene_outputs = self.clip_model(**scene_inputs)
scene_logits = scene_outputs.logits_per_image
scene_probs = scene_logits.softmax(dim=1)
top_scene_indices = torch.topk(scene_probs, 3, dim=1).indices[0]
scene_types = []
for idx in top_scene_indices:
scene_name = self.scene_categories[idx]
confidence = scene_probs[0][idx].item()
scene_types.append({
'type': scene_name,
'confidence': confidence
})
return {
'objects': detected_objects,
'scenes': scene_types,
'success': True
}
except Exception as e:
print(f"CLIP analysis failed: {e}")
return self.fallback_image_analysis(image)
def fallback_image_analysis(self, image):
"""Fallback image analysis when CLIP fails"""
img_np = np.array(image)
height, width = img_np.shape[:2]
# Simple color-based analysis
hsv = cv2.cvtColor(img_np, cv2.COLOR_RGB2HSV)
objects = []
scenes = []
# Detect blue areas (sky/water)
blue_mask = cv2.inRange(hsv, (100, 50, 50), (130, 255, 255))
if np.sum(blue_mask) > height * width * 0.1:
objects.append({'name': 'sky', 'confidence': 0.6})
scenes.append({'type': 'outdoor scene', 'confidence': 0.7})
# Detect green areas (nature)
green_mask = cv2.inRange(hsv, (35, 50, 50), (85, 255, 255))
if np.sum(green_mask) > height * width * 0.1:
objects.append({'name': 'nature', 'confidence': 0.6})
scenes.append({'type': 'nature', 'confidence': 0.7})
# Detect skin tones (people)
skin_mask = cv2.inRange(hsv, (0, 30, 60), (20, 150, 255))
if np.sum(skin_mask) > 1000:
objects.append({'name': 'person', 'confidence': 0.5})
scenes.append({'type': 'portrait', 'confidence': 0.6})
# Detect edges (buildings/structures)
gray = cv2.cvtColor(img_np, cv2.COLOR_RGB2GRAY)
edges = cv2.Canny(gray, 50, 150)
if np.sum(edges) > height * width * 0.05:
objects.append({'name': 'building', 'confidence': 0.5})
scenes.append({'type': 'urban', 'confidence': 0.6})
return {
'objects': objects,
'scenes': scenes,
'success': False
}
def create_visualization(self, image, analysis_result):
"""Create a visualization showing detected elements"""
img_np = np.array(image)
viz_image = img_np.copy()
height, width = img_np.shape[:2]
# Add text overlay with analysis results
font = cv2.FONT_HERSHEY_SIMPLEX
font_scale = 0.6
font_color = (255, 255, 255)
background_color = (0, 0, 0)
thickness = 2
# Prepare text lines
text_lines = ["CLIP-ViT Analysis:"]
# Add objects
if analysis_result['objects']:
text_lines.append("Objects:")
for obj in analysis_result['objects'][:3]: # Top 3 objects
text_lines.append(f" {obj['name']} ({obj['confidence']:.2f})")
# Add scenes
if analysis_result['scenes']:
text_lines.append("Scene:")
for scene in analysis_result['scenes'][:2]: # Top 2 scenes
text_lines.append(f" {scene['type']} ({scene['confidence']:.2f})")
# Add text to image
y_offset = 30
for i, line in enumerate(text_lines):
text_size = cv2.getTextSize(line, font, font_scale, thickness)[0]
# Add background for text
cv2.rectangle(viz_image,
(10, y_offset - text_size[1] - 5),
(10 + text_size[0] + 10, y_offset + 5),
background_color, -1)
# Add text
cv2.putText(viz_image, line, (15, y_offset),
font, font_scale, font_color, thickness)
y_offset += 25
return Image.fromarray(viz_image)
def generate_narrative_with_llama(self, analysis_result, image_size):
"""Generate narrative using LLaMA based on CLIP analysis"""
# Prepare context from analysis
objects_text = ", ".join([obj['name'] for obj in analysis_result['objects'][:5]])
scenes_text = analysis_result['scenes'][0]['type'] if analysis_result['scenes'] else "unknown scene"
width, height = image_size
# Create prompt for LLaMA
prompt = f"""Based on this image analysis:
Image Size: {width}x{height}
Detected Objects: {objects_text}
Scene Type: {scenes_text}
Please write a beautiful, descriptive narrative story about this image. Focus on the emotional and visual elements, creating a compelling story that brings the scene to life."""
try:
if hasattr(self, 'llama_model') and self.llama_model is not None:
# Tokenize input
inputs = self.llama_tokenizer(prompt, return_tensors="pt")
# Generate with LLaMA
with torch.no_grad():
outputs = self.llama_model.generate(
inputs.input_ids,
max_length=300,
temperature=0.7,
do_sample=True,
top_p=0.9,
pad_token_id=self.llama_tokenizer.eos_token_id
)
# Decode response
narrative = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
# Extract only the generated part (after prompt)
if narrative.startswith(prompt):
narrative = narrative[len(prompt):].strip()
return narrative
elif hasattr(self, 'story_pipeline') and self.story_pipeline is not None:
# Use fallback pipeline
result = self.story_pipeline(
prompt,
max_length=250,
temperature=0.7,
do_sample=True,
pad_token_id=50256
)
return result[0]['generated_text']
except Exception as e:
print(f"LLaMA narrative generation failed: {e}")
# Fallback narrative
return self.fallback_narrative(analysis_result, image_size)
def fallback_narrative(self, analysis_result, image_size):
"""Fallback narrative generation"""
width, height = image_size
objects = [obj['name'] for obj in analysis_result['objects']]
scene = analysis_result['scenes'][0]['type'] if analysis_result['scenes'] else "scene"
if 'person' in objects:
return f"In this captivating {width}x{height} {scene}, human presence tells a story of connection and experience. " \
f"The composition speaks of moments frozen in time, where light and shadow dance together to reveal " \
f"the beauty of ordinary moments made extraordinary through the lens of perception."
elif 'nature' in objects:
return f"This breathtaking {width}x{height} natural landscape captures the essence of Earth's timeless beauty. " \
f"Each element harmonizes with the next, creating a symphony of visual poetry that whispers " \
f"ancient stories of growth, change, and the enduring power of the natural world."
elif 'building' in objects:
return f"Architectural elegance defines this {width}x{height} {scene}, where human ingenuity meets artistic vision. " \
f"The structures stand as silent witnesses to countless stories, their forms telling tales " \
f"of aspiration, community, and the relentless march of progress through time."
else:
return f"In this compelling {width}x{height} composition, visual elements converge to create a unique narrative. " \
f"The scene invites contemplation, asking viewers to explore the relationships between forms, " \
f"colors, and spaces that together tell a story beyond words."
def generate_poetry(self, narrative):
"""Generate poetic verses based on the narrative"""
prompt = f"""Based on this image description: "{narrative}"
Create a beautiful 6-line poem that captures the essence and emotion of the scene:"""
try:
if hasattr(self, 'llama_model') and self.llama_model is not None:
inputs = self.llama_tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = self.llama_model.generate(
inputs.input_ids,
max_length=200,
temperature=0.8,
do_sample=True,
top_p=0.9,
pad_token_id=self.llama_tokenizer.eos_token_id
)
poetry = self.llama_tokenizer.decode(outputs[0], skip_special_tokens=True)
if poetry.startswith(prompt):
poetry = poetry[len(prompt):].strip()
# Format as 6 lines
lines = [line.strip() for line in poetry.split('.') if line.strip()]
if len(lines) >= 4:
return '\n'.join(lines[:6])
return poetry
elif hasattr(self, 'story_pipeline') and self.story_pipeline is not None:
result = self.story_pipeline(
prompt,
max_length=150,
temperature=0.8,
do_sample=True
)
poetry = result[0]['generated_text']
lines = [line.strip() for line in poetry.split('.') if line.strip()]
if len(lines) >= 4:
return '\n'.join(lines[:6])
return poetry
except Exception as e:
print(f"Poetry generation failed: {e}")
# Fallback poetry
return self.fallback_poetry(narrative)
def fallback_poetry(self, narrative):
"""Fallback poetry generation"""
if 'person' in narrative.lower():
return """A figure stands where light does fall
Their silent story captures all
In moments caught by lens and eye
Where truth and beauty never die
Each breath a verse, each glance a call
To understand, to stand in awe"""
elif 'nature' in narrative.lower():
return """Where trees reach up to touch the sky
And gentle streams go flowing by
The earth reveals her ancient art
In every leaf, in every part
Nature's truth will never die
In landscape's soul, we learn to fly"""
elif 'building' in narrative.lower():
return """Stone and glass against the blue
Tell stories old and stories new
Where human hands have shaped the space
With vision, time, and careful grace
Each structure holds a different view
Of dreams that humans can pursue"""
else:
return """In frames of light and color bold
A thousand stories wait untold
Each element with voice unique
In visual language they all speak
Of mysteries that unfold
More precious than the purest gold"""
def process_image(self, image):
"""Main processing function"""
try:
# Analyze image with CLIP-ViT
analysis_result = self.analyze_image_with_clip(image)
# Generate narrative with LLaMA
narrative = self.generate_narrative_with_llama(analysis_result, image.size)
# Generate poetry
poetry = self.generate_poetry(narrative)
# Create visualization
viz_image = self.create_visualization(image, analysis_result)
return narrative, poetry, viz_image
except Exception as e:
error_msg = f"An error occurred while processing the image: {str(e)}"
return error_msg, "Unable to generate poetry due to processing error.", image
# Initialize the storyteller
storyteller = ImageStoryteller()
# Check for local example images
example_images = []
for i in range(1, 10):
filename = f"obj_{i:02d}.jpg"
if os.path.exists(filename):
example_images.append([filename])
print(f"Found example image: {filename}")
if not example_images:
print("No local example images found, using placeholder")
# Create a placeholder if no local images
example_images = [[np.ones((300, 300, 3), dtype=np.uint8) * 100]]
# Create Gradio interface
with gr.Blocks(title="CLIP + LLaMA Image Storyteller", theme="soft") as demo:
gr.Markdown("# π¨ CLIP + LLaMA Image Storyteller")
gr.Markdown("**Upload any image and watch AI understand the scene using CLIP-ViT and create beautiful stories with LLaMA!**")
with gr.Row():
with gr.Column():
input_image = gr.Image(
type="pil",
label="πΌοΈ Upload Your Image",
height=300
)
process_btn = gr.Button("β¨ Analyze Image & Create Story", variant="primary", size="lg")
with gr.Column():
analysis_output = gr.Image(
label="π CLIP-ViT Analysis",
height=300,
show_download_button=True
)
with gr.Row():
with gr.Column():
with gr.Tab("π Narrative Story"):
narrative_output = gr.Textbox(
label="Image Narrative",
lines=5,
max_lines=8,
placeholder="Your image's story will appear here...",
show_copy_button=True
)
with gr.Tab("π Poetic Verses"):
poetry_output = gr.Textbox(
label="6-Line Poetry",
lines=6,
max_lines=7,
placeholder="Poetic interpretation will appear here...",
show_copy_button=True
)
# Examples section
gr.Markdown("### π― Try These Examples")
gr.Examples(
examples=example_images,
inputs=input_image,
outputs=[narrative_output, poetry_output, analysis_output],
fn=storyteller.process_image,
cache_examples=True
)
# How it works section
with gr.Accordion("π How It Works", open=False):
gr.Markdown("""
**The Magic Behind the Stories:**
1. **CLIP-ViT Analysis**: OpenAI's CLIP model understands image content and scene types
2. **Object Recognition**: Identifies objects, people, scenery with confidence scores
3. **Scene Classification**: Determines the overall scene type (portrait, landscape, urban, etc.)
4. **LLaMA Storytelling**: Meta's LLaMA model generates compelling narratives
5. **Poetic Creation**: Transforms analysis into beautiful 6-line verses
**Technical Stack:**
- **CLIP-ViT**: Vision transformer for image understanding
- **LLaMA**: Large language model for text generation
- **Transformers**: Hugging Face library for model inference
**Features:**
- Semantic image understanding
- Context-aware storytelling
- Emotional narrative generation
- Beautiful poetic interpretations
- Real-time analysis visualization
**Perfect for:**
- Personal photography
- Landscape and nature scenes
- Urban and architectural photography
- Artistic compositions
- Memory preservation
""")
# Set up the processing
process_btn.click(
fn=storyteller.process_image,
inputs=input_image,
outputs=[narrative_output, poetry_output, analysis_output]
)
# Launch the application
if __name__ == "__main__":
demo.launch(
server_name="0.0.0.0",
server_port=7860,
share=False
) |