Update app.py
Browse files
app.py
CHANGED
|
@@ -1,54 +1,21 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
```
|
| 20 |
-
|
| 21 |
-
Intended workflow:
|
| 22 |
-
-Select conversion parameters.
|
| 23 |
-
-Hit "Submit"
|
| 24 |
-
-Copy command.
|
| 25 |
-
-Execute in your environment.
|
| 26 |
-
|
| 27 |
-
Note: Converstion can take a while and will be resource intensive.
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
OpenVINO supports Intel CPUs from 6th gen forward, so you can squeeze performance out of older hardware with
|
| 31 |
-
different accuracy/performance tradeoffs than the popular quants of GGUFs.
|
| 32 |
-
|
| 33 |
-
## Discussion
|
| 34 |
-
|
| 35 |
-
Leveraging CPU, GPU and NPU hardware acceleration from OpenVINO requires converting a model into an Intermediate format derived from ONNX.
|
| 36 |
-
The command we execute rebuilds the model graph from it's source to be optimized for how OpenVINO uses this graph in memory.
|
| 37 |
-
|
| 38 |
-
Using OpenVINO effectively requires considering facts about your Intel hardware. Visit the [Intel Ark]([Intel® Processors for PC, Laptops, Servers, and AI | Intel®](https://www.intel.com/content/www/us/en/products/details/processors.html)) product database to find this information.
|
| 39 |
-
|
| 40 |
-
Here are some hardware questions you should be able to answer before using this tool;
|
| 41 |
-
|
| 42 |
-
- What data types does my CPU support?
|
| 43 |
-
- What instruction sets?
|
| 44 |
-
- How will I be using the model?
|
| 45 |
-
- Do I have enough system memory for this task?
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
It's *the* ground truth for Intel Hardware specs. Even so, when testing with different model architectures
|
| 50 |
-
|
| 51 |
-
"""
|
| 52 |
|
| 53 |
class ConversionTool:
|
| 54 |
def __init__(self):
|
|
@@ -56,184 +23,256 @@ class ConversionTool:
|
|
| 56 |
self.model_input = gr.Textbox(
|
| 57 |
label='Model',
|
| 58 |
placeholder='Model ID on huggingface.co or path on disk',
|
| 59 |
-
info="
|
| 60 |
)
|
| 61 |
|
| 62 |
self.output_path = gr.Textbox(
|
| 63 |
label='Output Directory',
|
| 64 |
placeholder='Path to store the generated OV model',
|
| 65 |
-
info="
|
| 66 |
)
|
| 67 |
|
| 68 |
self.task = gr.Dropdown(
|
| 69 |
label='Task',
|
| 70 |
-
choices=['auto'] +
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
'image-to-text',
|
| 77 |
-
'automatic-speech-recognition',
|
| 78 |
-
'token-classification',
|
| 79 |
-
'text-to-image',
|
| 80 |
-
'audio-classification',
|
| 81 |
-
'feature-extraction',
|
| 82 |
-
'semantic-segmentation',
|
| 83 |
-
'masked-im',
|
| 84 |
-
'audio-xvector',
|
| 85 |
-
'audio-frame-classification',
|
| 86 |
-
'text2text-generation',
|
| 87 |
-
'multiple-choice',
|
| 88 |
-
'depth-estimation',
|
| 89 |
-
'image-classification',
|
| 90 |
-
'fill-mask', 'zero-shot-object-detection', 'object-detection',
|
| 91 |
-
'question-answering', 'zero-shot-image-classification',
|
| 92 |
-
'mask-generation', 'text-generation', 'text-classification',
|
| 93 |
-
'text-generation-with-past'
|
| 94 |
-
],
|
| 95 |
-
value=None
|
| 96 |
)
|
| 97 |
|
| 98 |
self.framework = gr.Dropdown(
|
| 99 |
label='Framework',
|
| 100 |
-
choices=['pt', 'tf'],
|
| 101 |
-
value=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 102 |
)
|
| 103 |
|
| 104 |
self.weight_format = gr.Dropdown(
|
| 105 |
label='Weight Format',
|
| 106 |
-
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'],
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
value=None,
|
| 108 |
-
info=
|
|
|
|
|
|
|
| 109 |
)
|
| 110 |
-
|
| 111 |
self.library = gr.Dropdown(
|
| 112 |
label='Library',
|
| 113 |
choices=[
|
| 114 |
-
|
| 115 |
-
'transformers',
|
| 116 |
-
'diffusers',
|
| 117 |
'timm',
|
| 118 |
-
'sentence_transformers',
|
| 119 |
'open_clip'
|
| 120 |
],
|
| 121 |
-
value=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 122 |
)
|
| 123 |
|
| 124 |
self.ratio = gr.Number(
|
| 125 |
label='Ratio',
|
| 126 |
-
value=None,
|
| 127 |
minimum=0.0,
|
| 128 |
-
maximum=1.0,
|
| 129 |
-
step=0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
)
|
| 131 |
|
| 132 |
self.group_size = gr.Number(
|
| 133 |
label='Group Size',
|
| 134 |
-
value=None,
|
| 135 |
-
step=1
|
|
|
|
| 136 |
)
|
| 137 |
|
| 138 |
self.backup_precision = gr.Dropdown(
|
| 139 |
label='Backup Precision',
|
| 140 |
-
choices=['', 'int8_sym', 'int8_asym'],
|
| 141 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 142 |
)
|
| 143 |
|
| 144 |
self.dataset = gr.Dropdown(
|
| 145 |
label='Dataset',
|
| 146 |
-
choices=[
|
| 147 |
-
'auto',
|
| 148 |
-
'wikitext2',
|
| 149 |
-
'c4',
|
| 150 |
-
'c4-new',
|
| 151 |
'contextual',
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
value=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
)
|
| 157 |
|
| 158 |
-
self.trust_remote_code = gr.Checkbox(
|
| 159 |
-
label='Trust Remote Code',
|
| 160 |
-
value=False)
|
| 161 |
-
|
| 162 |
-
self.disable_stateful = gr.Checkbox(
|
| 163 |
-
label='Disable Stateful',
|
| 164 |
-
value=False,
|
| 165 |
-
info="Disables stateful inference. This is required for multi GPU inference due to how OpenVINO uses the KV cache. ")
|
| 166 |
-
|
| 167 |
-
self.disable_convert_tokenizer = gr.Checkbox(
|
| 168 |
-
label='Disable Convert Tokenizer',
|
| 169 |
-
value=False,
|
| 170 |
-
info="Disables the tokenizer conversion. Use when models have custom tokenizers which might have formatting Optimum does not expect."
|
| 171 |
-
)
|
| 172 |
-
|
| 173 |
self.all_layers = gr.Checkbox(
|
| 174 |
-
label='All Layers',
|
| 175 |
-
value=
|
| 176 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
self.awq = gr.Checkbox(
|
| 178 |
-
label='AWQ',
|
| 179 |
-
value=
|
| 180 |
-
info=
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
self.gptq = gr.Checkbox(
|
| 187 |
-
label='GPTQ',
|
| 188 |
-
value=False)
|
| 189 |
-
|
| 190 |
-
self.lora_correction = gr.Checkbox(
|
| 191 |
-
label='LoRA Correction',
|
| 192 |
-
value=False)
|
| 193 |
-
|
| 194 |
-
self.sym = gr.Checkbox(
|
| 195 |
-
label='Symmetric Quantization',
|
| 196 |
-
value=False,
|
| 197 |
-
info="Symmetric quantization is faster and uses less memory. It is recommended for most use cases."
|
| 198 |
)
|
| 199 |
-
|
| 200 |
-
self.
|
| 201 |
-
label='
|
| 202 |
-
|
| 203 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 204 |
)
|
| 205 |
|
| 206 |
-
self.
|
| 207 |
-
label='
|
| 208 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
)
|
| 210 |
|
| 211 |
-
self.
|
| 212 |
-
label='
|
| 213 |
-
value=None,
|
| 214 |
-
|
| 215 |
-
|
|
|
|
|
|
|
|
|
|
| 216 |
)
|
| 217 |
|
| 218 |
-
self.sensitivity_metric = gr.Dropdown(
|
| 219 |
label='Sensitivity Metric',
|
| 220 |
-
choices=['weight_quantization_error', 'hessian_input_activation',
|
| 221 |
-
|
| 222 |
-
value=None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
)
|
| 224 |
|
| 225 |
-
self.num_samples = gr.Number(
|
| 226 |
label='Number of Samples',
|
| 227 |
value=None,
|
| 228 |
-
step=1
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
)
|
| 230 |
|
| 231 |
-
self.smooth_quant_alpha = gr.Number(
|
| 232 |
label='Smooth Quant Alpha',
|
| 233 |
value=None,
|
| 234 |
minimum=0.0,
|
| 235 |
maximum=1.0,
|
| 236 |
-
step=0.1
|
|
|
|
|
|
|
|
|
|
|
|
|
| 237 |
)
|
| 238 |
|
| 239 |
self.command_output = gr.TextArea(
|
|
@@ -244,128 +283,148 @@ class ConversionTool:
|
|
| 244 |
lines=5 # Adjust height
|
| 245 |
)
|
| 246 |
|
| 247 |
-
def construct_command(self, model_input, output_path, task, framework,
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
| 252 |
-
smooth_quant_alpha):
|
| 253 |
"""Construct the command string"""
|
| 254 |
if not model_input or not output_path:
|
| 255 |
return ''
|
| 256 |
-
|
| 257 |
cmd_parts = ['optimum-cli export openvino']
|
| 258 |
cmd_parts.append(f'-m "{model_input}"')
|
| 259 |
|
| 260 |
if task and task != 'auto':
|
| 261 |
cmd_parts.append(f'--task {task}')
|
| 262 |
-
|
| 263 |
if framework:
|
| 264 |
cmd_parts.append(f'--framework {framework}')
|
| 265 |
-
|
| 266 |
-
if
|
|
|
|
|
|
|
|
|
|
| 267 |
cmd_parts.append(f'--weight-format {weight_format}')
|
| 268 |
-
|
| 269 |
-
if
|
|
|
|
|
|
|
|
|
|
| 270 |
cmd_parts.append(f'--library {library}')
|
| 271 |
-
|
| 272 |
-
if
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 273 |
cmd_parts.append(f'--ratio {ratio}')
|
| 274 |
-
|
| 275 |
-
if
|
| 276 |
-
|
| 277 |
-
|
| 278 |
-
if
|
|
|
|
|
|
|
|
|
|
| 279 |
cmd_parts.append(f'--backup-precision {backup_precision}')
|
| 280 |
-
|
| 281 |
-
if dataset
|
| 282 |
cmd_parts.append(f'--dataset {dataset}')
|
| 283 |
-
|
| 284 |
-
#
|
| 285 |
-
if trust_remote_code:
|
| 286 |
-
cmd_parts.append('--trust-remote-code')
|
| 287 |
-
if disable_stateful:
|
| 288 |
-
cmd_parts.append('--disable-stateful')
|
| 289 |
-
if disable_convert_tokenizer:
|
| 290 |
-
cmd_parts.append('--disable-convert-tokenizer')
|
| 291 |
-
if all_layers:
|
| 292 |
cmd_parts.append('--all-layers')
|
| 293 |
-
|
|
|
|
| 294 |
cmd_parts.append('--awq')
|
| 295 |
-
|
|
|
|
| 296 |
cmd_parts.append('--scale-estimation')
|
| 297 |
-
|
|
|
|
| 298 |
cmd_parts.append('--gptq')
|
| 299 |
-
|
|
|
|
| 300 |
cmd_parts.append('--lora-correction')
|
| 301 |
-
|
| 302 |
-
|
| 303 |
-
|
| 304 |
-
# Additional optional arguments - only add if they have values
|
| 305 |
-
if quant_mode:
|
| 306 |
-
cmd_parts.append(f'--quant-mode {quant_mode}')
|
| 307 |
-
if cache_dir:
|
| 308 |
-
cmd_parts.append(f'--cache_dir "{cache_dir}"')
|
| 309 |
-
if pad_token_id is not None and pad_token_id != 0:
|
| 310 |
-
cmd_parts.append(f'--pad-token-id {pad_token_id}')
|
| 311 |
-
if sensitivity_metric:
|
| 312 |
cmd_parts.append(f'--sensitivity-metric {sensitivity_metric}')
|
| 313 |
-
|
| 314 |
-
|
| 315 |
-
|
|
|
|
|
|
|
| 316 |
cmd_parts.append(f'--smooth-quant-alpha {smooth_quant_alpha}')
|
| 317 |
|
| 318 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
constructed_command = ' '.join(cmd_parts)
|
| 321 |
return constructed_command
|
| 322 |
|
| 323 |
def gradio_app(self):
|
| 324 |
"""Create and run the Gradio interface."""
|
|
|
|
| 325 |
inputs = [
|
| 326 |
self.model_input,
|
| 327 |
self.output_path,
|
| 328 |
self.task,
|
| 329 |
self.framework,
|
|
|
|
| 330 |
self.weight_format,
|
|
|
|
| 331 |
self.library,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 332 |
self.ratio,
|
|
|
|
| 333 |
self.group_size,
|
| 334 |
self.backup_precision,
|
| 335 |
self.dataset,
|
| 336 |
-
self.trust_remote_code,
|
| 337 |
-
self.disable_stateful,
|
| 338 |
-
self.disable_convert_tokenizer,
|
| 339 |
self.all_layers,
|
| 340 |
self.awq,
|
| 341 |
-
self.scale_estimation,
|
| 342 |
-
self.gptq,
|
| 343 |
-
self.lora_correction,
|
| 344 |
-
self.
|
| 345 |
-
self.
|
| 346 |
-
self.
|
| 347 |
-
|
| 348 |
-
self.
|
| 349 |
-
self.
|
| 350 |
-
self.smooth_quant_alpha,
|
| 351 |
]
|
| 352 |
interface = gr.Interface(
|
| 353 |
fn=self.construct_command,
|
| 354 |
inputs=inputs,
|
| 355 |
outputs=self.command_output,
|
| 356 |
-
title="OpenVINO Conversion Tool",
|
| 357 |
-
description="
|
| 358 |
-
|
| 359 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
)
|
| 361 |
|
| 362 |
-
|
| 363 |
return interface
|
| 364 |
|
| 365 |
-
|
| 366 |
-
|
| 367 |
-
|
| 368 |
-
|
| 369 |
-
|
| 370 |
-
|
| 371 |
-
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
# from huggingface_hub.constants import HUGGINGFACE_HUB_CACHE # Import for default cache_dir
|
| 3 |
+
|
| 4 |
+
# Dynamically get tasks (approximation, as original script uses TasksManager)
|
| 5 |
+
# In a real scenario, this might need a more robust way to get tasks if TasksManager is available
|
| 6 |
+
# For now, using the list from the previous file content + info from the script
|
| 7 |
+
AVAILABLE_TASKS = [
|
| 8 |
+
'image-to-image', 'image-segmentation', 'image-text-to-text', 'inpainting',
|
| 9 |
+
'sentence-similarity', 'text-to-audio', 'image-to-text',
|
| 10 |
+
'automatic-speech-recognition', 'token-classification', 'text-to-image',
|
| 11 |
+
'audio-classification', 'feature-extraction', 'semantic-segmentation',
|
| 12 |
+
'masked-im', 'audio-xvector', 'audio-frame-classification',
|
| 13 |
+
'text2text-generation', 'multiple-choice', 'depth-estimation',
|
| 14 |
+
'image-classification', 'fill-mask', 'zero-shot-object-detection',
|
| 15 |
+
'object-detection', 'question-answering', 'zero-shot-image-classification',
|
| 16 |
+
'mask-generation', 'text-generation', 'text-classification',
|
| 17 |
+
'text-generation-with-past'
|
| 18 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
|
| 20 |
class ConversionTool:
|
| 21 |
def __init__(self):
|
|
|
|
| 23 |
self.model_input = gr.Textbox(
|
| 24 |
label='Model',
|
| 25 |
placeholder='Model ID on huggingface.co or path on disk',
|
| 26 |
+
info="Model ID on huggingface.co or path on disk to load model from." # Updated info
|
| 27 |
)
|
| 28 |
|
| 29 |
self.output_path = gr.Textbox(
|
| 30 |
label='Output Directory',
|
| 31 |
placeholder='Path to store the generated OV model',
|
| 32 |
+
info="Path indicating the directory where to store the generated OV model." # Updated info
|
| 33 |
)
|
| 34 |
|
| 35 |
self.task = gr.Dropdown(
|
| 36 |
label='Task',
|
| 37 |
+
choices=['auto'] + AVAILABLE_TASKS,
|
| 38 |
+
value='auto', # Default value is 'auto'
|
| 39 |
+
info=( # Updated info
|
| 40 |
+
"The task to export the model for. If not specified, the task will be auto-inferred based on metadata in the model repository."
|
| 41 |
+
|
| 42 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
)
|
| 44 |
|
| 45 |
self.framework = gr.Dropdown(
|
| 46 |
label='Framework',
|
| 47 |
+
choices=[None, 'pt', 'tf'], # Added None option
|
| 48 |
+
value=None,
|
| 49 |
+
info=( # Updated info
|
| 50 |
+
"The framework to use for the export. If not provided, will attempt to use the local checkpoint's "
|
| 51 |
+
"original framework or what is available in the environment."
|
| 52 |
+
)
|
| 53 |
+
)
|
| 54 |
+
|
| 55 |
+
self.trust_remote_code = gr.Checkbox( # Added trust_remote_code
|
| 56 |
+
label='Trust Remote Code',
|
| 57 |
+
value=False,
|
| 58 |
+
info=(
|
| 59 |
+
"Allows to use custom code for the modeling hosted in the model repository. This option should only be set for repositories you trust and in which "
|
| 60 |
+
"you have read the code, as it will execute on your local machine arbitrary code present in the model repository."
|
| 61 |
+
)
|
| 62 |
)
|
| 63 |
|
| 64 |
self.weight_format = gr.Dropdown(
|
| 65 |
label='Weight Format',
|
| 66 |
+
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'], # Added None option
|
| 67 |
+
value=None,
|
| 68 |
+
info="The weight format of the exported model." # Updated info
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
self.quant_mode = gr.Dropdown( # Added quant_mode
|
| 72 |
+
label='Quantization Mode',
|
| 73 |
+
choices=[None, 'int8', 'f8e4m3', 'f8e5m2', 'nf4_f8e4m3', 'nf4_f8e5m2', 'int4_f8e4m3', 'int4_f8e5m2'],
|
| 74 |
value=None,
|
| 75 |
+
info=(
|
| 76 |
+
"Quantization precision mode. This is used for applying full model quantization including activations. "
|
| 77 |
+
)
|
| 78 |
)
|
| 79 |
+
|
| 80 |
self.library = gr.Dropdown(
|
| 81 |
label='Library',
|
| 82 |
choices=[
|
| 83 |
+
None, # Added None option
|
| 84 |
+
'transformers',
|
| 85 |
+
'diffusers',
|
| 86 |
'timm',
|
| 87 |
+
'sentence_transformers',
|
| 88 |
'open_clip'
|
| 89 |
],
|
| 90 |
+
value=None, # Default is None, inferred later
|
| 91 |
+
info="The library used to load the model before export. If not provided, will attempt to infer the local checkpoint's library" # Updated info
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
self.cache_dir = gr.Textbox( # Added cache_dir
|
| 95 |
+
label='Cache Directory',
|
| 96 |
+
placeholder=f'Default: {HUGGINGFACE_HUB_CACHE}', # Use imported default
|
| 97 |
+
value=None, # Default to None, let the script handle the default path
|
| 98 |
+
info="The path to a directory in which the downloaded model should be cached if the standard cache should not be used."
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
self.pad_token_id = gr.Number( # Added pad_token_id
|
| 102 |
+
label='Pad Token ID',
|
| 103 |
+
value=None,
|
| 104 |
+
step=1,
|
| 105 |
+
info=(
|
| 106 |
+
"This is needed by some models, for some tasks. If not provided, will attempt to use the tokenizer to guess it."
|
| 107 |
+
)
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
self.variant = gr.Textbox( # Added variant
|
| 111 |
+
label='Variant',
|
| 112 |
+
value=None,
|
| 113 |
+
info="If specified load weights from variant filename."
|
| 114 |
)
|
| 115 |
|
| 116 |
self.ratio = gr.Number(
|
| 117 |
label='Ratio',
|
| 118 |
+
value=None, # Default is None
|
| 119 |
minimum=0.0,
|
| 120 |
+
maximum=1.0, # Max is 1.0 according to help text
|
| 121 |
+
step=0.1,
|
| 122 |
+
info=( # Updated info
|
| 123 |
+
"A parameter used when applying 4-bit quantization to control the ratio between 4-bit and 8-bit quantization. If set to 0.8, 80%% of the layers will be quantized to int4 "
|
| 124 |
+
"while 20%% will be quantized to int8. This helps to achieve better accuracy at the sacrifice of the model size and inference latency. Default value is 1.0. "
|
| 125 |
+
"Note: If dataset is provided, and the ratio is less than 1.0, then data-aware mixed precision assignment will be applied."
|
| 126 |
+
)
|
| 127 |
+
)
|
| 128 |
+
|
| 129 |
+
self.sym = gr.Checkbox( # Moved sym higher to group with quantization params
|
| 130 |
+
label='Symmetric Quantization',
|
| 131 |
+
value=None, # Default is None in script
|
| 132 |
+
info=("Whether to apply symmetric quantization") # Updated info
|
| 133 |
)
|
| 134 |
|
| 135 |
self.group_size = gr.Number(
|
| 136 |
label='Group Size',
|
| 137 |
+
value=None, # Default is None
|
| 138 |
+
step=1,
|
| 139 |
+
info=("The group size to use for quantization. Recommended value is 128 and -1 uses per-column quantization.") # Updated info
|
| 140 |
)
|
| 141 |
|
| 142 |
self.backup_precision = gr.Dropdown(
|
| 143 |
label='Backup Precision',
|
| 144 |
+
choices=[None, 'none', 'int8_sym', 'int8_asym'], # Added None and 'none'
|
| 145 |
+
value=None, # Default is None
|
| 146 |
+
info=( # Updated info
|
| 147 |
+
"Defines a backup precision for mixed-precision weight compression. Only valid for 4-bit weight formats. "
|
| 148 |
+
"If not provided, backup precision is int8_asym. 'none' stands for original floating-point precision of "
|
| 149 |
+
"the model weights, in this case weights are retained in their original precision without any "
|
| 150 |
+
"quantization. 'int8_sym' stands for 8-bit integer symmetric quantization without zero point. 'int8_asym' "
|
| 151 |
+
"stands for 8-bit integer asymmetric quantization with zero points per each quantization group."
|
| 152 |
+
)
|
| 153 |
)
|
| 154 |
|
| 155 |
self.dataset = gr.Dropdown(
|
| 156 |
label='Dataset',
|
| 157 |
+
choices=[None, # Added None option
|
| 158 |
+
'auto',
|
| 159 |
+
'wikitext2',
|
| 160 |
+
'c4',
|
| 161 |
+
'c4-new',
|
| 162 |
'contextual',
|
| 163 |
+
'conceptual_captions',
|
| 164 |
+
'laion/220k-GPT4Vision-captions-from-LIVIS',
|
| 165 |
+
'laion/filtered-wit'],
|
| 166 |
+
value=None,
|
| 167 |
+
info=( # Updated info
|
| 168 |
+
"The dataset used for data-aware compression or quantization with NNCF. "
|
| 169 |
+
"For language models you can use the one from the list ['auto','wikitext2','c4','c4-new']. With 'auto' the "
|
| 170 |
+
"dataset will be collected from model's generations. "
|
| 171 |
+
"For diffusion models it should be on of ['conceptual_captions',"
|
| 172 |
+
"'laion/220k-GPT4Vision-captions-from-LIVIS','laion/filtered-wit']. "
|
| 173 |
+
"For visual language models the dataset must be set to 'contextual'. "
|
| 174 |
+
"Note: if none of the data-aware compression algorithms are selected and ratio parameter is omitted or "
|
| 175 |
+
"equals 1.0, the dataset argument will not have an effect on the resulting model."
|
| 176 |
+
)
|
| 177 |
)
|
| 178 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
self.all_layers = gr.Checkbox(
|
| 180 |
+
label='All Layers',
|
| 181 |
+
value=None, # Default is None in script
|
| 182 |
+
info=( # Updated info
|
| 183 |
+
"Whether embeddings and last MatMul layers should be compressed to INT4. If not provided an weight "
|
| 184 |
+
"compression is applied, they are compressed to INT8."
|
| 185 |
+
)
|
| 186 |
+
)
|
| 187 |
+
|
| 188 |
self.awq = gr.Checkbox(
|
| 189 |
+
label='AWQ',
|
| 190 |
+
value=None, # Default is None in script
|
| 191 |
+
info=( # Updated info
|
| 192 |
+
"Whether to apply AWQ algorithm. AWQ improves generation quality of INT4-compressed LLMs, but requires "
|
| 193 |
+
"additional time for tuning weights on a calibration dataset. To run AWQ, please also provide a dataset "
|
| 194 |
+
"argument. Note: it is possible that there will be no matching patterns in the model to apply AWQ, in such "
|
| 195 |
+
"case it will be skipped."
|
| 196 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 197 |
)
|
| 198 |
+
|
| 199 |
+
self.scale_estimation = gr.Checkbox( # Added scale_estimation
|
| 200 |
+
label='Scale Estimation',
|
| 201 |
+
value=None, # Default is None in script
|
| 202 |
+
info=(
|
| 203 |
+
"Indicates whether to apply a scale estimation algorithm that minimizes the L2 error between the original "
|
| 204 |
+
"and compressed layers. Providing a dataset is required to run scale estimation. Please note, that "
|
| 205 |
+
"applying scale estimation takes additional memory and time."
|
| 206 |
+
)
|
| 207 |
)
|
| 208 |
|
| 209 |
+
self.gptq = gr.Checkbox( # Added gptq
|
| 210 |
+
label='GPTQ',
|
| 211 |
+
value=None, # Default is None in script
|
| 212 |
+
info=(
|
| 213 |
+
"Indicates whether to apply GPTQ algorithm that optimizes compressed weights in a layer-wise fashion to "
|
| 214 |
+
"minimize the difference between activations of a compressed and original layer. Please note, that "
|
| 215 |
+
"applying GPTQ takes additional memory and time."
|
| 216 |
+
)
|
| 217 |
)
|
| 218 |
|
| 219 |
+
self.lora_correction = gr.Checkbox( # Added lora_correction
|
| 220 |
+
label='LoRA Correction',
|
| 221 |
+
value=None, # Default is None in script
|
| 222 |
+
info=(
|
| 223 |
+
"Indicates whether to apply LoRA Correction algorithm. When enabled, this algorithm introduces low-rank "
|
| 224 |
+
"adaptation layers in the model that can recover accuracy after weight compression at some cost of "
|
| 225 |
+
"inference latency. Please note, that applying LoRA Correction algorithm takes additional memory and time."
|
| 226 |
+
)
|
| 227 |
)
|
| 228 |
|
| 229 |
+
self.sensitivity_metric = gr.Dropdown( # Added sensitivity_metric
|
| 230 |
label='Sensitivity Metric',
|
| 231 |
+
choices=[None, 'weight_quantization_error', 'hessian_input_activation',
|
| 232 |
+
'mean_activation_variance', 'max_activation_variance', 'mean_activation_magnitude'],
|
| 233 |
+
value=None,
|
| 234 |
+
info=(
|
| 235 |
+
"The sensitivity metric for assigning quantization precision to layers. It can be one of the following: "
|
| 236 |
+
"['weight_quantization_error', 'hessian_input_activation', 'mean_activation_variance', "
|
| 237 |
+
"'max_activation_variance', 'mean_activation_magnitude']."
|
| 238 |
+
)
|
| 239 |
)
|
| 240 |
|
| 241 |
+
self.num_samples = gr.Number( # Added num_samples
|
| 242 |
label='Number of Samples',
|
| 243 |
value=None,
|
| 244 |
+
step=1,
|
| 245 |
+
info="The maximum number of samples to take from the dataset for quantization." # Updated info
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
self.disable_stateful = gr.Checkbox(
|
| 249 |
+
label='Disable Stateful',
|
| 250 |
+
value=False, # Default is False (stateful is enabled by default)
|
| 251 |
+
info=( # Updated info
|
| 252 |
+
"Disable stateful converted models, stateless models will be generated instead. Stateful models are produced by default when this key is not used. "
|
| 253 |
+
"In stateful models all kv-cache inputs and outputs are hidden in the model and are not exposed as model inputs and outputs. "
|
| 254 |
+
"If --disable-stateful option is used, it may result in sub-optimal inference performance. "
|
| 255 |
+
"Use it when you intentionally want to use a stateless model, for example, to be compatible with existing "
|
| 256 |
+
"OpenVINO native inference code that expects KV-cache inputs and outputs in the model."
|
| 257 |
+
)
|
| 258 |
+
)
|
| 259 |
+
|
| 260 |
+
self.disable_convert_tokenizer = gr.Checkbox(
|
| 261 |
+
label='Disable Convert Tokenizer',
|
| 262 |
+
value=False, # Default is False (conversion is enabled by default)
|
| 263 |
+
info="Do not add converted tokenizer and detokenizer OpenVINO models." # Updated info
|
| 264 |
)
|
| 265 |
|
| 266 |
+
self.smooth_quant_alpha = gr.Number( # Added smooth_quant_alpha
|
| 267 |
label='Smooth Quant Alpha',
|
| 268 |
value=None,
|
| 269 |
minimum=0.0,
|
| 270 |
maximum=1.0,
|
| 271 |
+
step=0.1,
|
| 272 |
+
info=(
|
| 273 |
+
"SmoothQuant alpha parameter that improves the distribution of activations before MatMul layers and "
|
| 274 |
+
"reduces quantization error. Valid only when activations quantization is enabled."
|
| 275 |
+
)
|
| 276 |
)
|
| 277 |
|
| 278 |
self.command_output = gr.TextArea(
|
|
|
|
| 283 |
lines=5 # Adjust height
|
| 284 |
)
|
| 285 |
|
| 286 |
+
def construct_command(self, model_input, output_path, task, framework, trust_remote_code, # Added trust_remote_code
|
| 287 |
+
weight_format, quant_mode, library, cache_dir, pad_token_id, variant, # Added new args
|
| 288 |
+
ratio, sym, group_size, backup_precision, dataset, all_layers, # Added sym
|
| 289 |
+
awq, scale_estimation, gptq, lora_correction, sensitivity_metric, num_samples, # Added new args
|
| 290 |
+
disable_stateful, disable_convert_tokenizer, smooth_quant_alpha): # Added smooth_quant_alpha
|
|
|
|
| 291 |
"""Construct the command string"""
|
| 292 |
if not model_input or not output_path:
|
| 293 |
return ''
|
| 294 |
+
|
| 295 |
cmd_parts = ['optimum-cli export openvino']
|
| 296 |
cmd_parts.append(f'-m "{model_input}"')
|
| 297 |
|
| 298 |
if task and task != 'auto':
|
| 299 |
cmd_parts.append(f'--task {task}')
|
| 300 |
+
|
| 301 |
if framework:
|
| 302 |
cmd_parts.append(f'--framework {framework}')
|
| 303 |
+
|
| 304 |
+
if trust_remote_code: # Added trust_remote_code flag
|
| 305 |
+
cmd_parts.append('--trust-remote-code')
|
| 306 |
+
|
| 307 |
+
if weight_format: # Check if not None/empty
|
| 308 |
cmd_parts.append(f'--weight-format {weight_format}')
|
| 309 |
+
|
| 310 |
+
if quant_mode: # Added quant_mode
|
| 311 |
+
cmd_parts.append(f'--quant-mode {quant_mode}')
|
| 312 |
+
|
| 313 |
+
if library: # Check if not None/empty
|
| 314 |
cmd_parts.append(f'--library {library}')
|
| 315 |
+
|
| 316 |
+
if cache_dir: # Added cache_dir
|
| 317 |
+
cmd_parts.append(f'--cache_dir "{cache_dir}"')
|
| 318 |
+
|
| 319 |
+
if pad_token_id: # Added pad_token_id
|
| 320 |
+
cmd_parts.append(f'--pad-token-id {int(pad_token_id)}') # Ensure int
|
| 321 |
+
|
| 322 |
+
if variant: # Added variant
|
| 323 |
+
cmd_parts.append(f'--variant "{variant}"')
|
| 324 |
+
|
| 325 |
+
# Compression/Quantization specific args
|
| 326 |
+
if ratio: # Check for None explicitly
|
| 327 |
cmd_parts.append(f'--ratio {ratio}')
|
| 328 |
+
|
| 329 |
+
if sym: # Check for None explicitly and True
|
| 330 |
+
cmd_parts.append('--sym')
|
| 331 |
+
|
| 332 |
+
if group_size: # Check for None explicitly
|
| 333 |
+
cmd_parts.append(f'--group-size {int(group_size)}') # Ensure int
|
| 334 |
+
|
| 335 |
+
if backup_precision: # Check if not None/empty
|
| 336 |
cmd_parts.append(f'--backup-precision {backup_precision}')
|
| 337 |
+
|
| 338 |
+
if dataset: # Check if not None/empty
|
| 339 |
cmd_parts.append(f'--dataset {dataset}')
|
| 340 |
+
|
| 341 |
+
if all_layers: # Check for None explicitly and True
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 342 |
cmd_parts.append('--all-layers')
|
| 343 |
+
|
| 344 |
+
if awq: # Check for None explicitly and True
|
| 345 |
cmd_parts.append('--awq')
|
| 346 |
+
|
| 347 |
+
if scale_estimation: # Added scale_estimation flag
|
| 348 |
cmd_parts.append('--scale-estimation')
|
| 349 |
+
|
| 350 |
+
if gptq is not None and gptq: # Added gptq flag
|
| 351 |
cmd_parts.append('--gptq')
|
| 352 |
+
|
| 353 |
+
if lora_correction: # Added lora_correction flag
|
| 354 |
cmd_parts.append('--lora-correction')
|
| 355 |
+
|
| 356 |
+
if sensitivity_metric: # Added sensitivity_metric
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 357 |
cmd_parts.append(f'--sensitivity-metric {sensitivity_metric}')
|
| 358 |
+
|
| 359 |
+
if num_samples: # Added num_samples
|
| 360 |
+
cmd_parts.append(f'--num-samples {int(num_samples)}') # Ensure int
|
| 361 |
+
|
| 362 |
+
if smooth_quant_alpha: # Added smooth_quant_alpha
|
| 363 |
cmd_parts.append(f'--smooth-quant-alpha {smooth_quant_alpha}')
|
| 364 |
|
| 365 |
+
# Other boolean flags
|
| 366 |
+
if disable_stateful: # Default is False, only add if True
|
| 367 |
+
cmd_parts.append('--disable-stateful')
|
| 368 |
+
if disable_convert_tokenizer: # Default is False, only add if True
|
| 369 |
+
cmd_parts.append('--disable-convert-tokenizer')
|
| 370 |
+
|
| 371 |
+
# Output path is always last and required
|
| 372 |
+
cmd_parts.append(f'"{output_path}"')
|
| 373 |
|
| 374 |
constructed_command = ' '.join(cmd_parts)
|
| 375 |
return constructed_command
|
| 376 |
|
| 377 |
def gradio_app(self):
|
| 378 |
"""Create and run the Gradio interface."""
|
| 379 |
+
# Define inputs in the order they appear visually (or logically)
|
| 380 |
inputs = [
|
| 381 |
self.model_input,
|
| 382 |
self.output_path,
|
| 383 |
self.task,
|
| 384 |
self.framework,
|
| 385 |
+
self.trust_remote_code, # Added
|
| 386 |
self.weight_format,
|
| 387 |
+
self.quant_mode, # Added
|
| 388 |
self.library,
|
| 389 |
+
self.cache_dir, # Added
|
| 390 |
+
self.pad_token_id, # Added
|
| 391 |
+
self.variant, # Added
|
| 392 |
+
# Quantization/Compression Group
|
| 393 |
self.ratio,
|
| 394 |
+
self.sym, # Added
|
| 395 |
self.group_size,
|
| 396 |
self.backup_precision,
|
| 397 |
self.dataset,
|
|
|
|
|
|
|
|
|
|
| 398 |
self.all_layers,
|
| 399 |
self.awq,
|
| 400 |
+
self.scale_estimation, # Added
|
| 401 |
+
self.gptq, # Added
|
| 402 |
+
self.lora_correction, # Added
|
| 403 |
+
self.sensitivity_metric, # Added
|
| 404 |
+
self.num_samples, # Added
|
| 405 |
+
self.smooth_quant_alpha, # Added
|
| 406 |
+
# Other Flags
|
| 407 |
+
self.disable_stateful,
|
| 408 |
+
self.disable_convert_tokenizer,
|
|
|
|
| 409 |
]
|
| 410 |
interface = gr.Interface(
|
| 411 |
fn=self.construct_command,
|
| 412 |
inputs=inputs,
|
| 413 |
outputs=self.command_output,
|
| 414 |
+
title="OpenVINO IR Model Conversion Tool",
|
| 415 |
+
description="""
|
| 416 |
+
Enter model information to generate an `optimum-cli export openvino` command.
|
| 417 |
+
Use the arguments below to configure the export process based on the OpenVINO exporter documentation.
|
| 418 |
+
Then run the generated command in the terminal where your OpenArc environment is activated.
|
| 419 |
+
""",
|
| 420 |
+
# article=INTRODUCTION, # Assuming INTRODUCTION is defined elsewhere or commented out
|
| 421 |
+
flagging_mode='auto' # Keep or remove based on preference
|
| 422 |
)
|
| 423 |
|
|
|
|
| 424 |
return interface
|
| 425 |
|
| 426 |
+
# Example usage (optional, keep commented out for library use)
|
| 427 |
+
# if __name__ == "__main__":
|
| 428 |
+
# tool = ConversionTool()
|
| 429 |
+
# app = tool.gradio_app()
|
| 430 |
+
# app.launch(share=False)
|
|
|
|
|
|