Update app.py
Browse files
app.py
CHANGED
|
@@ -58,47 +58,69 @@ class ConversionTool:
|
|
| 58 |
placeholder='Model ID on huggingface.co or path on disk',
|
| 59 |
info="The model to convert. This can be a model ID on Hugging Face or a path on disk."
|
| 60 |
)
|
|
|
|
| 61 |
self.output_path = gr.Textbox(
|
| 62 |
label='Output Directory',
|
| 63 |
placeholder='Path to store the generated OV model',
|
| 64 |
info="We are storing some text here"
|
| 65 |
)
|
|
|
|
| 66 |
self.task = gr.Dropdown(
|
| 67 |
label='Task',
|
| 68 |
choices=['auto'] + [
|
| 69 |
-
'image-to-image',
|
| 70 |
-
'
|
| 71 |
-
'
|
| 72 |
-
'
|
| 73 |
-
'
|
| 74 |
-
'
|
| 75 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 76 |
'fill-mask', 'zero-shot-object-detection', 'object-detection',
|
| 77 |
'question-answering', 'zero-shot-image-classification',
|
| 78 |
'mask-generation', 'text-generation', 'text-classification',
|
| 79 |
-
'text-
|
| 80 |
],
|
| 81 |
value=None
|
| 82 |
)
|
|
|
|
| 83 |
self.framework = gr.Dropdown(
|
| 84 |
label='Framework',
|
| 85 |
choices=['pt', 'tf'],
|
| 86 |
value=None
|
| 87 |
)
|
|
|
|
| 88 |
self.weight_format = gr.Dropdown(
|
| 89 |
label='Weight Format',
|
| 90 |
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'],
|
| 91 |
value=None,
|
| 92 |
info="The level of compression we apply to the intermediate representation."
|
| 93 |
)
|
|
|
|
| 94 |
self.library = gr.Dropdown(
|
| 95 |
label='Library',
|
| 96 |
choices=[
|
| 97 |
-
'auto',
|
| 98 |
-
'
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
],
|
| 100 |
value=None
|
| 101 |
)
|
|
|
|
| 102 |
self.ratio = gr.Number(
|
| 103 |
label='Ratio',
|
| 104 |
value=None,
|
|
@@ -106,57 +128,106 @@ class ConversionTool:
|
|
| 106 |
maximum=1.0,
|
| 107 |
step=0.1
|
| 108 |
)
|
|
|
|
| 109 |
self.group_size = gr.Number(
|
| 110 |
label='Group Size',
|
| 111 |
value=None,
|
| 112 |
step=1
|
| 113 |
)
|
|
|
|
| 114 |
self.backup_precision = gr.Dropdown(
|
| 115 |
label='Backup Precision',
|
| 116 |
choices=['', 'int8_sym', 'int8_asym'],
|
| 117 |
# value=None
|
| 118 |
)
|
|
|
|
| 119 |
self.dataset = gr.Dropdown(
|
| 120 |
label='Dataset',
|
| 121 |
-
choices=['none',
|
| 122 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 123 |
'laion/filtered-wit'],
|
| 124 |
value=None
|
| 125 |
)
|
| 126 |
-
|
| 127 |
-
self.
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
self.
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
self.quant_mode = gr.Dropdown(
|
| 136 |
label='Quantization Mode',
|
| 137 |
choices=['sym', 'asym'],
|
| 138 |
value=None
|
| 139 |
)
|
|
|
|
| 140 |
self.cache_dir = gr.Textbox(
|
| 141 |
label='Cache Directory',
|
| 142 |
placeholder='Path to cache directory'
|
| 143 |
)
|
|
|
|
| 144 |
self.pad_token_id = gr.Number(
|
| 145 |
label='Pad Token ID',
|
| 146 |
value=None,
|
| 147 |
step=1,
|
| 148 |
-
info="Will infer from
|
| 149 |
)
|
|
|
|
| 150 |
self.sensitivity_metric = gr.Dropdown(
|
| 151 |
label='Sensitivity Metric',
|
| 152 |
-
choices=['
|
|
|
|
| 153 |
value=None
|
| 154 |
)
|
|
|
|
| 155 |
self.num_samples = gr.Number(
|
| 156 |
label='Number of Samples',
|
| 157 |
value=None,
|
| 158 |
step=1
|
| 159 |
)
|
|
|
|
| 160 |
self.smooth_quant_alpha = gr.Number(
|
| 161 |
label='Smooth Quant Alpha',
|
| 162 |
value=None,
|
|
@@ -164,6 +235,7 @@ class ConversionTool:
|
|
| 164 |
maximum=1.0,
|
| 165 |
step=0.1
|
| 166 |
)
|
|
|
|
| 167 |
self.command_output = gr.TextArea(
|
| 168 |
label='Generated Command',
|
| 169 |
placeholder='Generated command will appear here...',
|
|
@@ -283,7 +355,7 @@ class ConversionTool:
|
|
| 283 |
outputs=self.command_output,
|
| 284 |
title="OpenVINO Conversion Tool",
|
| 285 |
description="Enter model information to generate an `optimum-cli` export command.",
|
| 286 |
-
article=INTRODUCTION,
|
| 287 |
allow_flagging='auto'
|
| 288 |
)
|
| 289 |
|
|
|
|
| 58 |
placeholder='Model ID on huggingface.co or path on disk',
|
| 59 |
info="The model to convert. This can be a model ID on Hugging Face or a path on disk."
|
| 60 |
)
|
| 61 |
+
|
| 62 |
self.output_path = gr.Textbox(
|
| 63 |
label='Output Directory',
|
| 64 |
placeholder='Path to store the generated OV model',
|
| 65 |
info="We are storing some text here"
|
| 66 |
)
|
| 67 |
+
|
| 68 |
self.task = gr.Dropdown(
|
| 69 |
label='Task',
|
| 70 |
choices=['auto'] + [
|
| 71 |
+
'image-to-image',
|
| 72 |
+
'image-segmentation',
|
| 73 |
+
'inpainting',
|
| 74 |
+
'sentence-similarity',
|
| 75 |
+
'text-to-audio',
|
| 76 |
+
'image-to-text',
|
| 77 |
+
'automatic-speech-recognition',
|
| 78 |
+
'token-classification',
|
| 79 |
+
'text-to-image',
|
| 80 |
+
'audio-classification',
|
| 81 |
+
'feature-extraction',
|
| 82 |
+
'semantic-segmentation',
|
| 83 |
+
'masked-im',
|
| 84 |
+
'audio-xvector',
|
| 85 |
+
'audio-frame-classification',
|
| 86 |
+
'text2text-generation',
|
| 87 |
+
'multiple-choice',
|
| 88 |
+
'depth-estimation',
|
| 89 |
+
'image-classification',
|
| 90 |
'fill-mask', 'zero-shot-object-detection', 'object-detection',
|
| 91 |
'question-answering', 'zero-shot-image-classification',
|
| 92 |
'mask-generation', 'text-generation', 'text-classification',
|
| 93 |
+
'text-generation-with-past'
|
| 94 |
],
|
| 95 |
value=None
|
| 96 |
)
|
| 97 |
+
|
| 98 |
self.framework = gr.Dropdown(
|
| 99 |
label='Framework',
|
| 100 |
choices=['pt', 'tf'],
|
| 101 |
value=None
|
| 102 |
)
|
| 103 |
+
|
| 104 |
self.weight_format = gr.Dropdown(
|
| 105 |
label='Weight Format',
|
| 106 |
choices=['fp32', 'fp16', 'int8', 'int4', 'mxfp4', 'nf4'],
|
| 107 |
value=None,
|
| 108 |
info="The level of compression we apply to the intermediate representation."
|
| 109 |
)
|
| 110 |
+
|
| 111 |
self.library = gr.Dropdown(
|
| 112 |
label='Library',
|
| 113 |
choices=[
|
| 114 |
+
'auto',
|
| 115 |
+
'transformers',
|
| 116 |
+
'diffusers',
|
| 117 |
+
'timm',
|
| 118 |
+
'sentence_transformers',
|
| 119 |
+
'open_clip'
|
| 120 |
],
|
| 121 |
value=None
|
| 122 |
)
|
| 123 |
+
|
| 124 |
self.ratio = gr.Number(
|
| 125 |
label='Ratio',
|
| 126 |
value=None,
|
|
|
|
| 128 |
maximum=1.0,
|
| 129 |
step=0.1
|
| 130 |
)
|
| 131 |
+
|
| 132 |
self.group_size = gr.Number(
|
| 133 |
label='Group Size',
|
| 134 |
value=None,
|
| 135 |
step=1
|
| 136 |
)
|
| 137 |
+
|
| 138 |
self.backup_precision = gr.Dropdown(
|
| 139 |
label='Backup Precision',
|
| 140 |
choices=['', 'int8_sym', 'int8_asym'],
|
| 141 |
# value=None
|
| 142 |
)
|
| 143 |
+
|
| 144 |
self.dataset = gr.Dropdown(
|
| 145 |
label='Dataset',
|
| 146 |
+
choices=['none',
|
| 147 |
+
'auto',
|
| 148 |
+
'wikitext2',
|
| 149 |
+
'c4',
|
| 150 |
+
'c4-new',
|
| 151 |
+
'contextual',
|
| 152 |
+
'conceptual_captions',
|
| 153 |
+
'laion/220k-GPT4Vision-captions-from-LIVIS',
|
| 154 |
'laion/filtered-wit'],
|
| 155 |
value=None
|
| 156 |
)
|
| 157 |
+
|
| 158 |
+
self.trust_remote_code = gr.Checkbox(
|
| 159 |
+
label='Trust Remote Code',
|
| 160 |
+
value=False)
|
| 161 |
+
|
| 162 |
+
self.disable_stateful = gr.Checkbox(
|
| 163 |
+
label='Disable Stateful',
|
| 164 |
+
value=False,
|
| 165 |
+
info="Disables stateful inference. This is required for multi GPU inference due to how OpenVINO uses the KV cache. ")
|
| 166 |
+
|
| 167 |
+
self.disable_convert_tokenizer = gr.Checkbox(
|
| 168 |
+
label='Disable Convert Tokenizer',
|
| 169 |
+
value=False,
|
| 170 |
+
info="Disables the tokenizer conversion. Use when models have custom tokenizers which might have formatting Optimum does not expect."
|
| 171 |
+
)
|
| 172 |
+
|
| 173 |
+
self.all_layers = gr.Checkbox(
|
| 174 |
+
label='All Layers',
|
| 175 |
+
value=False)
|
| 176 |
+
|
| 177 |
+
self.awq = gr.Checkbox(
|
| 178 |
+
label='AWQ',
|
| 179 |
+
value=False,
|
| 180 |
+
info="Activation aware quantization algorithm from NNCF. Requires a dataset, which can also be a path. ")
|
| 181 |
+
|
| 182 |
+
self.scale_estimation = gr.Checkbox(
|
| 183 |
+
label='Scale Estimation',
|
| 184 |
+
value=False)
|
| 185 |
+
|
| 186 |
+
self.gptq = gr.Checkbox(
|
| 187 |
+
label='GPTQ',
|
| 188 |
+
value=False)
|
| 189 |
+
|
| 190 |
+
self.lora_correction = gr.Checkbox(
|
| 191 |
+
label='LoRA Correction',
|
| 192 |
+
value=False)
|
| 193 |
+
|
| 194 |
+
self.sym = gr.Checkbox(
|
| 195 |
+
label='Symmetric Quantization',
|
| 196 |
+
value=False,
|
| 197 |
+
info="Symmetric quantization is faster and uses less memory. It is recommended for most use cases."
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
self.quant_mode = gr.Dropdown(
|
| 201 |
label='Quantization Mode',
|
| 202 |
choices=['sym', 'asym'],
|
| 203 |
value=None
|
| 204 |
)
|
| 205 |
+
|
| 206 |
self.cache_dir = gr.Textbox(
|
| 207 |
label='Cache Directory',
|
| 208 |
placeholder='Path to cache directory'
|
| 209 |
)
|
| 210 |
+
|
| 211 |
self.pad_token_id = gr.Number(
|
| 212 |
label='Pad Token ID',
|
| 213 |
value=None,
|
| 214 |
step=1,
|
| 215 |
+
info="Will try to infer from tokenizer if not provided."
|
| 216 |
)
|
| 217 |
+
|
| 218 |
self.sensitivity_metric = gr.Dropdown(
|
| 219 |
label='Sensitivity Metric',
|
| 220 |
+
choices=['weight_quantization_error', 'hessian_input_activation',
|
| 221 |
+
'mean_activation_variance', 'max_activation_variance', 'mean_activation_magnitude'],
|
| 222 |
value=None
|
| 223 |
)
|
| 224 |
+
|
| 225 |
self.num_samples = gr.Number(
|
| 226 |
label='Number of Samples',
|
| 227 |
value=None,
|
| 228 |
step=1
|
| 229 |
)
|
| 230 |
+
|
| 231 |
self.smooth_quant_alpha = gr.Number(
|
| 232 |
label='Smooth Quant Alpha',
|
| 233 |
value=None,
|
|
|
|
| 235 |
maximum=1.0,
|
| 236 |
step=0.1
|
| 237 |
)
|
| 238 |
+
|
| 239 |
self.command_output = gr.TextArea(
|
| 240 |
label='Generated Command',
|
| 241 |
placeholder='Generated command will appear here...',
|
|
|
|
| 355 |
outputs=self.command_output,
|
| 356 |
title="OpenVINO Conversion Tool",
|
| 357 |
description="Enter model information to generate an `optimum-cli` export command.",
|
| 358 |
+
# article=INTRODUCTION,
|
| 359 |
allow_flagging='auto'
|
| 360 |
)
|
| 361 |
|