Update tokenizer_config.json

#1
.gitattributes CHANGED
@@ -25,4 +25,3 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
28
- model.safetensors filter=lfs diff=lfs merge=lfs -text
 
25
  *.zip filter=lfs diff=lfs merge=lfs -text
26
  *.zstandard filter=lfs diff=lfs merge=lfs -text
27
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
README.md CHANGED
@@ -1,80 +1,45 @@
1
  ---
2
- license:
3
- - other
4
- - apache-2.0
5
- library_name: transformers
6
  tags:
7
  - generated_from_trainer
8
  - text-generation
9
- - OPT
10
  - non-commercial
11
  - dialogue
12
  - chatbot
13
- - ai-msgbot
14
- pipeline_tag: text-generation
15
- widget:
16
- - text: 'If you could live anywhere, where would it be? peter szemraj:'
17
- example_title: live anywhere
18
- - text: 'What would you sing at Karaoke night? peter szemraj:'
19
- example_title: Karaoke
20
- - text: 'If you could hire someone to help you, would it be with cleaning, cooking,
21
- or yard work? peter szemraj:'
22
- example_title: help
23
- - text: 'What form of public transportation do you prefer? (air, boat, train, bus,
24
- car, etc.) peter szemraj:'
25
- example_title: transportation
26
- - text: 'What''s your favorite zoo animal? peter szemraj:'
27
- example_title: animal
28
- - text: 'Do you like or dislike surprises? Why or why not? peter szemraj:'
29
- example_title: surprises
30
- - text: 'What celebrity would you like to meet at Starbucks for a cup of coffee? peter
31
- szemraj:'
32
- example_title: 'celebrity '
33
- base_model: facebook/opt-2.7b
34
  ---
35
 
36
  # pszemraj/opt-peter-2.7B
37
 
38
- <a href="https://colab.research.google.com/gist/pszemraj/4068382a40bbf7aab50638b062bd97a9/opt-peter-2-7b-example-csearch-generation.ipynb">
39
- <img src="https://colab.research.google.com/assets/colab-badge.svg" alt="Open In Colab"/>
40
- </a>
41
-
42
- This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on about 80k WhatsApp/text messages (mine). Please use responsibly :)
43
 
44
- Test it out on Google Colab by clicking the button above.
45
 
46
- ![chatdemo](https://i.imgur.com/1EgQYat.png)
47
 
48
  ## Model description
49
 
50
  - Exploring to see how OPT does in terms of dialogue/conversational applications
51
  - Seems to do a lot better than GPT-Neo with similar training parameters
52
- - you can create your own digital clone and deploy it leveraging [this repository I am working on](https://github.com/pszemraj/ai-msgbot).
53
-
54
- ### sharded checkpoint
55
-
56
- As this model file is 10+ GB, it can impose some constraints with lower RAM runtimes and/or download speeds. To help with this issue, a sharded checkpoint of this model is available [here](https://huggingface.co/pszemraj/opt-peter-2.7B-sharded).
57
-
58
- The `pszemraj/opt-peter-2.7B-sharded` model can be used as a drop-in replacement for this one for all use cases.
59
 
60
  ## Intended uses & limitations
61
 
62
- > The base model has a custom license that propagates to this one. **Most importantly, it cannot be used commercially**. Read more here: [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b)
63
 
64
- - the model is probably too large to use via API here. Use in Python with GPU RAM / CPU RAM > 12 GB, Colab notebook linked above.
65
  - alternatively, you can message [a bot on telegram](http://t.me/GPTPeter_bot) where I test LLMs for dialogue generation
66
  - **any statements or claims made by this model do not reflect actual claims/statements by me.** Keep in mind it is a _fine-tuned_ version of the model on my data, so things from pre-training are also present in outputs.
67
 
68
  ## Training and evaluation data
69
 
70
- WhatsApp & iMessage data were parsed using [ai-msgbot](https://github.com/pszemraj/ai-msgbot) and then fed as a text dataset to the HF trainer.
71
 
72
  ## Training procedure
73
 
74
  ### Training hyperparameters
75
 
76
- **SESSION ONE**
77
-
78
  The following hyperparameters were used during training:
79
  - learning_rate: 4e-05
80
  - train_batch_size: 8
@@ -88,20 +53,8 @@ The following hyperparameters were used during training:
88
  - lr_scheduler_warmup_ratio: 0.01
89
  - num_epochs: 3
90
 
91
- **SESSION TWO**
92
 
93
- The following hyperparameters were used during training:
94
- - learning_rate: 1e-05
95
- - train_batch_size: 16
96
- - eval_batch_size: 16
97
- - seed: 42
98
- - distributed_type: multi-GPU
99
- - gradient_accumulation_steps: 4
100
- - total_train_batch_size: 64
101
- - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
102
- - lr_scheduler_type: cosine
103
- - lr_scheduler_warmup_ratio: 0.05
104
- - num_epochs: 4
105
 
106
 
107
  ### Framework versions
@@ -109,4 +62,4 @@ The following hyperparameters were used during training:
109
  - Transformers 4.19.2
110
  - Pytorch 1.10.0+cu113
111
  - Datasets 2.2.2
112
- - Tokenizers 0.12.1
 
1
  ---
2
+ license: apache-2.0
 
 
 
3
  tags:
4
  - generated_from_trainer
5
  - text-generation
6
+ - opt
7
  - non-commercial
8
  - dialogue
9
  - chatbot
10
+
11
+ inference: false
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12
  ---
13
 
14
  # pszemraj/opt-peter-2.7B
15
 
16
+ This model is a fine-tuned version of [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b) on about 80k whatsapp/text messages (mine). Please use responsibly :)
 
 
 
 
17
 
18
+ Test it out on Google Colab [here](https://colab.research.google.com/gist/pszemraj/26a69775c9d012051396ab5ae980f5c1/example-text-gen-pszemraj-opt-peter-2-7b.ipynb)!
19
 
20
+ ![chatdemo](demo.jpeg)
21
 
22
  ## Model description
23
 
24
  - Exploring to see how OPT does in terms of dialogue/conversational applications
25
  - Seems to do a lot better than GPT-Neo with similar training parameters
 
 
 
 
 
 
 
26
 
27
  ## Intended uses & limitations
28
 
29
+ > The base model has a custom license which propogates to this one. Most importantly, it cannot be used commercially. Read more here: [facebook/opt-2.7b](https://huggingface.co/facebook/opt-2.7b)
30
 
31
+ - the model is probably too large to use via API here. Use in Python with GPU RAM / CPU RAM > 12 gb, Colab notebook linked above.
32
  - alternatively, you can message [a bot on telegram](http://t.me/GPTPeter_bot) where I test LLMs for dialogue generation
33
  - **any statements or claims made by this model do not reflect actual claims/statements by me.** Keep in mind it is a _fine-tuned_ version of the model on my data, so things from pre-training are also present in outputs.
34
 
35
  ## Training and evaluation data
36
 
37
+ More information needed
38
 
39
  ## Training procedure
40
 
41
  ### Training hyperparameters
42
 
 
 
43
  The following hyperparameters were used during training:
44
  - learning_rate: 4e-05
45
  - train_batch_size: 8
 
53
  - lr_scheduler_warmup_ratio: 0.01
54
  - num_epochs: 3
55
 
56
+ ### Training results
57
 
 
 
 
 
 
 
 
 
 
 
 
 
58
 
59
 
60
  ### Framework versions
 
62
  - Transformers 4.19.2
63
  - Pytorch 1.10.0+cu113
64
  - Datasets 2.2.2
65
+ - Tokenizers 0.12.1
config.json CHANGED
@@ -1,12 +1,12 @@
1
  {
2
- "_name_or_path": "pszemraj/opt-peter-2.7B",
3
  "activation_dropout": 0.0,
4
  "activation_function": "relu",
5
  "architectures": [
6
  "OPTForCausalLM"
7
  ],
8
  "attention_dropout": 0.0,
9
- "bos_token_id": 2,
10
  "do_layer_norm_before": true,
11
  "dropout": 0.1,
12
  "eos_token_id": 2,
@@ -20,10 +20,9 @@
20
  "num_hidden_layers": 32,
21
  "pad_token_id": 1,
22
  "prefix": "</s>",
23
- "torch_dtype": "float32",
24
  "transformers_version": "4.19.2",
25
  "use_cache": false,
26
  "vocab_size": 50265,
27
- "word_embed_proj_dim": 2560,
28
- "_remove_final_layer_norm": true
29
- }
 
1
  {
2
+ "_name_or_path": "facebook/opt-2.7b",
3
  "activation_dropout": 0.0,
4
  "activation_function": "relu",
5
  "architectures": [
6
  "OPTForCausalLM"
7
  ],
8
  "attention_dropout": 0.0,
9
+ "bos_token_id": 0,
10
  "do_layer_norm_before": true,
11
  "dropout": 0.1,
12
  "eos_token_id": 2,
 
20
  "num_hidden_layers": 32,
21
  "pad_token_id": 1,
22
  "prefix": "</s>",
23
+ "torch_dtype": "bfloat16",
24
  "transformers_version": "4.19.2",
25
  "use_cache": false,
26
  "vocab_size": 50265,
27
+ "word_embed_proj_dim": 2560
28
+ }
 
generation_config.json DELETED
@@ -1,10 +0,0 @@
1
- {
2
- "do_sample": true,
3
- "eos_token_id": 2,
4
- "max_length": 128,
5
- "min_length": 16,
6
- "pad_token_id": 2,
7
- "penalty_alpha": 0.6,
8
- "top_k": 4,
9
- "transformers_version": "4.26.1"
10
- }
 
 
 
 
 
 
 
 
 
 
 
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step1852
model.safetensors DELETED
@@ -1,3 +0,0 @@
1
- version https://git-lfs.github.com/spec/v1
2
- oid sha256:4f4a92f22de7d7d9712f1d8e976c9468151e11b351db1a63da87c84f398e89d3
3
- size 10606355864
 
 
 
 
opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8_training_metadata.json CHANGED
@@ -1,101 +1 @@
1
- {
2
- "output_dir":"/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8",
3
- "overwrite_output_dir":true,
4
- "do_train":false,
5
- "do_eval":false,
6
- "do_predict":false,
7
- "evaluation_strategy":"no",
8
- "prediction_loss_only":false,
9
- "per_device_train_batch_size":8,
10
- "per_device_eval_batch_size":8,
11
- "per_gpu_train_batch_size":"None",
12
- "per_gpu_eval_batch_size":"None",
13
- "gradient_accumulation_steps":16,
14
- "eval_accumulation_steps":8,
15
- "eval_delay":0,
16
- "learning_rate":4e-05,
17
- "weight_decay":0.1,
18
- "adam_beta1":0.9,
19
- "adam_beta2":0.999,
20
- "adam_epsilon":1e-08,
21
- "max_grad_norm":1,
22
- "num_train_epochs":3,
23
- "max_steps":-1,
24
- "lr_scheduler_type":"cosine",
25
- "warmup_ratio":0.01,
26
- "warmup_steps":0,
27
- "log_level":-1,
28
- "log_level_replica":-1,
29
- "log_on_each_node":true,
30
- "logging_dir":"/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8/logs",
31
- "logging_strategy":"steps",
32
- "logging_first_step":false,
33
- "logging_steps":5,
34
- "logging_nan_inf_filter":true,
35
- "save_strategy":"epoch",
36
- "save_steps":500,
37
- "save_total_limit":1,
38
- "save_on_each_node":false,
39
- "no_cuda":false,
40
- "seed":42,
41
- "data_seed":"None",
42
- "bf16":true,
43
- "fp16":false,
44
- "fp16_opt_level":"O1",
45
- "half_precision_backend":"amp",
46
- "bf16_full_eval":true,
47
- "fp16_full_eval":false,
48
- "tf32":"None",
49
- "local_rank":0,
50
- "xpu_backend":"None",
51
- "tpu_num_cores":"None",
52
- "tpu_metrics_debug":false,
53
- "debug":"[]",
54
- "dataloader_drop_last":false,
55
- "eval_steps":"None",
56
- "dataloader_num_workers":0,
57
- "past_index":-1,
58
- "run_name":"/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8",
59
- "disable_tqdm":false,
60
- "remove_unused_columns":true,
61
- "label_names":"None",
62
- "load_best_model_at_end":false,
63
- "metric_for_best_model":"None",
64
- "greater_is_better":"None",
65
- "ignore_data_skip":false,
66
- "sharded_ddp":"[]",
67
- "fsdp":"[]",
68
- "fsdp_min_num_params":0,
69
- "deepspeed":"ds_config_zero2_bf16.json",
70
- "label_smoothing_factor":0.0,
71
- "optim":"adamw_hf",
72
- "adafactor":false,
73
- "group_by_length":false,
74
- "length_column_name":"length",
75
- "report_to":"['tensorboard']",
76
- "ddp_find_unused_parameters":"None",
77
- "ddp_bucket_cap_mb":"None",
78
- "dataloader_pin_memory":true,
79
- "skip_memory_metrics":true,
80
- "use_legacy_prediction_loop":false,
81
- "push_to_hub":true,
82
- "resume_from_checkpoint":"None",
83
- "hub_model_id":"opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8",
84
- "hub_strategy":"end",
85
- "hub_token":"<HUB_TOKEN>",
86
- "hub_private_repo":false,
87
- "gradient_checkpointing":true,
88
- "include_inputs_for_metrics":false,
89
- "fp16_backend":"auto",
90
- "push_to_hub_model_id":"None",
91
- "push_to_hub_organization":"None",
92
- "push_to_hub_token":"<PUSH_TO_HUB_TOKEN>",
93
- "_n_gpu":1,
94
- "mp_parameters":"",
95
- "auto_find_batch_size":false,
96
- "full_determinism":false,
97
- "train_batch_size":8,
98
- "eval_batch_size":8,
99
- "configs_src":"opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8",
100
- "data_tag":"text-file-input"
101
- }
 
1
+ {"output_dir": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "overwrite_output_dir": true, "do_train": false, "do_eval": false, "do_predict": false, "evaluation_strategy": "no", "prediction_loss_only": false, "per_device_train_batch_size": 8, "per_device_eval_batch_size": 8, "per_gpu_train_batch_size": "None", "per_gpu_eval_batch_size": "None", "gradient_accumulation_steps": 16, "eval_accumulation_steps": 8, "eval_delay": 0, "learning_rate": 4e-05, "weight_decay": 0.1, "adam_beta1": 0.9, "adam_beta2": 0.999, "adam_epsilon": 1e-08, "max_grad_norm": 1, "num_train_epochs": 3, "max_steps": -1, "lr_scheduler_type": "cosine", "warmup_ratio": 0.01, "warmup_steps": 0, "log_level": -1, "log_level_replica": -1, "log_on_each_node": true, "logging_dir": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8/logs", "logging_strategy": "steps", "logging_first_step": false, "logging_steps": 5, "logging_nan_inf_filter": true, "save_strategy": "epoch", "save_steps": 500, "save_total_limit": 1, "save_on_each_node": false, "no_cuda": false, "seed": 42, "data_seed": "None", "bf16": true, "fp16": false, "fp16_opt_level": "O1", "half_precision_backend": "amp", "bf16_full_eval": true, "fp16_full_eval": false, "tf32": "None", "local_rank": 0, "xpu_backend": "None", "tpu_num_cores": "None", "tpu_metrics_debug": false, "debug": "[]", "dataloader_drop_last": false, "eval_steps": "None", "dataloader_num_workers": 0, "past_index": -1, "run_name": "/content/drive/MyDrive/Programming/hf-trainer/opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "disable_tqdm": false, "remove_unused_columns": true, "label_names": "None", "load_best_model_at_end": false, "metric_for_best_model": "None", "greater_is_better": "None", "ignore_data_skip": false, "sharded_ddp": "[]", "fsdp": "[]", "fsdp_min_num_params": 0, "deepspeed": "ds_config_zero2_bf16.json", "label_smoothing_factor": 0.0, "optim": "adamw_hf", "adafactor": false, "group_by_length": false, "length_column_name": "length", "report_to": "['tensorboard']", "ddp_find_unused_parameters": "None", "ddp_bucket_cap_mb": "None", "dataloader_pin_memory": true, "skip_memory_metrics": true, "use_legacy_prediction_loop": false, "push_to_hub": true, "resume_from_checkpoint": "None", "hub_model_id": "opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "hub_strategy": "end", "hub_token": "<HUB_TOKEN>", "hub_private_repo": false, "gradient_checkpointing": true, "include_inputs_for_metrics": false, "fp16_backend": "auto", "push_to_hub_model_id": "None", "push_to_hub_organization": "None", "push_to_hub_token": "<PUSH_TO_HUB_TOKEN>", "_n_gpu": 1, "mp_parameters": "", "auto_find_batch_size": false, "full_determinism": false, "train_batch_size": 8, "eval_batch_size": 8, "configs_src": "opt-2pt7b-ps_DS-msgs_Ep-3_Bs-8", "data_tag": "text-file-input"}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16_training_metadata.json DELETED
@@ -1,101 +0,0 @@
1
- {
2
- "output_dir":"/content/drive/MyDrive/Programming/hf-trainer/opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16",
3
- "overwrite_output_dir":true,
4
- "do_train":false,
5
- "do_eval":false,
6
- "do_predict":false,
7
- "evaluation_strategy":"no",
8
- "prediction_loss_only":false,
9
- "per_device_train_batch_size":16,
10
- "per_device_eval_batch_size":16,
11
- "per_gpu_train_batch_size":"None",
12
- "per_gpu_eval_batch_size":"None",
13
- "gradient_accumulation_steps":4,
14
- "eval_accumulation_steps":2,
15
- "eval_delay":0,
16
- "learning_rate":1e-05,
17
- "weight_decay":0.1,
18
- "adam_beta1":0.9,
19
- "adam_beta2":0.999,
20
- "adam_epsilon":1e-08,
21
- "max_grad_norm":1,
22
- "num_train_epochs":4,
23
- "max_steps":-1,
24
- "lr_scheduler_type":"cosine",
25
- "warmup_ratio":0.05,
26
- "warmup_steps":0,
27
- "log_level":-1,
28
- "log_level_replica":-1,
29
- "log_on_each_node":true,
30
- "logging_dir":"/content/drive/MyDrive/Programming/hf-trainer/opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16/logs",
31
- "logging_strategy":"steps",
32
- "logging_first_step":false,
33
- "logging_steps":5,
34
- "logging_nan_inf_filter":true,
35
- "save_strategy":"epoch",
36
- "save_steps":500,
37
- "save_total_limit":1,
38
- "save_on_each_node":false,
39
- "no_cuda":false,
40
- "seed":42,
41
- "data_seed":"None",
42
- "bf16":true,
43
- "fp16":false,
44
- "fp16_opt_level":"O1",
45
- "half_precision_backend":"amp",
46
- "bf16_full_eval":true,
47
- "fp16_full_eval":false,
48
- "tf32":"None",
49
- "local_rank":0,
50
- "xpu_backend":"None",
51
- "tpu_num_cores":"None",
52
- "tpu_metrics_debug":false,
53
- "debug":"[]",
54
- "dataloader_drop_last":false,
55
- "eval_steps":"None",
56
- "dataloader_num_workers":0,
57
- "past_index":-1,
58
- "run_name":"/content/drive/MyDrive/Programming/hf-trainer/opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16",
59
- "disable_tqdm":false,
60
- "remove_unused_columns":true,
61
- "label_names":"None",
62
- "load_best_model_at_end":false,
63
- "metric_for_best_model":"None",
64
- "greater_is_better":"None",
65
- "ignore_data_skip":false,
66
- "sharded_ddp":"[]",
67
- "fsdp":"[]",
68
- "fsdp_min_num_params":0,
69
- "deepspeed":"ds_config_zero2_bf16.json",
70
- "label_smoothing_factor":0.0,
71
- "optim":"adamw_hf",
72
- "adafactor":false,
73
- "group_by_length":false,
74
- "length_column_name":"length",
75
- "report_to":"['tensorboard']",
76
- "ddp_find_unused_parameters":"None",
77
- "ddp_bucket_cap_mb":"None",
78
- "dataloader_pin_memory":true,
79
- "skip_memory_metrics":true,
80
- "use_legacy_prediction_loop":false,
81
- "push_to_hub":true,
82
- "resume_from_checkpoint":"None",
83
- "hub_model_id":"opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16",
84
- "hub_strategy":"end",
85
- "hub_token":"<HUB_TOKEN>",
86
- "hub_private_repo":false,
87
- "gradient_checkpointing":true,
88
- "include_inputs_for_metrics":false,
89
- "fp16_backend":"auto",
90
- "push_to_hub_model_id":"None",
91
- "push_to_hub_organization":"None",
92
- "push_to_hub_token":"<PUSH_TO_HUB_TOKEN>",
93
- "_n_gpu":1,
94
- "mp_parameters":"",
95
- "auto_find_batch_size":false,
96
- "full_determinism":false,
97
- "train_batch_size":16,
98
- "eval_batch_size":16,
99
- "configs_src":"opt-peter-2pt7B-ps_DS-msgs_Ep-4_Bs-16",
100
- "data_tag":"text-file-input"
101
- }
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
pytorch_model.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:a6d7c906a2eb9b7a88445e0f8bbedeb997ecfa7b70430a58f59f1269251cf80e
3
  size 10606359699
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:69aff7264edf04861c8f3b6eed3f553e343af5ee8aebeb5ad1635f39ad2b4683
3
  size 10606359699
tokenizer_config.json CHANGED
@@ -1 +1 @@
1
- {"unk_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_bos_token": true, "special_tokens_map_file": null, "name_or_path": "facebook/opt-2.7b", "model_max_length": 512}
 
1
+ {"unk_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "bos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "eos_token": {"content": "</s>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_prefix_space": false, "errors": "replace", "pad_token": {"content": "<pad>", "single_word": false, "lstrip": false, "rstrip": false, "normalized": true, "__type": "AddedToken"}, "add_bos_token": true, "special_tokens_map_file": null, "name_or_path": "facebook/opt-2.7b", "model_max_length": 512}
trainer_state.json CHANGED
@@ -1,1498 +1,2245 @@
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
- "epoch": 0.9992919995954284,
5
- "global_step": 1235,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
- "epoch": 0.0,
12
- "learning_rate": 5.0607287449392715e-08,
13
- "loss": 1.0392,
14
  "step": 5
15
  },
16
  {
17
- "epoch": 0.01,
18
- "learning_rate": 1.0121457489878543e-07,
19
- "loss": 1.0115,
20
  "step": 10
21
  },
22
  {
23
- "epoch": 0.01,
24
- "learning_rate": 1.5182186234817813e-07,
25
- "loss": 0.99,
26
  "step": 15
27
  },
28
  {
29
- "epoch": 0.02,
30
- "learning_rate": 2.0242914979757086e-07,
31
- "loss": 1.0143,
32
  "step": 20
33
  },
34
  {
35
- "epoch": 0.02,
36
- "learning_rate": 2.5303643724696356e-07,
37
- "loss": 1.0301,
38
  "step": 25
39
  },
40
  {
41
- "epoch": 0.02,
42
- "learning_rate": 3.0364372469635626e-07,
43
- "loss": 0.9651,
44
  "step": 30
45
  },
46
  {
47
- "epoch": 0.03,
48
- "learning_rate": 3.54251012145749e-07,
49
- "loss": 0.9984,
50
  "step": 35
51
  },
52
  {
53
- "epoch": 0.03,
54
- "learning_rate": 4.048582995951417e-07,
55
- "loss": 0.9842,
56
  "step": 40
57
  },
58
  {
59
- "epoch": 0.04,
60
- "learning_rate": 4.5546558704453447e-07,
61
- "loss": 1.0033,
62
  "step": 45
63
  },
64
  {
65
- "epoch": 0.04,
66
- "learning_rate": 5.060728744939271e-07,
67
- "loss": 0.9764,
68
  "step": 50
69
  },
70
  {
71
- "epoch": 0.04,
72
- "learning_rate": 5.566801619433199e-07,
73
- "loss": 1.018,
74
  "step": 55
75
  },
76
  {
77
- "epoch": 0.05,
78
- "learning_rate": 6.072874493927125e-07,
79
- "loss": 0.9808,
80
  "step": 60
81
  },
82
  {
83
- "epoch": 0.05,
84
- "learning_rate": 6.578947368421053e-07,
85
- "loss": 0.9508,
86
  "step": 65
87
  },
88
  {
89
- "epoch": 0.06,
90
- "learning_rate": 7.08502024291498e-07,
91
- "loss": 0.9654,
92
  "step": 70
93
  },
94
  {
95
- "epoch": 0.06,
96
- "learning_rate": 7.591093117408907e-07,
97
- "loss": 0.9801,
98
  "step": 75
99
  },
100
  {
101
- "epoch": 0.06,
102
- "learning_rate": 8.097165991902834e-07,
103
- "loss": 0.9825,
104
  "step": 80
105
  },
106
  {
107
- "epoch": 0.07,
108
- "learning_rate": 8.603238866396761e-07,
109
- "loss": 1.0046,
110
  "step": 85
111
  },
112
  {
113
- "epoch": 0.07,
114
- "learning_rate": 9.109311740890689e-07,
115
- "loss": 0.9797,
116
  "step": 90
117
  },
118
  {
119
- "epoch": 0.08,
120
- "learning_rate": 9.615384615384617e-07,
121
- "loss": 0.9904,
122
  "step": 95
123
  },
124
  {
125
- "epoch": 0.08,
126
- "learning_rate": 1.0121457489878542e-06,
127
- "loss": 0.987,
128
  "step": 100
129
  },
130
  {
131
- "epoch": 0.08,
132
- "learning_rate": 1.062753036437247e-06,
133
- "loss": 0.9782,
134
  "step": 105
135
  },
136
  {
137
- "epoch": 0.09,
138
- "learning_rate": 1.1133603238866398e-06,
139
- "loss": 1.0131,
140
  "step": 110
141
  },
142
  {
143
- "epoch": 0.09,
144
- "learning_rate": 1.1639676113360325e-06,
145
- "loss": 0.9269,
146
  "step": 115
147
  },
148
  {
149
- "epoch": 0.1,
150
- "learning_rate": 1.214574898785425e-06,
151
- "loss": 0.9312,
152
  "step": 120
153
  },
154
  {
155
- "epoch": 0.1,
156
- "learning_rate": 1.265182186234818e-06,
157
- "loss": 1.0038,
158
  "step": 125
159
  },
160
  {
161
- "epoch": 0.11,
162
- "learning_rate": 1.3157894736842106e-06,
163
- "loss": 0.9896,
164
  "step": 130
165
  },
166
  {
167
- "epoch": 0.11,
168
- "learning_rate": 1.3663967611336035e-06,
169
- "loss": 0.9544,
170
  "step": 135
171
  },
172
  {
173
- "epoch": 0.11,
174
- "learning_rate": 1.417004048582996e-06,
175
- "loss": 0.9811,
176
  "step": 140
177
  },
178
  {
179
- "epoch": 0.12,
180
- "learning_rate": 1.4676113360323888e-06,
181
- "loss": 1.0079,
182
  "step": 145
183
  },
184
  {
185
- "epoch": 0.12,
186
- "learning_rate": 1.5182186234817814e-06,
187
- "loss": 0.9216,
188
  "step": 150
189
  },
190
  {
191
- "epoch": 0.13,
192
- "learning_rate": 1.5688259109311743e-06,
193
- "loss": 0.9537,
194
  "step": 155
195
  },
196
  {
197
- "epoch": 0.13,
198
- "learning_rate": 1.6194331983805669e-06,
199
- "loss": 0.9364,
200
  "step": 160
201
  },
202
  {
203
- "epoch": 0.13,
204
- "learning_rate": 1.6700404858299596e-06,
205
- "loss": 0.9203,
206
  "step": 165
207
  },
208
  {
209
- "epoch": 0.14,
210
- "learning_rate": 1.7206477732793522e-06,
211
- "loss": 0.9639,
212
  "step": 170
213
  },
214
  {
215
- "epoch": 0.14,
216
- "learning_rate": 1.7712550607287451e-06,
217
- "loss": 0.9563,
218
  "step": 175
219
  },
220
  {
221
- "epoch": 0.15,
222
- "learning_rate": 1.8218623481781379e-06,
223
- "loss": 0.9413,
224
  "step": 180
225
  },
226
  {
227
- "epoch": 0.15,
228
- "learning_rate": 1.8724696356275304e-06,
229
- "loss": 0.9173,
230
  "step": 185
231
  },
232
  {
233
- "epoch": 0.15,
234
- "learning_rate": 1.9230769230769234e-06,
235
- "loss": 0.9208,
236
  "step": 190
237
  },
238
  {
239
- "epoch": 0.16,
240
- "learning_rate": 1.973684210526316e-06,
241
- "loss": 0.9382,
242
  "step": 195
243
  },
244
  {
245
- "epoch": 0.16,
246
- "learning_rate": 2.0242914979757085e-06,
247
- "loss": 0.8964,
248
  "step": 200
249
  },
250
  {
251
- "epoch": 0.17,
252
- "learning_rate": 2.0748987854251012e-06,
253
- "loss": 0.9241,
254
  "step": 205
255
  },
256
  {
257
- "epoch": 0.17,
258
- "learning_rate": 2.125506072874494e-06,
259
- "loss": 0.9458,
260
  "step": 210
261
  },
262
  {
263
- "epoch": 0.17,
264
- "learning_rate": 2.1761133603238867e-06,
265
- "loss": 0.93,
266
  "step": 215
267
  },
268
  {
269
- "epoch": 0.18,
270
- "learning_rate": 2.2267206477732795e-06,
271
- "loss": 0.9031,
272
  "step": 220
273
  },
274
  {
275
- "epoch": 0.18,
276
- "learning_rate": 2.2773279352226723e-06,
277
- "loss": 0.9207,
278
  "step": 225
279
  },
280
  {
281
- "epoch": 0.19,
282
- "learning_rate": 2.327935222672065e-06,
283
- "loss": 0.9123,
284
  "step": 230
285
  },
286
  {
287
- "epoch": 0.19,
288
- "learning_rate": 2.3785425101214578e-06,
289
- "loss": 0.9057,
290
  "step": 235
291
  },
292
  {
293
- "epoch": 0.19,
294
- "learning_rate": 2.42914979757085e-06,
295
- "loss": 0.8909,
296
  "step": 240
297
  },
298
  {
299
- "epoch": 0.2,
300
- "learning_rate": 2.4797570850202433e-06,
301
- "loss": 0.9171,
302
  "step": 245
303
  },
304
  {
305
- "epoch": 0.2,
306
- "learning_rate": 2.530364372469636e-06,
307
- "loss": 0.8959,
308
  "step": 250
309
  },
310
  {
311
- "epoch": 0.21,
312
- "learning_rate": 2.5809716599190288e-06,
313
- "loss": 0.946,
314
  "step": 255
315
  },
316
  {
317
- "epoch": 0.21,
318
- "learning_rate": 2.631578947368421e-06,
319
- "loss": 0.9071,
320
  "step": 260
321
  },
322
  {
323
- "epoch": 0.21,
324
- "learning_rate": 2.682186234817814e-06,
325
- "loss": 0.8789,
326
  "step": 265
327
  },
328
  {
329
- "epoch": 0.22,
330
- "learning_rate": 2.732793522267207e-06,
331
- "loss": 0.9864,
332
  "step": 270
333
  },
334
  {
335
- "epoch": 0.22,
336
- "learning_rate": 2.7834008097165994e-06,
337
- "loss": 0.8932,
338
  "step": 275
339
  },
340
  {
341
- "epoch": 0.23,
342
- "learning_rate": 2.834008097165992e-06,
343
- "loss": 0.9064,
344
  "step": 280
345
  },
346
  {
347
- "epoch": 0.23,
348
- "learning_rate": 2.8846153846153845e-06,
349
- "loss": 0.9127,
350
  "step": 285
351
  },
352
  {
353
- "epoch": 0.23,
354
- "learning_rate": 2.9352226720647776e-06,
355
- "loss": 0.914,
356
  "step": 290
357
  },
358
  {
359
- "epoch": 0.24,
360
- "learning_rate": 2.9858299595141704e-06,
361
- "loss": 0.9254,
362
  "step": 295
363
  },
364
  {
365
- "epoch": 0.24,
366
- "learning_rate": 3.0364372469635627e-06,
367
- "loss": 0.9396,
368
  "step": 300
369
  },
370
  {
371
- "epoch": 0.25,
372
- "learning_rate": 3.087044534412956e-06,
373
- "loss": 0.9208,
374
  "step": 305
375
  },
376
  {
377
- "epoch": 0.25,
378
- "learning_rate": 3.1376518218623487e-06,
379
- "loss": 0.9242,
380
  "step": 310
381
  },
382
  {
383
- "epoch": 0.25,
384
- "learning_rate": 3.188259109311741e-06,
385
- "loss": 0.9057,
386
  "step": 315
387
  },
388
  {
389
- "epoch": 0.26,
390
- "learning_rate": 3.2388663967611337e-06,
391
- "loss": 0.9632,
392
  "step": 320
393
  },
394
  {
395
- "epoch": 0.26,
396
- "learning_rate": 3.289473684210527e-06,
397
- "loss": 0.9344,
398
  "step": 325
399
  },
400
  {
401
- "epoch": 0.27,
402
- "learning_rate": 3.3400809716599193e-06,
403
- "loss": 0.9578,
404
  "step": 330
405
  },
406
  {
407
- "epoch": 0.27,
408
- "learning_rate": 3.390688259109312e-06,
409
- "loss": 0.947,
410
  "step": 335
411
  },
412
  {
413
- "epoch": 0.28,
414
- "learning_rate": 3.4412955465587043e-06,
415
- "loss": 0.9344,
416
  "step": 340
417
  },
418
  {
419
- "epoch": 0.28,
420
- "learning_rate": 3.4919028340080975e-06,
421
- "loss": 0.9472,
422
  "step": 345
423
  },
424
  {
425
- "epoch": 0.28,
426
- "learning_rate": 3.5425101214574903e-06,
427
- "loss": 1.0034,
428
  "step": 350
429
  },
430
  {
431
- "epoch": 0.29,
432
- "learning_rate": 3.5931174089068826e-06,
433
- "loss": 0.9558,
434
  "step": 355
435
  },
436
  {
437
- "epoch": 0.29,
438
- "learning_rate": 3.6437246963562758e-06,
439
- "loss": 0.9274,
440
  "step": 360
441
  },
442
  {
443
- "epoch": 0.3,
444
- "learning_rate": 3.6943319838056685e-06,
445
- "loss": 0.968,
446
  "step": 365
447
  },
448
  {
449
- "epoch": 0.3,
450
- "learning_rate": 3.744939271255061e-06,
451
- "loss": 0.9543,
452
  "step": 370
453
  },
454
  {
455
- "epoch": 0.3,
456
- "learning_rate": 3.7955465587044536e-06,
457
- "loss": 1.0063,
458
  "step": 375
459
  },
460
  {
461
- "epoch": 0.31,
462
- "learning_rate": 3.846153846153847e-06,
463
- "loss": 0.9491,
464
  "step": 380
465
  },
466
  {
467
- "epoch": 0.31,
468
- "learning_rate": 3.896761133603239e-06,
469
- "loss": 0.8891,
470
  "step": 385
471
  },
472
  {
473
- "epoch": 0.32,
474
- "learning_rate": 3.947368421052632e-06,
475
- "loss": 0.9015,
476
  "step": 390
477
  },
478
  {
479
- "epoch": 0.32,
480
- "learning_rate": 3.997975708502025e-06,
481
- "loss": 0.9852,
482
  "step": 395
483
  },
484
  {
485
- "epoch": 0.32,
486
- "learning_rate": 4.048582995951417e-06,
487
- "loss": 0.9636,
488
  "step": 400
489
  },
490
  {
491
- "epoch": 0.33,
492
- "learning_rate": 4.09919028340081e-06,
493
- "loss": 0.9683,
494
  "step": 405
495
  },
496
  {
497
- "epoch": 0.33,
498
- "learning_rate": 4.1497975708502025e-06,
499
- "loss": 0.9127,
500
  "step": 410
501
  },
502
  {
503
- "epoch": 0.34,
504
- "learning_rate": 4.200404858299596e-06,
505
- "loss": 0.9229,
506
  "step": 415
507
  },
508
  {
509
- "epoch": 0.34,
510
- "learning_rate": 4.251012145748988e-06,
511
- "loss": 0.9329,
512
  "step": 420
513
  },
514
  {
515
- "epoch": 0.34,
516
- "learning_rate": 4.30161943319838e-06,
517
- "loss": 0.9864,
518
  "step": 425
519
  },
520
  {
521
- "epoch": 0.35,
522
- "learning_rate": 4.3522267206477735e-06,
523
- "loss": 0.9208,
524
  "step": 430
525
  },
526
  {
527
- "epoch": 0.35,
528
- "learning_rate": 4.402834008097167e-06,
529
- "loss": 0.959,
530
  "step": 435
531
  },
532
  {
533
- "epoch": 0.36,
534
- "learning_rate": 4.453441295546559e-06,
535
- "loss": 0.9411,
536
  "step": 440
537
  },
538
  {
539
- "epoch": 0.36,
540
- "learning_rate": 4.504048582995952e-06,
541
- "loss": 0.9695,
542
  "step": 445
543
  },
544
  {
545
- "epoch": 0.36,
546
- "learning_rate": 4.5546558704453445e-06,
547
- "loss": 0.9808,
548
  "step": 450
549
  },
550
  {
551
- "epoch": 0.37,
552
- "learning_rate": 4.605263157894737e-06,
553
- "loss": 0.8951,
554
  "step": 455
555
  },
556
  {
557
- "epoch": 0.37,
558
- "learning_rate": 4.65587044534413e-06,
559
- "loss": 0.9815,
560
  "step": 460
561
  },
562
  {
563
- "epoch": 0.38,
564
- "learning_rate": 4.706477732793522e-06,
565
- "loss": 0.9565,
566
  "step": 465
567
  },
568
  {
569
- "epoch": 0.38,
570
- "learning_rate": 4.7570850202429155e-06,
571
- "loss": 0.9335,
572
  "step": 470
573
  },
574
  {
575
- "epoch": 0.38,
576
- "learning_rate": 4.807692307692308e-06,
577
- "loss": 0.9409,
578
  "step": 475
579
  },
580
  {
581
- "epoch": 0.39,
582
- "learning_rate": 4.8582995951417e-06,
583
- "loss": 0.9057,
584
  "step": 480
585
  },
586
  {
587
- "epoch": 0.39,
588
- "learning_rate": 4.908906882591093e-06,
589
- "loss": 0.9125,
590
  "step": 485
591
  },
592
  {
593
- "epoch": 0.4,
594
- "learning_rate": 4.9595141700404865e-06,
595
- "loss": 0.9485,
596
  "step": 490
597
  },
598
  {
599
- "epoch": 0.4,
600
- "learning_rate": 4.9999993758760865e-06,
601
- "loss": 0.9827,
602
  "step": 495
603
  },
604
  {
605
- "epoch": 0.4,
606
- "learning_rate": 4.999977531571805e-06,
607
- "loss": 0.9135,
608
  "step": 500
609
  },
610
  {
611
- "epoch": 0.41,
612
- "learning_rate": 4.999924481383433e-06,
613
- "loss": 0.9547,
614
  "step": 505
615
  },
616
  {
617
- "epoch": 0.41,
618
- "learning_rate": 4.9998402259731634e-06,
619
- "loss": 0.9506,
620
  "step": 510
621
  },
622
  {
623
- "epoch": 0.42,
624
- "learning_rate": 4.999724766392715e-06,
625
- "loss": 0.9281,
626
  "step": 515
627
  },
628
  {
629
- "epoch": 0.42,
630
- "learning_rate": 4.999578104083307e-06,
631
- "loss": 0.925,
632
  "step": 520
633
  },
634
  {
635
- "epoch": 0.42,
636
- "learning_rate": 4.999400240875647e-06,
637
- "loss": 0.9808,
638
  "step": 525
639
  },
640
  {
641
- "epoch": 0.43,
642
- "learning_rate": 4.999191178989905e-06,
643
- "loss": 0.963,
644
  "step": 530
645
  },
646
  {
647
- "epoch": 0.43,
648
- "learning_rate": 4.998950921035691e-06,
649
- "loss": 0.9125,
650
  "step": 535
651
  },
652
  {
653
- "epoch": 0.44,
654
- "learning_rate": 4.998679470012015e-06,
655
- "loss": 0.9833,
656
  "step": 540
657
  },
658
  {
659
- "epoch": 0.44,
660
- "learning_rate": 4.998376829307255e-06,
661
- "loss": 0.949,
662
  "step": 545
663
  },
664
  {
665
- "epoch": 0.45,
666
- "learning_rate": 4.998043002699114e-06,
667
- "loss": 0.9539,
668
  "step": 550
669
  },
670
  {
671
- "epoch": 0.45,
672
- "learning_rate": 4.997677994354573e-06,
673
- "loss": 0.9612,
674
  "step": 555
675
  },
676
  {
677
- "epoch": 0.45,
678
- "learning_rate": 4.997281808829833e-06,
679
- "loss": 0.962,
680
  "step": 560
681
  },
682
  {
683
- "epoch": 0.46,
684
- "learning_rate": 4.996854451070267e-06,
685
- "loss": 0.9467,
686
  "step": 565
687
  },
688
  {
689
- "epoch": 0.46,
690
- "learning_rate": 4.996395926410354e-06,
691
- "loss": 0.9273,
692
  "step": 570
693
  },
694
  {
695
- "epoch": 0.47,
696
- "learning_rate": 4.995906240573615e-06,
697
- "loss": 0.9213,
698
  "step": 575
699
  },
700
  {
701
- "epoch": 0.47,
702
- "learning_rate": 4.995385399672532e-06,
703
- "loss": 0.9405,
704
  "step": 580
705
  },
706
  {
707
- "epoch": 0.47,
708
- "learning_rate": 4.994833410208487e-06,
709
- "loss": 0.9448,
710
  "step": 585
711
  },
712
  {
713
- "epoch": 0.48,
714
- "learning_rate": 4.994250279071669e-06,
715
- "loss": 0.9146,
716
  "step": 590
717
  },
718
  {
719
- "epoch": 0.48,
720
- "learning_rate": 4.9936360135409915e-06,
721
- "loss": 0.9891,
722
  "step": 595
723
  },
724
  {
725
- "epoch": 0.49,
726
- "learning_rate": 4.992990621284004e-06,
727
- "loss": 0.9444,
728
  "step": 600
729
  },
730
  {
731
- "epoch": 0.49,
732
- "learning_rate": 4.992314110356793e-06,
733
- "loss": 0.9599,
734
  "step": 605
735
  },
736
  {
737
- "epoch": 0.49,
738
- "learning_rate": 4.991606489203883e-06,
739
- "loss": 1.0091,
740
  "step": 610
741
  },
742
  {
743
- "epoch": 0.5,
744
- "learning_rate": 4.99086776665813e-06,
745
- "loss": 0.9725,
746
  "step": 615
747
  },
748
  {
749
- "epoch": 0.5,
750
- "learning_rate": 4.9900979519406154e-06,
751
- "loss": 0.9283,
752
  "step": 620
753
  },
754
  {
755
- "epoch": 0.51,
756
- "learning_rate": 4.9892970546605226e-06,
757
- "loss": 0.9856,
758
  "step": 625
759
  },
760
  {
761
- "epoch": 0.51,
762
- "learning_rate": 4.988465084815026e-06,
763
- "loss": 0.9866,
764
  "step": 630
765
  },
766
  {
767
- "epoch": 0.51,
768
- "learning_rate": 4.987602052789159e-06,
769
- "loss": 0.8948,
770
  "step": 635
771
  },
772
  {
773
- "epoch": 0.52,
774
- "learning_rate": 4.986707969355692e-06,
775
- "loss": 0.9727,
776
  "step": 640
777
  },
778
  {
779
- "epoch": 0.52,
780
- "learning_rate": 4.985782845674988e-06,
781
- "loss": 0.9579,
782
  "step": 645
783
  },
784
  {
785
- "epoch": 0.53,
786
- "learning_rate": 4.9848266932948745e-06,
787
- "loss": 0.9343,
788
  "step": 650
789
  },
790
  {
791
- "epoch": 0.53,
792
- "learning_rate": 4.983839524150489e-06,
793
- "loss": 0.9872,
794
  "step": 655
795
  },
796
  {
797
- "epoch": 0.53,
798
- "learning_rate": 4.982821350564136e-06,
799
- "loss": 0.9586,
800
  "step": 660
801
  },
802
  {
803
- "epoch": 0.54,
804
- "learning_rate": 4.981772185245135e-06,
805
- "loss": 0.9687,
806
  "step": 665
807
  },
808
  {
809
- "epoch": 0.54,
810
- "learning_rate": 4.9806920412896555e-06,
811
- "loss": 0.9365,
812
  "step": 670
813
  },
814
  {
815
- "epoch": 0.55,
816
- "learning_rate": 4.979580932180556e-06,
817
- "loss": 0.9754,
818
  "step": 675
819
  },
820
  {
821
- "epoch": 0.55,
822
- "learning_rate": 4.978438871787219e-06,
823
- "loss": 0.9456,
824
  "step": 680
825
  },
826
  {
827
- "epoch": 0.55,
828
- "learning_rate": 4.977265874365374e-06,
829
- "loss": 0.9345,
830
  "step": 685
831
  },
832
  {
833
- "epoch": 0.56,
834
- "learning_rate": 4.976061954556921e-06,
835
- "loss": 0.9384,
836
  "step": 690
837
  },
838
  {
839
- "epoch": 0.56,
840
- "learning_rate": 4.9748271273897495e-06,
841
- "loss": 0.9121,
842
  "step": 695
843
  },
844
  {
845
- "epoch": 0.57,
846
- "learning_rate": 4.9735614082775455e-06,
847
- "loss": 0.9196,
848
  "step": 700
849
  },
850
  {
851
- "epoch": 0.57,
852
- "learning_rate": 4.972264813019605e-06,
853
- "loss": 0.9427,
854
  "step": 705
855
  },
856
  {
857
- "epoch": 0.57,
858
- "learning_rate": 4.970937357800635e-06,
859
- "loss": 0.9248,
860
  "step": 710
861
  },
862
  {
863
- "epoch": 0.58,
864
- "learning_rate": 4.969579059190549e-06,
865
- "loss": 0.924,
866
  "step": 715
867
  },
868
  {
869
- "epoch": 0.58,
870
- "learning_rate": 4.968189934144263e-06,
871
- "loss": 0.9705,
872
  "step": 720
873
  },
874
  {
875
- "epoch": 0.59,
876
- "learning_rate": 4.966770000001483e-06,
877
- "loss": 0.992,
878
  "step": 725
879
  },
880
  {
881
- "epoch": 0.59,
882
- "learning_rate": 4.965319274486488e-06,
883
- "loss": 0.9164,
884
  "step": 730
885
  },
886
  {
887
- "epoch": 0.59,
888
- "learning_rate": 4.963837775707911e-06,
889
- "loss": 0.9343,
890
  "step": 735
891
  },
892
  {
893
- "epoch": 0.6,
894
- "learning_rate": 4.962325522158509e-06,
895
- "loss": 0.9485,
896
  "step": 740
897
  },
898
  {
899
- "epoch": 0.6,
900
- "learning_rate": 4.960782532714934e-06,
901
- "loss": 0.9483,
902
  "step": 745
903
  },
904
  {
905
- "epoch": 0.61,
906
- "learning_rate": 4.959208826637502e-06,
907
- "loss": 0.959,
908
  "step": 750
909
  },
910
  {
911
- "epoch": 0.61,
912
- "learning_rate": 4.957604423569942e-06,
913
- "loss": 0.9819,
914
  "step": 755
915
  },
916
  {
917
- "epoch": 0.61,
918
- "learning_rate": 4.955969343539162e-06,
919
- "loss": 0.9399,
920
  "step": 760
921
  },
922
  {
923
- "epoch": 0.62,
924
- "learning_rate": 4.954303606954993e-06,
925
- "loss": 0.8887,
926
  "step": 765
927
  },
928
  {
929
- "epoch": 0.62,
930
- "learning_rate": 4.952607234609935e-06,
931
- "loss": 0.989,
932
  "step": 770
933
  },
934
  {
935
- "epoch": 0.63,
936
- "learning_rate": 4.950880247678897e-06,
937
- "loss": 0.9565,
938
  "step": 775
939
  },
940
  {
941
- "epoch": 0.63,
942
- "learning_rate": 4.949122667718935e-06,
943
- "loss": 0.9373,
944
  "step": 780
945
  },
946
  {
947
- "epoch": 0.64,
948
- "learning_rate": 4.947334516668981e-06,
949
- "loss": 0.8964,
950
  "step": 785
951
  },
952
  {
953
- "epoch": 0.64,
954
- "learning_rate": 4.945515816849567e-06,
955
- "loss": 0.9158,
956
  "step": 790
957
  },
958
  {
959
- "epoch": 0.64,
960
- "learning_rate": 4.9436665909625555e-06,
961
- "loss": 0.9352,
962
  "step": 795
963
  },
964
  {
965
- "epoch": 0.65,
966
- "learning_rate": 4.941786862090842e-06,
967
- "loss": 0.9417,
968
  "step": 800
969
  },
970
  {
971
- "epoch": 0.65,
972
- "learning_rate": 4.9398766536980795e-06,
973
- "loss": 1.0072,
974
  "step": 805
975
  },
976
  {
977
- "epoch": 0.66,
978
- "learning_rate": 4.937935989628377e-06,
979
- "loss": 0.9596,
980
  "step": 810
981
  },
982
  {
983
- "epoch": 0.66,
984
- "learning_rate": 4.935964894106011e-06,
985
- "loss": 0.9452,
986
  "step": 815
987
  },
988
  {
989
- "epoch": 0.66,
990
- "learning_rate": 4.933963391735111e-06,
991
- "loss": 0.9791,
992
  "step": 820
993
  },
994
  {
995
- "epoch": 0.67,
996
- "learning_rate": 4.9319315074993626e-06,
997
- "loss": 0.9491,
998
  "step": 825
999
  },
1000
  {
1001
- "epoch": 0.67,
1002
- "learning_rate": 4.929869266761692e-06,
1003
- "loss": 0.9722,
1004
  "step": 830
1005
  },
1006
  {
1007
- "epoch": 0.68,
1008
- "learning_rate": 4.9277766952639485e-06,
1009
- "loss": 0.9667,
1010
  "step": 835
1011
  },
1012
  {
1013
- "epoch": 0.68,
1014
- "learning_rate": 4.9256538191265836e-06,
1015
- "loss": 0.9705,
1016
  "step": 840
1017
  },
1018
  {
1019
- "epoch": 0.68,
1020
- "learning_rate": 4.923500664848327e-06,
1021
- "loss": 0.9772,
1022
  "step": 845
1023
  },
1024
  {
1025
- "epoch": 0.69,
1026
- "learning_rate": 4.921317259305852e-06,
1027
- "loss": 1.0082,
1028
  "step": 850
1029
  },
1030
  {
1031
- "epoch": 0.69,
1032
- "learning_rate": 4.9191036297534455e-06,
1033
- "loss": 0.957,
1034
  "step": 855
1035
  },
1036
  {
1037
- "epoch": 0.7,
1038
- "learning_rate": 4.916859803822662e-06,
1039
- "loss": 0.9832,
1040
  "step": 860
1041
  },
1042
  {
1043
- "epoch": 0.7,
1044
- "learning_rate": 4.914585809521982e-06,
1045
- "loss": 0.9521,
1046
  "step": 865
1047
  },
1048
  {
1049
- "epoch": 0.7,
1050
- "learning_rate": 4.912281675236461e-06,
1051
- "loss": 0.9631,
1052
  "step": 870
1053
  },
1054
  {
1055
- "epoch": 0.71,
1056
- "learning_rate": 4.909947429727378e-06,
1057
- "loss": 0.9403,
1058
  "step": 875
1059
  },
1060
  {
1061
- "epoch": 0.71,
1062
- "learning_rate": 4.907583102131871e-06,
1063
- "loss": 1.0201,
1064
  "step": 880
1065
  },
1066
  {
1067
- "epoch": 0.72,
1068
- "learning_rate": 4.905188721962579e-06,
1069
- "loss": 0.9873,
1070
  "step": 885
1071
  },
1072
  {
1073
- "epoch": 0.72,
1074
- "learning_rate": 4.902764319107271e-06,
1075
- "loss": 0.9681,
1076
  "step": 890
1077
  },
1078
  {
1079
- "epoch": 0.72,
1080
- "learning_rate": 4.900309923828474e-06,
1081
- "loss": 0.9125,
1082
  "step": 895
1083
  },
1084
  {
1085
- "epoch": 0.73,
1086
- "learning_rate": 4.89782556676309e-06,
1087
- "loss": 0.9349,
1088
  "step": 900
1089
  },
1090
  {
1091
- "epoch": 0.73,
1092
- "learning_rate": 4.895311278922023e-06,
1093
- "loss": 0.9779,
1094
  "step": 905
1095
  },
1096
  {
1097
- "epoch": 0.74,
1098
- "learning_rate": 4.892767091689786e-06,
1099
- "loss": 0.9427,
1100
  "step": 910
1101
  },
1102
  {
1103
- "epoch": 0.74,
1104
- "learning_rate": 4.890193036824107e-06,
1105
- "loss": 0.9845,
1106
  "step": 915
1107
  },
1108
  {
1109
- "epoch": 0.74,
1110
- "learning_rate": 4.88758914645554e-06,
1111
- "loss": 0.9601,
1112
  "step": 920
1113
  },
1114
  {
1115
- "epoch": 0.75,
1116
- "learning_rate": 4.884955453087056e-06,
1117
- "loss": 0.9894,
1118
  "step": 925
1119
  },
1120
  {
1121
- "epoch": 0.75,
1122
- "learning_rate": 4.882291989593644e-06,
1123
- "loss": 1.0139,
1124
  "step": 930
1125
  },
1126
  {
1127
- "epoch": 0.76,
1128
- "learning_rate": 4.879598789221893e-06,
1129
- "loss": 0.9599,
1130
  "step": 935
1131
  },
1132
  {
1133
- "epoch": 0.76,
1134
- "learning_rate": 4.876875885589589e-06,
1135
- "loss": 0.9855,
1136
  "step": 940
1137
  },
1138
  {
1139
- "epoch": 0.76,
1140
- "learning_rate": 4.87412331268528e-06,
1141
- "loss": 0.9763,
1142
  "step": 945
1143
  },
1144
  {
1145
- "epoch": 0.77,
1146
- "learning_rate": 4.8713411048678635e-06,
1147
- "loss": 0.946,
1148
  "step": 950
1149
  },
1150
  {
1151
- "epoch": 0.77,
1152
- "learning_rate": 4.868529296866156e-06,
1153
- "loss": 0.9446,
1154
  "step": 955
1155
  },
1156
  {
1157
- "epoch": 0.78,
1158
- "learning_rate": 4.865687923778452e-06,
1159
- "loss": 0.9792,
1160
  "step": 960
1161
  },
1162
  {
1163
- "epoch": 0.78,
1164
- "learning_rate": 4.862817021072096e-06,
1165
- "loss": 0.9644,
1166
  "step": 965
1167
  },
1168
  {
1169
- "epoch": 0.78,
1170
- "learning_rate": 4.8599166245830306e-06,
1171
- "loss": 0.9269,
1172
  "step": 970
1173
  },
1174
  {
1175
- "epoch": 0.79,
1176
- "learning_rate": 4.856986770515358e-06,
1177
- "loss": 0.9846,
1178
  "step": 975
1179
  },
1180
  {
1181
- "epoch": 0.79,
1182
- "learning_rate": 4.854027495440881e-06,
1183
- "loss": 0.9325,
1184
  "step": 980
1185
  },
1186
  {
1187
- "epoch": 0.8,
1188
- "learning_rate": 4.851038836298649e-06,
1189
- "loss": 0.968,
1190
  "step": 985
1191
  },
1192
  {
1193
- "epoch": 0.8,
1194
- "learning_rate": 4.848020830394498e-06,
1195
- "loss": 1.0115,
1196
  "step": 990
1197
  },
1198
  {
1199
- "epoch": 0.81,
1200
- "learning_rate": 4.844973515400584e-06,
1201
- "loss": 1.0004,
1202
  "step": 995
1203
  },
1204
  {
1205
- "epoch": 0.81,
1206
- "learning_rate": 4.8418969293549106e-06,
1207
- "loss": 0.9422,
1208
  "step": 1000
1209
  },
1210
  {
1211
- "epoch": 0.81,
1212
- "learning_rate": 4.83879111066086e-06,
1213
- "loss": 0.9617,
1214
  "step": 1005
1215
  },
1216
  {
1217
- "epoch": 0.82,
1218
- "learning_rate": 4.8356560980867064e-06,
1219
- "loss": 1.0238,
1220
  "step": 1010
1221
  },
1222
  {
1223
- "epoch": 0.82,
1224
- "learning_rate": 4.832491930765137e-06,
1225
- "loss": 0.9467,
1226
  "step": 1015
1227
  },
1228
  {
1229
- "epoch": 0.83,
1230
- "learning_rate": 4.829298648192763e-06,
1231
- "loss": 0.9567,
1232
  "step": 1020
1233
  },
1234
  {
1235
- "epoch": 0.83,
1236
- "learning_rate": 4.826076290229625e-06,
1237
- "loss": 0.9723,
1238
  "step": 1025
1239
  },
1240
  {
1241
- "epoch": 0.83,
1242
- "learning_rate": 4.822824897098697e-06,
1243
- "loss": 0.9852,
1244
  "step": 1030
1245
  },
1246
  {
1247
- "epoch": 0.84,
1248
- "learning_rate": 4.819544509385381e-06,
1249
- "loss": 0.9636,
1250
  "step": 1035
1251
  },
1252
  {
1253
- "epoch": 0.84,
1254
- "learning_rate": 4.8162351680370046e-06,
1255
- "loss": 0.9497,
1256
  "step": 1040
1257
  },
1258
  {
1259
- "epoch": 0.85,
1260
- "learning_rate": 4.81289691436231e-06,
1261
- "loss": 1.0008,
1262
  "step": 1045
1263
  },
1264
  {
1265
- "epoch": 0.85,
1266
- "learning_rate": 4.809529790030931e-06,
1267
- "loss": 1.0033,
1268
  "step": 1050
1269
  },
1270
  {
1271
- "epoch": 0.85,
1272
- "learning_rate": 4.806133837072886e-06,
1273
- "loss": 1.0142,
1274
  "step": 1055
1275
  },
1276
  {
1277
- "epoch": 0.86,
1278
- "learning_rate": 4.802709097878039e-06,
1279
- "loss": 0.9727,
1280
  "step": 1060
1281
  },
1282
  {
1283
- "epoch": 0.86,
1284
- "learning_rate": 4.799255615195582e-06,
1285
- "loss": 0.9863,
1286
  "step": 1065
1287
  },
1288
  {
1289
- "epoch": 0.87,
1290
- "learning_rate": 4.795773432133492e-06,
1291
- "loss": 0.984,
1292
  "step": 1070
1293
  },
1294
  {
1295
- "epoch": 0.87,
1296
- "learning_rate": 4.792262592158002e-06,
1297
- "loss": 0.9521,
1298
  "step": 1075
1299
  },
1300
  {
1301
- "epoch": 0.87,
1302
- "learning_rate": 4.788723139093051e-06,
1303
- "loss": 0.9497,
1304
  "step": 1080
1305
  },
1306
  {
1307
- "epoch": 0.88,
1308
- "learning_rate": 4.785155117119742e-06,
1309
- "loss": 1.0392,
1310
  "step": 1085
1311
  },
1312
  {
1313
- "epoch": 0.88,
1314
- "learning_rate": 4.781558570775787e-06,
1315
- "loss": 0.9197,
1316
  "step": 1090
1317
  },
1318
  {
1319
- "epoch": 0.89,
1320
- "learning_rate": 4.777933544954951e-06,
1321
- "loss": 1.0343,
1322
  "step": 1095
1323
  },
1324
  {
1325
- "epoch": 0.89,
1326
- "learning_rate": 4.774280084906498e-06,
1327
- "loss": 1.0113,
1328
  "step": 1100
1329
  },
1330
  {
1331
- "epoch": 0.89,
1332
- "learning_rate": 4.770598236234617e-06,
1333
- "loss": 0.9948,
1334
  "step": 1105
1335
  },
1336
  {
1337
- "epoch": 0.9,
1338
- "learning_rate": 4.766888044897856e-06,
1339
- "loss": 0.9312,
1340
  "step": 1110
1341
  },
1342
  {
1343
- "epoch": 0.9,
1344
- "learning_rate": 4.763149557208554e-06,
1345
- "loss": 0.9207,
1346
  "step": 1115
1347
  },
1348
  {
1349
- "epoch": 0.91,
1350
- "learning_rate": 4.759382819832256e-06,
1351
- "loss": 0.9621,
1352
  "step": 1120
1353
  },
1354
  {
1355
- "epoch": 0.91,
1356
- "learning_rate": 4.755587879787131e-06,
1357
- "loss": 1.0067,
1358
  "step": 1125
1359
  },
1360
  {
1361
- "epoch": 0.91,
1362
- "learning_rate": 4.75176478444339e-06,
1363
- "loss": 0.9758,
1364
  "step": 1130
1365
  },
1366
  {
1367
- "epoch": 0.92,
1368
- "learning_rate": 4.747913581522689e-06,
1369
- "loss": 0.9287,
1370
  "step": 1135
1371
  },
1372
  {
1373
- "epoch": 0.92,
1374
- "learning_rate": 4.744034319097536e-06,
1375
- "loss": 0.9803,
1376
  "step": 1140
1377
  },
1378
  {
1379
- "epoch": 0.93,
1380
- "learning_rate": 4.740127045590692e-06,
1381
- "loss": 1.0133,
1382
  "step": 1145
1383
  },
1384
  {
1385
- "epoch": 0.93,
1386
- "learning_rate": 4.736191809774567e-06,
1387
- "loss": 0.9588,
1388
  "step": 1150
1389
  },
1390
  {
1391
- "epoch": 0.93,
1392
- "learning_rate": 4.7322286607706056e-06,
1393
- "loss": 0.9763,
1394
  "step": 1155
1395
  },
1396
  {
1397
- "epoch": 0.94,
1398
- "learning_rate": 4.72823764804868e-06,
1399
- "loss": 0.9944,
1400
  "step": 1160
1401
  },
1402
  {
1403
- "epoch": 0.94,
1404
- "learning_rate": 4.724218821426472e-06,
1405
- "loss": 0.9897,
1406
  "step": 1165
1407
  },
1408
  {
1409
- "epoch": 0.95,
1410
- "learning_rate": 4.720172231068845e-06,
1411
- "loss": 0.9902,
1412
  "step": 1170
1413
  },
1414
  {
1415
- "epoch": 0.95,
1416
- "learning_rate": 4.716097927487225e-06,
1417
- "loss": 0.969,
1418
  "step": 1175
1419
  },
1420
  {
1421
- "epoch": 0.95,
1422
- "learning_rate": 4.711995961538969e-06,
1423
- "loss": 0.9458,
1424
  "step": 1180
1425
  },
1426
  {
1427
- "epoch": 0.96,
1428
- "learning_rate": 4.7078663844267245e-06,
1429
- "loss": 0.9782,
1430
  "step": 1185
1431
  },
1432
  {
1433
- "epoch": 0.96,
1434
- "learning_rate": 4.7037092476978e-06,
1435
- "loss": 0.9987,
1436
  "step": 1190
1437
  },
1438
  {
1439
- "epoch": 0.97,
1440
- "learning_rate": 4.699524603243509e-06,
1441
- "loss": 1.0171,
1442
  "step": 1195
1443
  },
1444
  {
1445
- "epoch": 0.97,
1446
- "learning_rate": 4.695312503298535e-06,
1447
- "loss": 0.9727,
1448
  "step": 1200
1449
  },
1450
  {
1451
- "epoch": 0.98,
1452
- "learning_rate": 4.69107300044027e-06,
1453
- "loss": 0.969,
1454
  "step": 1205
1455
  },
1456
  {
1457
- "epoch": 0.98,
1458
- "learning_rate": 4.686806147588166e-06,
1459
- "loss": 0.977,
1460
  "step": 1210
1461
  },
1462
  {
1463
- "epoch": 0.98,
1464
- "learning_rate": 4.6825119980030664e-06,
1465
- "loss": 0.9552,
1466
  "step": 1215
1467
  },
1468
  {
1469
- "epoch": 0.99,
1470
- "learning_rate": 4.678190605286546e-06,
1471
- "loss": 0.9912,
1472
  "step": 1220
1473
  },
1474
  {
1475
- "epoch": 0.99,
1476
- "learning_rate": 4.673842023380243e-06,
1477
- "loss": 0.9702,
1478
  "step": 1225
1479
  },
1480
  {
1481
- "epoch": 1.0,
1482
- "learning_rate": 4.669466306565181e-06,
1483
- "loss": 0.9792,
1484
  "step": 1230
1485
  },
1486
  {
1487
- "epoch": 1.0,
1488
- "learning_rate": 4.665063509461098e-06,
1489
- "loss": 1.0204,
1490
  "step": 1235
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
  }
1492
  ],
1493
- "max_steps": 4940,
1494
- "num_train_epochs": 4,
1495
- "total_flos": 6.117066158416855e+17,
1496
  "trial_name": null,
1497
  "trial_params": null
1498
  }
 
1
  {
2
  "best_metric": null,
3
  "best_model_checkpoint": null,
4
+ "epoch": 2.9985838559579205,
5
+ "global_step": 1851,
6
  "is_hyper_param_search": false,
7
  "is_local_process_zero": true,
8
  "is_world_process_zero": true,
9
  "log_history": [
10
  {
11
+ "epoch": 0.01,
12
+ "learning_rate": 1.0526315789473684e-05,
13
+ "loss": 11.5,
14
  "step": 5
15
  },
16
  {
17
+ "epoch": 0.02,
18
+ "learning_rate": 2.105263157894737e-05,
19
+ "loss": 6.7393,
20
  "step": 10
21
  },
22
  {
23
+ "epoch": 0.02,
24
+ "learning_rate": 3.157894736842106e-05,
25
+ "loss": 3.7191,
26
  "step": 15
27
  },
28
  {
29
+ "epoch": 0.03,
30
+ "learning_rate": 3.999997059313686e-05,
31
+ "loss": 3.1877,
32
  "step": 20
33
  },
34
  {
35
+ "epoch": 0.04,
36
+ "learning_rate": 3.999894136200706e-05,
37
+ "loss": 2.9055,
38
  "step": 25
39
  },
40
  {
41
+ "epoch": 0.05,
42
+ "learning_rate": 3.9996441874195635e-05,
43
+ "loss": 2.9141,
44
  "step": 30
45
  },
46
  {
47
+ "epoch": 0.06,
48
+ "learning_rate": 3.999247231345674e-05,
49
+ "loss": 2.7834,
50
  "step": 35
51
  },
52
  {
53
+ "epoch": 0.06,
54
+ "learning_rate": 3.998703297161948e-05,
55
+ "loss": 2.7901,
56
  "step": 40
57
  },
58
  {
59
+ "epoch": 0.07,
60
+ "learning_rate": 3.9980124248566466e-05,
61
+ "loss": 2.8676,
62
  "step": 45
63
  },
64
  {
65
+ "epoch": 0.08,
66
+ "learning_rate": 3.9971746652204386e-05,
67
+ "loss": 2.6787,
68
  "step": 50
69
  },
70
  {
71
+ "epoch": 0.09,
72
+ "learning_rate": 3.996190079842669e-05,
73
+ "loss": 2.704,
74
  "step": 55
75
  },
76
  {
77
+ "epoch": 0.1,
78
+ "learning_rate": 3.995058741106831e-05,
79
+ "loss": 2.6286,
80
  "step": 60
81
  },
82
  {
83
+ "epoch": 0.11,
84
+ "learning_rate": 3.993780732185244e-05,
85
+ "loss": 2.6983,
86
  "step": 65
87
  },
88
  {
89
+ "epoch": 0.11,
90
+ "learning_rate": 3.992356147032939e-05,
91
+ "loss": 2.6522,
92
  "step": 70
93
  },
94
  {
95
+ "epoch": 0.12,
96
+ "learning_rate": 3.9907850903807514e-05,
97
+ "loss": 2.6293,
98
  "step": 75
99
  },
100
  {
101
+ "epoch": 0.13,
102
+ "learning_rate": 3.989067677727622e-05,
103
+ "loss": 2.5399,
104
  "step": 80
105
  },
106
  {
107
+ "epoch": 0.14,
108
+ "learning_rate": 3.987204035332105e-05,
109
+ "loss": 2.6687,
110
  "step": 85
111
  },
112
  {
113
+ "epoch": 0.15,
114
+ "learning_rate": 3.985194300203087e-05,
115
+ "loss": 2.6291,
116
  "step": 90
117
  },
118
  {
119
+ "epoch": 0.15,
120
+ "learning_rate": 3.983038620089714e-05,
121
+ "loss": 2.6533,
122
  "step": 95
123
  },
124
  {
125
+ "epoch": 0.16,
126
+ "learning_rate": 3.980737153470528e-05,
127
+ "loss": 2.5923,
128
  "step": 100
129
  },
130
  {
131
+ "epoch": 0.17,
132
+ "learning_rate": 3.97829006954182e-05,
133
+ "loss": 2.5941,
134
  "step": 105
135
  },
136
  {
137
+ "epoch": 0.18,
138
+ "learning_rate": 3.9756975482051855e-05,
139
+ "loss": 2.6612,
140
  "step": 110
141
  },
142
  {
143
+ "epoch": 0.19,
144
+ "learning_rate": 3.972959780054306e-05,
145
+ "loss": 2.6058,
146
  "step": 115
147
  },
148
  {
149
+ "epoch": 0.19,
150
+ "learning_rate": 3.9700769663609304e-05,
151
+ "loss": 2.5226,
152
  "step": 120
153
  },
154
  {
155
+ "epoch": 0.2,
156
+ "learning_rate": 3.967049319060081e-05,
157
+ "loss": 2.5573,
158
  "step": 125
159
  },
160
  {
161
+ "epoch": 0.21,
162
+ "learning_rate": 3.963877060734473e-05,
163
+ "loss": 2.603,
164
  "step": 130
165
  },
166
  {
167
+ "epoch": 0.22,
168
+ "learning_rate": 3.9605604245981515e-05,
169
+ "loss": 2.6506,
170
  "step": 135
171
  },
172
  {
173
+ "epoch": 0.23,
174
+ "learning_rate": 3.9570996544793445e-05,
175
+ "loss": 2.631,
176
  "step": 140
177
  },
178
  {
179
+ "epoch": 0.23,
180
+ "learning_rate": 3.9534950048025396e-05,
181
+ "loss": 2.5668,
182
  "step": 145
183
  },
184
  {
185
+ "epoch": 0.24,
186
+ "learning_rate": 3.9497467405697756e-05,
187
+ "loss": 2.6354,
188
  "step": 150
189
  },
190
  {
191
+ "epoch": 0.25,
192
+ "learning_rate": 3.9458551373411664e-05,
193
+ "loss": 2.5427,
194
  "step": 155
195
  },
196
  {
197
+ "epoch": 0.26,
198
+ "learning_rate": 3.941820481214637e-05,
199
+ "loss": 2.5586,
200
  "step": 160
201
  },
202
  {
203
+ "epoch": 0.27,
204
+ "learning_rate": 3.937643068804896e-05,
205
+ "loss": 2.5577,
206
  "step": 165
207
  },
208
  {
209
+ "epoch": 0.28,
210
+ "learning_rate": 3.933323207221624e-05,
211
+ "loss": 2.5664,
212
  "step": 170
213
  },
214
  {
215
+ "epoch": 0.28,
216
+ "learning_rate": 3.9288612140468984e-05,
217
+ "loss": 2.5396,
218
  "step": 175
219
  },
220
  {
221
+ "epoch": 0.29,
222
+ "learning_rate": 3.924257417311846e-05,
223
+ "loss": 2.5558,
224
  "step": 180
225
  },
226
  {
227
+ "epoch": 0.3,
228
+ "learning_rate": 3.919512155472529e-05,
229
+ "loss": 2.5306,
230
  "step": 185
231
  },
232
  {
233
+ "epoch": 0.31,
234
+ "learning_rate": 3.9146257773850585e-05,
235
+ "loss": 2.4945,
236
  "step": 190
237
  },
238
  {
239
+ "epoch": 0.32,
240
+ "learning_rate": 3.9095986422799506e-05,
241
+ "loss": 2.6086,
242
  "step": 195
243
  },
244
  {
245
+ "epoch": 0.32,
246
+ "learning_rate": 3.904431119735718e-05,
247
+ "loss": 2.4973,
248
  "step": 200
249
  },
250
  {
251
+ "epoch": 0.33,
252
+ "learning_rate": 3.899123589651695e-05,
253
+ "loss": 2.5872,
254
  "step": 205
255
  },
256
  {
257
+ "epoch": 0.34,
258
+ "learning_rate": 3.893676442220114e-05,
259
+ "loss": 2.5216,
260
  "step": 210
261
  },
262
  {
263
+ "epoch": 0.35,
264
+ "learning_rate": 3.888090077897418e-05,
265
+ "loss": 2.5367,
266
  "step": 215
267
  },
268
  {
269
+ "epoch": 0.36,
270
+ "learning_rate": 3.882364907374819e-05,
271
+ "loss": 2.5495,
272
  "step": 220
273
  },
274
  {
275
+ "epoch": 0.36,
276
+ "learning_rate": 3.8765013515481065e-05,
277
+ "loss": 2.6037,
278
  "step": 225
279
  },
280
  {
281
+ "epoch": 0.37,
282
+ "learning_rate": 3.870499841486705e-05,
283
+ "loss": 2.5012,
284
  "step": 230
285
  },
286
  {
287
+ "epoch": 0.38,
288
+ "learning_rate": 3.864360818401982e-05,
289
+ "loss": 2.4773,
290
  "step": 235
291
  },
292
  {
293
+ "epoch": 0.39,
294
+ "learning_rate": 3.8580847336148105e-05,
295
+ "loss": 2.52,
296
  "step": 240
297
  },
298
  {
299
+ "epoch": 0.4,
300
+ "learning_rate": 3.851672048522395e-05,
301
+ "loss": 2.4718,
302
  "step": 245
303
  },
304
  {
305
+ "epoch": 0.4,
306
+ "learning_rate": 3.845123234564343e-05,
307
+ "loss": 2.5251,
308
  "step": 250
309
  },
310
  {
311
+ "epoch": 0.41,
312
+ "learning_rate": 3.838438773188014e-05,
313
+ "loss": 2.5547,
314
  "step": 255
315
  },
316
  {
317
+ "epoch": 0.42,
318
+ "learning_rate": 3.831619155813119e-05,
319
+ "loss": 2.475,
320
  "step": 260
321
  },
322
  {
323
+ "epoch": 0.43,
324
+ "learning_rate": 3.8246648837955965e-05,
325
+ "loss": 2.4957,
326
  "step": 265
327
  },
328
  {
329
+ "epoch": 0.44,
330
+ "learning_rate": 3.817576468390753e-05,
331
+ "loss": 2.5425,
332
  "step": 270
333
  },
334
  {
335
+ "epoch": 0.45,
336
+ "learning_rate": 3.810354430715678e-05,
337
+ "loss": 2.5495,
338
  "step": 275
339
  },
340
  {
341
+ "epoch": 0.45,
342
+ "learning_rate": 3.802999301710932e-05,
343
+ "loss": 2.5375,
344
  "step": 280
345
  },
346
  {
347
+ "epoch": 0.46,
348
+ "learning_rate": 3.795511622101516e-05,
349
+ "loss": 2.5151,
350
  "step": 285
351
  },
352
  {
353
+ "epoch": 0.47,
354
+ "learning_rate": 3.787891942357115e-05,
355
+ "loss": 2.4864,
356
  "step": 290
357
  },
358
  {
359
+ "epoch": 0.48,
360
+ "learning_rate": 3.780140822651633e-05,
361
+ "loss": 2.5396,
362
  "step": 295
363
  },
364
  {
365
+ "epoch": 0.49,
366
+ "learning_rate": 3.77225883282201e-05,
367
+ "loss": 2.5585,
368
  "step": 300
369
  },
370
  {
371
+ "epoch": 0.49,
372
+ "learning_rate": 3.764246552326328e-05,
373
+ "loss": 2.4947,
374
  "step": 305
375
  },
376
  {
377
+ "epoch": 0.5,
378
+ "learning_rate": 3.756104570201213e-05,
379
+ "loss": 2.5004,
380
  "step": 310
381
  },
382
  {
383
+ "epoch": 0.51,
384
+ "learning_rate": 3.747833485018529e-05,
385
+ "loss": 2.4729,
386
  "step": 315
387
  },
388
  {
389
+ "epoch": 0.52,
390
+ "learning_rate": 3.739433904841375e-05,
391
+ "loss": 2.4764,
392
  "step": 320
393
  },
394
  {
395
+ "epoch": 0.53,
396
+ "learning_rate": 3.7309064471793794e-05,
397
+ "loss": 2.5369,
398
  "step": 325
399
  },
400
  {
401
+ "epoch": 0.53,
402
+ "learning_rate": 3.7222517389433085e-05,
403
+ "loss": 2.4836,
404
  "step": 330
405
  },
406
  {
407
+ "epoch": 0.54,
408
+ "learning_rate": 3.7134704163989705e-05,
409
+ "loss": 2.4558,
410
  "step": 335
411
  },
412
  {
413
+ "epoch": 0.55,
414
+ "learning_rate": 3.7045631251204434e-05,
415
+ "loss": 2.5562,
416
  "step": 340
417
  },
418
  {
419
+ "epoch": 0.56,
420
+ "learning_rate": 3.6955305199426164e-05,
421
+ "loss": 2.4603,
422
  "step": 345
423
  },
424
  {
425
+ "epoch": 0.57,
426
+ "learning_rate": 3.6863732649130426e-05,
427
+ "loss": 2.4176,
428
  "step": 350
429
  },
430
  {
431
+ "epoch": 0.57,
432
+ "learning_rate": 3.677092033243128e-05,
433
+ "loss": 2.4991,
434
  "step": 355
435
  },
436
  {
437
+ "epoch": 0.58,
438
+ "learning_rate": 3.667687507258631e-05,
439
+ "loss": 2.4846,
440
  "step": 360
441
  },
442
  {
443
+ "epoch": 0.59,
444
+ "learning_rate": 3.658160378349508e-05,
445
+ "loss": 2.5998,
446
  "step": 365
447
  },
448
  {
449
+ "epoch": 0.6,
450
+ "learning_rate": 3.648511346919079e-05,
451
+ "loss": 2.5061,
452
  "step": 370
453
  },
454
  {
455
+ "epoch": 0.61,
456
+ "learning_rate": 3.638741122332539e-05,
457
+ "loss": 2.4538,
458
  "step": 375
459
  },
460
  {
461
+ "epoch": 0.62,
462
+ "learning_rate": 3.628850422864807e-05,
463
+ "loss": 2.498,
464
  "step": 380
465
  },
466
  {
467
+ "epoch": 0.62,
468
+ "learning_rate": 3.618839975647718e-05,
469
+ "loss": 2.4867,
470
  "step": 385
471
  },
472
  {
473
+ "epoch": 0.63,
474
+ "learning_rate": 3.608710516616575e-05,
475
+ "loss": 2.5426,
476
  "step": 390
477
  },
478
  {
479
+ "epoch": 0.64,
480
+ "learning_rate": 3.598462790456035e-05,
481
+ "loss": 2.4842,
482
  "step": 395
483
  },
484
  {
485
+ "epoch": 0.65,
486
+ "learning_rate": 3.588097550545368e-05,
487
+ "loss": 2.4274,
488
  "step": 400
489
  },
490
  {
491
+ "epoch": 0.66,
492
+ "learning_rate": 3.5776155589030725e-05,
493
+ "loss": 2.5354,
494
  "step": 405
495
  },
496
  {
497
+ "epoch": 0.66,
498
+ "learning_rate": 3.5670175861308496e-05,
499
+ "loss": 2.455,
500
  "step": 410
501
  },
502
  {
503
+ "epoch": 0.67,
504
+ "learning_rate": 3.556304411356954e-05,
505
+ "loss": 2.5039,
506
  "step": 415
507
  },
508
  {
509
+ "epoch": 0.68,
510
+ "learning_rate": 3.545476822178915e-05,
511
+ "loss": 2.518,
512
  "step": 420
513
  },
514
  {
515
+ "epoch": 0.69,
516
+ "learning_rate": 3.5345356146056326e-05,
517
+ "loss": 2.4718,
518
  "step": 425
519
  },
520
  {
521
+ "epoch": 0.7,
522
+ "learning_rate": 3.52348159299886e-05,
523
+ "loss": 2.4318,
524
  "step": 430
525
  },
526
  {
527
+ "epoch": 0.7,
528
+ "learning_rate": 3.512315570014071e-05,
529
+ "loss": 2.5146,
530
  "step": 435
531
  },
532
  {
533
+ "epoch": 0.71,
534
+ "learning_rate": 3.50103836654071e-05,
535
+ "loss": 2.4801,
536
  "step": 440
537
  },
538
  {
539
+ "epoch": 0.72,
540
+ "learning_rate": 3.489650811641849e-05,
541
+ "loss": 2.4429,
542
  "step": 445
543
  },
544
  {
545
+ "epoch": 0.73,
546
+ "learning_rate": 3.478153742493235e-05,
547
+ "loss": 2.4654,
548
  "step": 450
549
  },
550
  {
551
+ "epoch": 0.74,
552
+ "learning_rate": 3.4665480043217444e-05,
553
+ "loss": 2.4846,
554
  "step": 455
555
  },
556
  {
557
+ "epoch": 0.74,
558
+ "learning_rate": 3.454834450343245e-05,
559
+ "loss": 2.4371,
560
  "step": 460
561
  },
562
  {
563
+ "epoch": 0.75,
564
+ "learning_rate": 3.443013941699868e-05,
565
+ "loss": 2.4071,
566
  "step": 465
567
  },
568
  {
569
+ "epoch": 0.76,
570
+ "learning_rate": 3.431087347396702e-05,
571
+ "loss": 2.3886,
572
  "step": 470
573
  },
574
  {
575
+ "epoch": 0.77,
576
+ "learning_rate": 3.419055544237906e-05,
577
+ "loss": 2.4539,
578
  "step": 475
579
  },
580
  {
581
+ "epoch": 0.78,
582
+ "learning_rate": 3.40691941676225e-05,
583
+ "loss": 2.4406,
584
  "step": 480
585
  },
586
  {
587
+ "epoch": 0.78,
588
+ "learning_rate": 3.394679857178086e-05,
589
+ "loss": 2.3687,
590
  "step": 485
591
  },
592
  {
593
+ "epoch": 0.79,
594
+ "learning_rate": 3.382337765297756e-05,
595
+ "loss": 2.4244,
596
  "step": 490
597
  },
598
  {
599
+ "epoch": 0.8,
600
+ "learning_rate": 3.3698940484714394e-05,
601
+ "loss": 2.4477,
602
  "step": 495
603
  },
604
  {
605
+ "epoch": 0.81,
606
+ "learning_rate": 3.35734962152045e-05,
607
+ "loss": 2.5432,
608
  "step": 500
609
  },
610
  {
611
+ "epoch": 0.82,
612
+ "learning_rate": 3.34470540666998e-05,
613
+ "loss": 2.4633,
614
  "step": 505
615
  },
616
  {
617
+ "epoch": 0.83,
618
+ "learning_rate": 3.331962333481302e-05,
619
+ "loss": 2.4302,
620
  "step": 510
621
  },
622
  {
623
+ "epoch": 0.83,
624
+ "learning_rate": 3.319121338783428e-05,
625
+ "loss": 2.4528,
626
  "step": 515
627
  },
628
  {
629
+ "epoch": 0.84,
630
+ "learning_rate": 3.3061833666042416e-05,
631
+ "loss": 2.3741,
632
  "step": 520
633
  },
634
  {
635
+ "epoch": 0.85,
636
+ "learning_rate": 3.29314936810109e-05,
637
+ "loss": 2.4638,
638
  "step": 525
639
  },
640
  {
641
+ "epoch": 0.86,
642
+ "learning_rate": 3.280020301490863e-05,
643
+ "loss": 2.4204,
644
  "step": 530
645
  },
646
  {
647
+ "epoch": 0.87,
648
+ "learning_rate": 3.2667971319795473e-05,
649
+ "loss": 2.436,
650
  "step": 535
651
  },
652
  {
653
+ "epoch": 0.87,
654
+ "learning_rate": 3.253480831691264e-05,
655
+ "loss": 2.4194,
656
  "step": 540
657
  },
658
  {
659
+ "epoch": 0.88,
660
+ "learning_rate": 3.240072379596806e-05,
661
+ "loss": 2.3565,
662
  "step": 545
663
  },
664
  {
665
+ "epoch": 0.89,
666
+ "learning_rate": 3.226572761441666e-05,
667
+ "loss": 2.4421,
668
  "step": 550
669
  },
670
  {
671
+ "epoch": 0.9,
672
+ "learning_rate": 3.2129829696735636e-05,
673
+ "loss": 2.4169,
674
  "step": 555
675
  },
676
  {
677
+ "epoch": 0.91,
678
+ "learning_rate": 3.1993040033694916e-05,
679
+ "loss": 2.4425,
680
  "step": 560
681
  },
682
  {
683
+ "epoch": 0.91,
684
+ "learning_rate": 3.1855368681622584e-05,
685
+ "loss": 2.399,
686
  "step": 565
687
  },
688
  {
689
+ "epoch": 0.92,
690
+ "learning_rate": 3.171682576166565e-05,
691
+ "loss": 2.3747,
692
  "step": 570
693
  },
694
  {
695
+ "epoch": 0.93,
696
+ "learning_rate": 3.1577421459045905e-05,
697
+ "loss": 2.437,
698
  "step": 575
699
  },
700
  {
701
+ "epoch": 0.94,
702
+ "learning_rate": 3.143716602231122e-05,
703
+ "loss": 2.4131,
704
  "step": 580
705
  },
706
  {
707
+ "epoch": 0.95,
708
+ "learning_rate": 3.129606976258201e-05,
709
+ "loss": 2.4329,
710
  "step": 585
711
  },
712
  {
713
+ "epoch": 0.95,
714
+ "learning_rate": 3.115414305279327e-05,
715
+ "loss": 2.4521,
716
  "step": 590
717
  },
718
  {
719
+ "epoch": 0.96,
720
+ "learning_rate": 3.101139632693197e-05,
721
+ "loss": 2.3317,
722
  "step": 595
723
  },
724
  {
725
+ "epoch": 0.97,
726
+ "learning_rate": 3.086784007926996e-05,
727
+ "loss": 2.4119,
728
  "step": 600
729
  },
730
  {
731
+ "epoch": 0.98,
732
+ "learning_rate": 3.072348486359247e-05,
733
+ "loss": 2.4315,
734
  "step": 605
735
  },
736
  {
737
+ "epoch": 0.99,
738
+ "learning_rate": 3.0578341292422286e-05,
739
+ "loss": 2.4687,
740
  "step": 610
741
  },
742
  {
743
+ "epoch": 1.0,
744
+ "learning_rate": 3.043242003623947e-05,
745
+ "loss": 2.4703,
746
  "step": 615
747
  },
748
  {
749
+ "epoch": 1.0,
750
+ "learning_rate": 3.0285731822696954e-05,
751
+ "loss": 2.5997,
752
  "step": 620
753
  },
754
  {
755
+ "epoch": 1.01,
756
+ "learning_rate": 3.0138287435831855e-05,
757
+ "loss": 2.0103,
758
  "step": 625
759
  },
760
  {
761
+ "epoch": 1.02,
762
+ "learning_rate": 2.9990097715272694e-05,
763
+ "loss": 1.9907,
764
  "step": 630
765
  },
766
  {
767
+ "epoch": 1.03,
768
+ "learning_rate": 2.9841173555442463e-05,
769
+ "loss": 1.9292,
770
  "step": 635
771
  },
772
  {
773
+ "epoch": 1.04,
774
+ "learning_rate": 2.9691525904757745e-05,
775
+ "loss": 1.9898,
776
  "step": 640
777
  },
778
  {
779
+ "epoch": 1.05,
780
+ "learning_rate": 2.954116576482378e-05,
781
+ "loss": 1.9234,
782
  "step": 645
783
  },
784
  {
785
+ "epoch": 1.05,
786
+ "learning_rate": 2.9390104189625702e-05,
787
+ "loss": 1.8726,
788
  "step": 650
789
  },
790
  {
791
+ "epoch": 1.06,
792
+ "learning_rate": 2.923835228471587e-05,
793
+ "loss": 1.9208,
794
  "step": 655
795
  },
796
  {
797
+ "epoch": 1.07,
798
+ "learning_rate": 2.90859212063974e-05,
799
+ "loss": 1.9407,
800
  "step": 660
801
  },
802
  {
803
+ "epoch": 1.08,
804
+ "learning_rate": 2.8932822160904038e-05,
805
+ "loss": 1.9377,
806
  "step": 665
807
  },
808
  {
809
+ "epoch": 1.09,
810
+ "learning_rate": 2.877906640357628e-05,
811
+ "loss": 1.9665,
812
  "step": 670
813
  },
814
  {
815
+ "epoch": 1.09,
816
+ "learning_rate": 2.862466523803393e-05,
817
+ "loss": 1.9723,
818
  "step": 675
819
  },
820
  {
821
+ "epoch": 1.1,
822
+ "learning_rate": 2.846963001534507e-05,
823
+ "loss": 1.9876,
824
  "step": 680
825
  },
826
  {
827
+ "epoch": 1.11,
828
+ "learning_rate": 2.8313972133191615e-05,
829
+ "loss": 1.9405,
830
  "step": 685
831
  },
832
  {
833
+ "epoch": 1.12,
834
+ "learning_rate": 2.8157703035031353e-05,
835
+ "loss": 1.9848,
836
  "step": 690
837
  },
838
  {
839
+ "epoch": 1.13,
840
+ "learning_rate": 2.8000834209256665e-05,
841
+ "loss": 1.9328,
842
  "step": 695
843
  },
844
  {
845
+ "epoch": 1.13,
846
+ "learning_rate": 2.7843377188349962e-05,
847
+ "loss": 1.9343,
848
  "step": 700
849
  },
850
  {
851
+ "epoch": 1.14,
852
+ "learning_rate": 2.768534354803581e-05,
853
+ "loss": 1.9245,
854
  "step": 705
855
  },
856
  {
857
+ "epoch": 1.15,
858
+ "learning_rate": 2.752674490642996e-05,
859
+ "loss": 1.9526,
860
  "step": 710
861
  },
862
  {
863
+ "epoch": 1.16,
864
+ "learning_rate": 2.7367592923185207e-05,
865
+ "loss": 1.93,
866
  "step": 715
867
  },
868
  {
869
+ "epoch": 1.17,
870
+ "learning_rate": 2.720789929863421e-05,
871
+ "loss": 1.9263,
872
  "step": 720
873
  },
874
  {
875
+ "epoch": 1.17,
876
+ "learning_rate": 2.7047675772929328e-05,
877
+ "loss": 1.9432,
878
  "step": 725
879
  },
880
  {
881
+ "epoch": 1.18,
882
+ "learning_rate": 2.6886934125179504e-05,
883
+ "loss": 1.9481,
884
  "step": 730
885
  },
886
  {
887
+ "epoch": 1.19,
888
+ "learning_rate": 2.672568617258432e-05,
889
+ "loss": 1.909,
890
  "step": 735
891
  },
892
  {
893
+ "epoch": 1.2,
894
+ "learning_rate": 2.6563943769565258e-05,
895
+ "loss": 1.9386,
896
  "step": 740
897
  },
898
  {
899
+ "epoch": 1.21,
900
+ "learning_rate": 2.6401718806894144e-05,
901
+ "loss": 1.9362,
902
  "step": 745
903
  },
904
  {
905
+ "epoch": 1.22,
906
+ "learning_rate": 2.6239023210819027e-05,
907
+ "loss": 1.9494,
908
  "step": 750
909
  },
910
  {
911
+ "epoch": 1.22,
912
+ "learning_rate": 2.6075868942187366e-05,
913
+ "loss": 1.9576,
914
  "step": 755
915
  },
916
  {
917
+ "epoch": 1.23,
918
+ "learning_rate": 2.5912267995566746e-05,
919
+ "loss": 1.937,
920
  "step": 760
921
  },
922
  {
923
+ "epoch": 1.24,
924
+ "learning_rate": 2.5748232398363044e-05,
925
+ "loss": 1.9889,
926
  "step": 765
927
  },
928
  {
929
+ "epoch": 1.25,
930
+ "learning_rate": 2.5583774209936218e-05,
931
+ "loss": 1.9285,
932
  "step": 770
933
  },
934
  {
935
+ "epoch": 1.26,
936
+ "learning_rate": 2.5418905520713767e-05,
937
+ "loss": 1.895,
938
  "step": 775
939
  },
940
  {
941
+ "epoch": 1.26,
942
+ "learning_rate": 2.525363845130185e-05,
943
+ "loss": 1.9826,
944
  "step": 780
945
  },
946
  {
947
+ "epoch": 1.27,
948
+ "learning_rate": 2.5087985151594235e-05,
949
+ "loss": 1.9869,
950
  "step": 785
951
  },
952
  {
953
+ "epoch": 1.28,
954
+ "learning_rate": 2.4921957799879076e-05,
955
+ "loss": 1.9325,
956
  "step": 790
957
  },
958
  {
959
+ "epoch": 1.29,
960
+ "learning_rate": 2.4755568601943615e-05,
961
+ "loss": 1.9479,
962
  "step": 795
963
  },
964
  {
965
+ "epoch": 1.3,
966
+ "learning_rate": 2.4588829790176837e-05,
967
+ "loss": 1.9616,
968
  "step": 800
969
  },
970
  {
971
+ "epoch": 1.3,
972
+ "learning_rate": 2.4421753622670178e-05,
973
+ "loss": 1.9706,
974
  "step": 805
975
  },
976
  {
977
+ "epoch": 1.31,
978
+ "learning_rate": 2.425435238231638e-05,
979
+ "loss": 1.9675,
980
  "step": 810
981
  },
982
  {
983
+ "epoch": 1.32,
984
+ "learning_rate": 2.4086638375906484e-05,
985
+ "loss": 1.9684,
986
  "step": 815
987
  },
988
  {
989
+ "epoch": 1.33,
990
+ "learning_rate": 2.3918623933225043e-05,
991
+ "loss": 1.9388,
992
  "step": 820
993
  },
994
  {
995
+ "epoch": 1.34,
996
+ "learning_rate": 2.375032140614372e-05,
997
+ "loss": 1.9326,
998
  "step": 825
999
  },
1000
  {
1001
+ "epoch": 1.34,
1002
+ "learning_rate": 2.3581743167713187e-05,
1003
+ "loss": 1.9521,
1004
  "step": 830
1005
  },
1006
  {
1007
+ "epoch": 1.35,
1008
+ "learning_rate": 2.3412901611253524e-05,
1009
+ "loss": 1.9704,
1010
  "step": 835
1011
  },
1012
  {
1013
+ "epoch": 1.36,
1014
+ "learning_rate": 2.3243809149443077e-05,
1015
+ "loss": 1.89,
1016
  "step": 840
1017
  },
1018
  {
1019
+ "epoch": 1.37,
1020
+ "learning_rate": 2.3074478213405937e-05,
1021
+ "loss": 1.9438,
1022
  "step": 845
1023
  },
1024
  {
1025
+ "epoch": 1.38,
1026
+ "learning_rate": 2.2904921251798052e-05,
1027
+ "loss": 1.9682,
1028
  "step": 850
1029
  },
1030
  {
1031
+ "epoch": 1.39,
1032
+ "learning_rate": 2.2735150729892013e-05,
1033
+ "loss": 2.008,
1034
  "step": 855
1035
  },
1036
  {
1037
+ "epoch": 1.39,
1038
+ "learning_rate": 2.2565179128660667e-05,
1039
+ "loss": 1.9247,
1040
  "step": 860
1041
  },
1042
  {
1043
+ "epoch": 1.4,
1044
+ "learning_rate": 2.2395018943859558e-05,
1045
+ "loss": 1.9377,
1046
  "step": 865
1047
  },
1048
  {
1049
+ "epoch": 1.41,
1050
+ "learning_rate": 2.222468268510828e-05,
1051
+ "loss": 1.9396,
1052
  "step": 870
1053
  },
1054
  {
1055
+ "epoch": 1.42,
1056
+ "learning_rate": 2.2054182874970808e-05,
1057
+ "loss": 1.9848,
1058
  "step": 875
1059
  },
1060
  {
1061
+ "epoch": 1.43,
1062
+ "learning_rate": 2.188353204803486e-05,
1063
+ "loss": 1.9382,
1064
  "step": 880
1065
  },
1066
  {
1067
+ "epoch": 1.43,
1068
+ "learning_rate": 2.1712742749990444e-05,
1069
+ "loss": 1.9431,
1070
  "step": 885
1071
  },
1072
  {
1073
+ "epoch": 1.44,
1074
+ "learning_rate": 2.154182753670749e-05,
1075
+ "loss": 1.9833,
1076
  "step": 890
1077
  },
1078
  {
1079
+ "epoch": 1.45,
1080
+ "learning_rate": 2.1370798973312813e-05,
1081
+ "loss": 1.9338,
1082
  "step": 895
1083
  },
1084
  {
1085
+ "epoch": 1.46,
1086
+ "learning_rate": 2.1199669633266353e-05,
1087
+ "loss": 1.9543,
1088
  "step": 900
1089
  },
1090
  {
1091
+ "epoch": 1.47,
1092
+ "learning_rate": 2.102845209743682e-05,
1093
+ "loss": 1.9455,
1094
  "step": 905
1095
  },
1096
  {
1097
+ "epoch": 1.47,
1098
+ "learning_rate": 2.085715895317679e-05,
1099
+ "loss": 1.9533,
1100
  "step": 910
1101
  },
1102
  {
1103
+ "epoch": 1.48,
1104
+ "learning_rate": 2.0685802793397317e-05,
1105
+ "loss": 2.0128,
1106
  "step": 915
1107
  },
1108
  {
1109
+ "epoch": 1.49,
1110
+ "learning_rate": 2.051439621564216e-05,
1111
+ "loss": 1.9471,
1112
  "step": 920
1113
  },
1114
  {
1115
+ "epoch": 1.5,
1116
+ "learning_rate": 2.0342951821161648e-05,
1117
+ "loss": 1.9474,
1118
  "step": 925
1119
  },
1120
  {
1121
+ "epoch": 1.51,
1122
+ "learning_rate": 2.017148221398625e-05,
1123
+ "loss": 1.9946,
1124
  "step": 930
1125
  },
1126
  {
1127
+ "epoch": 1.51,
1128
+ "learning_rate": 2e-05,
1129
+ "loss": 1.913,
1130
  "step": 935
1131
  },
1132
  {
1133
+ "epoch": 1.52,
1134
+ "learning_rate": 1.9828517786013752e-05,
1135
+ "loss": 1.981,
1136
  "step": 940
1137
  },
1138
  {
1139
+ "epoch": 1.53,
1140
+ "learning_rate": 1.965704817883836e-05,
1141
+ "loss": 1.9809,
1142
  "step": 945
1143
  },
1144
  {
1145
+ "epoch": 1.54,
1146
+ "learning_rate": 1.948560378435784e-05,
1147
+ "loss": 1.9793,
1148
  "step": 950
1149
  },
1150
  {
1151
+ "epoch": 1.55,
1152
+ "learning_rate": 1.9314197206602693e-05,
1153
+ "loss": 1.9207,
1154
  "step": 955
1155
  },
1156
  {
1157
+ "epoch": 1.56,
1158
+ "learning_rate": 1.914284104682322e-05,
1159
+ "loss": 1.8926,
1160
  "step": 960
1161
  },
1162
  {
1163
+ "epoch": 1.56,
1164
+ "learning_rate": 1.897154790256319e-05,
1165
+ "loss": 2.0005,
1166
  "step": 965
1167
  },
1168
  {
1169
+ "epoch": 1.57,
1170
+ "learning_rate": 1.8800330366733654e-05,
1171
+ "loss": 1.9432,
1172
  "step": 970
1173
  },
1174
  {
1175
+ "epoch": 1.58,
1176
+ "learning_rate": 1.862920102668719e-05,
1177
+ "loss": 1.8667,
1178
  "step": 975
1179
  },
1180
  {
1181
+ "epoch": 1.59,
1182
+ "learning_rate": 1.8458172463292516e-05,
1183
+ "loss": 1.9405,
1184
  "step": 980
1185
  },
1186
  {
1187
+ "epoch": 1.6,
1188
+ "learning_rate": 1.828725725000956e-05,
1189
+ "loss": 1.9617,
1190
  "step": 985
1191
  },
1192
  {
1193
+ "epoch": 1.6,
1194
+ "learning_rate": 1.8116467951965145e-05,
1195
+ "loss": 1.9447,
1196
  "step": 990
1197
  },
1198
  {
1199
+ "epoch": 1.61,
1200
+ "learning_rate": 1.79458171250292e-05,
1201
+ "loss": 1.9093,
1202
  "step": 995
1203
  },
1204
  {
1205
+ "epoch": 1.62,
1206
+ "learning_rate": 1.7775317314891724e-05,
1207
+ "loss": 1.9051,
1208
  "step": 1000
1209
  },
1210
  {
1211
+ "epoch": 1.63,
1212
+ "learning_rate": 1.7604981056140446e-05,
1213
+ "loss": 1.916,
1214
  "step": 1005
1215
  },
1216
  {
1217
+ "epoch": 1.64,
1218
+ "learning_rate": 1.7434820871339336e-05,
1219
+ "loss": 1.8569,
1220
  "step": 1010
1221
  },
1222
  {
1223
+ "epoch": 1.64,
1224
+ "learning_rate": 1.7264849270107994e-05,
1225
+ "loss": 1.9163,
1226
  "step": 1015
1227
  },
1228
  {
1229
+ "epoch": 1.65,
1230
+ "learning_rate": 1.709507874820195e-05,
1231
+ "loss": 1.9342,
1232
  "step": 1020
1233
  },
1234
  {
1235
+ "epoch": 1.66,
1236
+ "learning_rate": 1.6925521786594067e-05,
1237
+ "loss": 1.8947,
1238
  "step": 1025
1239
  },
1240
  {
1241
+ "epoch": 1.67,
1242
+ "learning_rate": 1.675619085055693e-05,
1243
+ "loss": 1.9396,
1244
  "step": 1030
1245
  },
1246
  {
1247
+ "epoch": 1.68,
1248
+ "learning_rate": 1.6587098388746486e-05,
1249
+ "loss": 1.9416,
1250
  "step": 1035
1251
  },
1252
  {
1253
+ "epoch": 1.68,
1254
+ "learning_rate": 1.6418256832286816e-05,
1255
+ "loss": 1.9382,
1256
  "step": 1040
1257
  },
1258
  {
1259
+ "epoch": 1.69,
1260
+ "learning_rate": 1.6249678593856288e-05,
1261
+ "loss": 1.9747,
1262
  "step": 1045
1263
  },
1264
  {
1265
+ "epoch": 1.7,
1266
+ "learning_rate": 1.6081376066774964e-05,
1267
+ "loss": 1.8799,
1268
  "step": 1050
1269
  },
1270
  {
1271
+ "epoch": 1.71,
1272
+ "learning_rate": 1.591336162409352e-05,
1273
+ "loss": 1.8957,
1274
  "step": 1055
1275
  },
1276
  {
1277
+ "epoch": 1.72,
1278
+ "learning_rate": 1.5745647617683627e-05,
1279
+ "loss": 1.8921,
1280
  "step": 1060
1281
  },
1282
  {
1283
+ "epoch": 1.73,
1284
+ "learning_rate": 1.557824637732983e-05,
1285
+ "loss": 1.9406,
1286
  "step": 1065
1287
  },
1288
  {
1289
+ "epoch": 1.73,
1290
+ "learning_rate": 1.5411170209823177e-05,
1291
+ "loss": 1.9282,
1292
  "step": 1070
1293
  },
1294
  {
1295
+ "epoch": 1.74,
1296
+ "learning_rate": 1.5244431398056392e-05,
1297
+ "loss": 1.8621,
1298
  "step": 1075
1299
  },
1300
  {
1301
+ "epoch": 1.75,
1302
+ "learning_rate": 1.5078042200120933e-05,
1303
+ "loss": 1.9375,
1304
  "step": 1080
1305
  },
1306
  {
1307
+ "epoch": 1.76,
1308
+ "learning_rate": 1.4912014848405771e-05,
1309
+ "loss": 1.8779,
1310
  "step": 1085
1311
  },
1312
  {
1313
+ "epoch": 1.77,
1314
+ "learning_rate": 1.4746361548698151e-05,
1315
+ "loss": 1.9353,
1316
  "step": 1090
1317
  },
1318
  {
1319
+ "epoch": 1.77,
1320
+ "learning_rate": 1.4581094479286234e-05,
1321
+ "loss": 1.9255,
1322
  "step": 1095
1323
  },
1324
  {
1325
+ "epoch": 1.78,
1326
+ "learning_rate": 1.4416225790063784e-05,
1327
+ "loss": 1.9163,
1328
  "step": 1100
1329
  },
1330
  {
1331
+ "epoch": 1.79,
1332
+ "learning_rate": 1.4251767601636965e-05,
1333
+ "loss": 1.9314,
1334
  "step": 1105
1335
  },
1336
  {
1337
+ "epoch": 1.8,
1338
+ "learning_rate": 1.4087732004433258e-05,
1339
+ "loss": 1.8751,
1340
  "step": 1110
1341
  },
1342
  {
1343
+ "epoch": 1.81,
1344
+ "learning_rate": 1.3924131057812642e-05,
1345
+ "loss": 1.8934,
1346
  "step": 1115
1347
  },
1348
  {
1349
+ "epoch": 1.81,
1350
+ "learning_rate": 1.376097678918098e-05,
1351
+ "loss": 1.9148,
1352
  "step": 1120
1353
  },
1354
  {
1355
+ "epoch": 1.82,
1356
+ "learning_rate": 1.3598281193105858e-05,
1357
+ "loss": 1.8754,
1358
  "step": 1125
1359
  },
1360
  {
1361
+ "epoch": 1.83,
1362
+ "learning_rate": 1.3436056230434747e-05,
1363
+ "loss": 1.9183,
1364
  "step": 1130
1365
  },
1366
  {
1367
+ "epoch": 1.84,
1368
+ "learning_rate": 1.3274313827415678e-05,
1369
+ "loss": 1.9236,
1370
  "step": 1135
1371
  },
1372
  {
1373
+ "epoch": 1.85,
1374
+ "learning_rate": 1.3113065874820506e-05,
1375
+ "loss": 1.889,
1376
  "step": 1140
1377
  },
1378
  {
1379
+ "epoch": 1.85,
1380
+ "learning_rate": 1.295232422707068e-05,
1381
+ "loss": 1.8898,
1382
  "step": 1145
1383
  },
1384
  {
1385
+ "epoch": 1.86,
1386
+ "learning_rate": 1.2792100701365794e-05,
1387
+ "loss": 1.8991,
1388
  "step": 1150
1389
  },
1390
  {
1391
+ "epoch": 1.87,
1392
+ "learning_rate": 1.2632407076814794e-05,
1393
+ "loss": 1.9559,
1394
  "step": 1155
1395
  },
1396
  {
1397
+ "epoch": 1.88,
1398
+ "learning_rate": 1.2473255093570039e-05,
1399
+ "loss": 1.9048,
1400
  "step": 1160
1401
  },
1402
  {
1403
+ "epoch": 1.89,
1404
+ "learning_rate": 1.2314656451964196e-05,
1405
+ "loss": 1.859,
1406
  "step": 1165
1407
  },
1408
  {
1409
+ "epoch": 1.9,
1410
+ "learning_rate": 1.2156622811650043e-05,
1411
+ "loss": 1.8825,
1412
  "step": 1170
1413
  },
1414
  {
1415
+ "epoch": 1.9,
1416
+ "learning_rate": 1.1999165790743338e-05,
1417
+ "loss": 1.9094,
1418
  "step": 1175
1419
  },
1420
  {
1421
+ "epoch": 1.91,
1422
+ "learning_rate": 1.1842296964968652e-05,
1423
+ "loss": 1.937,
1424
  "step": 1180
1425
  },
1426
  {
1427
+ "epoch": 1.92,
1428
+ "learning_rate": 1.1686027866808394e-05,
1429
+ "loss": 1.8838,
1430
  "step": 1185
1431
  },
1432
  {
1433
+ "epoch": 1.93,
1434
+ "learning_rate": 1.1530369984654936e-05,
1435
+ "loss": 1.9023,
1436
  "step": 1190
1437
  },
1438
  {
1439
+ "epoch": 1.94,
1440
+ "learning_rate": 1.1375334761966074e-05,
1441
+ "loss": 1.9099,
1442
  "step": 1195
1443
  },
1444
  {
1445
+ "epoch": 1.94,
1446
+ "learning_rate": 1.122093359642372e-05,
1447
+ "loss": 1.9058,
1448
  "step": 1200
1449
  },
1450
  {
1451
+ "epoch": 1.95,
1452
+ "learning_rate": 1.1067177839095957e-05,
1453
+ "loss": 1.9359,
1454
  "step": 1205
1455
  },
1456
  {
1457
+ "epoch": 1.96,
1458
+ "learning_rate": 1.0914078793602601e-05,
1459
+ "loss": 1.8897,
1460
  "step": 1210
1461
  },
1462
  {
1463
+ "epoch": 1.97,
1464
+ "learning_rate": 1.0761647715284139e-05,
1465
+ "loss": 1.9341,
1466
  "step": 1215
1467
  },
1468
  {
1469
+ "epoch": 1.98,
1470
+ "learning_rate": 1.0609895810374304e-05,
1471
+ "loss": 1.876,
1472
  "step": 1220
1473
  },
1474
  {
1475
+ "epoch": 1.98,
1476
+ "learning_rate": 1.0458834235176225e-05,
1477
+ "loss": 1.8287,
1478
  "step": 1225
1479
  },
1480
  {
1481
+ "epoch": 1.99,
1482
+ "learning_rate": 1.0308474095242267e-05,
1483
+ "loss": 1.8523,
1484
  "step": 1230
1485
  },
1486
  {
1487
+ "epoch": 2.0,
1488
+ "learning_rate": 1.0128983382202781e-05,
1489
+ "loss": 2.0887,
1490
  "step": 1235
1491
+ },
1492
+ {
1493
+ "epoch": 2.01,
1494
+ "learning_rate": 9.980205236069665e-06,
1495
+ "loss": 1.4855,
1496
+ "step": 1240
1497
+ },
1498
+ {
1499
+ "epoch": 2.02,
1500
+ "learning_rate": 9.832163712437392e-06,
1501
+ "loss": 1.4915,
1502
+ "step": 1245
1503
+ },
1504
+ {
1505
+ "epoch": 2.03,
1506
+ "learning_rate": 9.684869694834003e-06,
1507
+ "loss": 1.4679,
1508
+ "step": 1250
1509
+ },
1510
+ {
1511
+ "epoch": 2.03,
1512
+ "learning_rate": 9.538334011833363e-06,
1513
+ "loss": 1.4298,
1514
+ "step": 1255
1515
+ },
1516
+ {
1517
+ "epoch": 2.04,
1518
+ "learning_rate": 9.392567436259034e-06,
1519
+ "loss": 1.4018,
1520
+ "step": 1260
1521
+ },
1522
+ {
1523
+ "epoch": 2.05,
1524
+ "learning_rate": 9.247580684392345e-06,
1525
+ "loss": 1.4642,
1526
+ "step": 1265
1527
+ },
1528
+ {
1529
+ "epoch": 2.06,
1530
+ "learning_rate": 9.10338441518453e-06,
1531
+ "loss": 1.4434,
1532
+ "step": 1270
1533
+ },
1534
+ {
1535
+ "epoch": 2.07,
1536
+ "learning_rate": 8.959989229473125e-06,
1537
+ "loss": 1.4574,
1538
+ "step": 1275
1539
+ },
1540
+ {
1541
+ "epoch": 2.07,
1542
+ "learning_rate": 8.817405669202619e-06,
1543
+ "loss": 1.4256,
1544
+ "step": 1280
1545
+ },
1546
+ {
1547
+ "epoch": 2.08,
1548
+ "learning_rate": 8.675644216649478e-06,
1549
+ "loss": 1.4539,
1550
+ "step": 1285
1551
+ },
1552
+ {
1553
+ "epoch": 2.09,
1554
+ "learning_rate": 8.534715293651492e-06,
1555
+ "loss": 1.5016,
1556
+ "step": 1290
1557
+ },
1558
+ {
1559
+ "epoch": 2.1,
1560
+ "learning_rate": 8.39462926084159e-06,
1561
+ "loss": 1.4738,
1562
+ "step": 1295
1563
+ },
1564
+ {
1565
+ "epoch": 2.11,
1566
+ "learning_rate": 8.255396416886194e-06,
1567
+ "loss": 1.4265,
1568
+ "step": 1300
1569
+ },
1570
+ {
1571
+ "epoch": 2.11,
1572
+ "learning_rate": 8.117026997728079e-06,
1573
+ "loss": 1.4235,
1574
+ "step": 1305
1575
+ },
1576
+ {
1577
+ "epoch": 2.12,
1578
+ "learning_rate": 7.979531175833828e-06,
1579
+ "loss": 1.5084,
1580
+ "step": 1310
1581
+ },
1582
+ {
1583
+ "epoch": 2.13,
1584
+ "learning_rate": 7.842919059446046e-06,
1585
+ "loss": 1.4426,
1586
+ "step": 1315
1587
+ },
1588
+ {
1589
+ "epoch": 2.14,
1590
+ "learning_rate": 7.707200691840173e-06,
1591
+ "loss": 1.4797,
1592
+ "step": 1320
1593
+ },
1594
+ {
1595
+ "epoch": 2.15,
1596
+ "learning_rate": 7.572386050586196e-06,
1597
+ "loss": 1.4309,
1598
+ "step": 1325
1599
+ },
1600
+ {
1601
+ "epoch": 2.16,
1602
+ "learning_rate": 7.438485046815078e-06,
1603
+ "loss": 1.4505,
1604
+ "step": 1330
1605
+ },
1606
+ {
1607
+ "epoch": 2.16,
1608
+ "learning_rate": 7.305507524490145e-06,
1609
+ "loss": 1.4734,
1610
+ "step": 1335
1611
+ },
1612
+ {
1613
+ "epoch": 2.17,
1614
+ "learning_rate": 7.1734632596834106e-06,
1615
+ "loss": 1.397,
1616
+ "step": 1340
1617
+ },
1618
+ {
1619
+ "epoch": 2.18,
1620
+ "learning_rate": 7.042361959856825e-06,
1621
+ "loss": 1.4341,
1622
+ "step": 1345
1623
+ },
1624
+ {
1625
+ "epoch": 2.19,
1626
+ "learning_rate": 6.912213263148673e-06,
1627
+ "loss": 1.4599,
1628
+ "step": 1350
1629
+ },
1630
+ {
1631
+ "epoch": 2.2,
1632
+ "learning_rate": 6.783026737664942e-06,
1633
+ "loss": 1.4466,
1634
+ "step": 1355
1635
+ },
1636
+ {
1637
+ "epoch": 2.2,
1638
+ "learning_rate": 6.654811880775973e-06,
1639
+ "loss": 1.4435,
1640
+ "step": 1360
1641
+ },
1642
+ {
1643
+ "epoch": 2.21,
1644
+ "learning_rate": 6.527578118418187e-06,
1645
+ "loss": 1.4597,
1646
+ "step": 1365
1647
+ },
1648
+ {
1649
+ "epoch": 2.22,
1650
+ "learning_rate": 6.401334804401171e-06,
1651
+ "loss": 1.4217,
1652
+ "step": 1370
1653
+ },
1654
+ {
1655
+ "epoch": 2.23,
1656
+ "learning_rate": 6.276091219719984e-06,
1657
+ "loss": 1.4477,
1658
+ "step": 1375
1659
+ },
1660
+ {
1661
+ "epoch": 2.24,
1662
+ "learning_rate": 6.151856571872854e-06,
1663
+ "loss": 1.4716,
1664
+ "step": 1380
1665
+ },
1666
+ {
1667
+ "epoch": 2.24,
1668
+ "learning_rate": 6.028639994184277e-06,
1669
+ "loss": 1.4398,
1670
+ "step": 1385
1671
+ },
1672
+ {
1673
+ "epoch": 2.25,
1674
+ "learning_rate": 5.906450545133564e-06,
1675
+ "loss": 1.4442,
1676
+ "step": 1390
1677
+ },
1678
+ {
1679
+ "epoch": 2.26,
1680
+ "learning_rate": 5.785297207688905e-06,
1681
+ "loss": 1.4506,
1682
+ "step": 1395
1683
+ },
1684
+ {
1685
+ "epoch": 2.27,
1686
+ "learning_rate": 5.665188888646935e-06,
1687
+ "loss": 1.4123,
1688
+ "step": 1400
1689
+ },
1690
+ {
1691
+ "epoch": 2.28,
1692
+ "learning_rate": 5.546134417977984e-06,
1693
+ "loss": 1.456,
1694
+ "step": 1405
1695
+ },
1696
+ {
1697
+ "epoch": 2.28,
1698
+ "learning_rate": 5.428142548176876e-06,
1699
+ "loss": 1.4274,
1700
+ "step": 1410
1701
+ },
1702
+ {
1703
+ "epoch": 2.29,
1704
+ "learning_rate": 5.311221953619514e-06,
1705
+ "loss": 1.4062,
1706
+ "step": 1415
1707
+ },
1708
+ {
1709
+ "epoch": 2.3,
1710
+ "learning_rate": 5.195381229925156e-06,
1711
+ "loss": 1.427,
1712
+ "step": 1420
1713
+ },
1714
+ {
1715
+ "epoch": 2.31,
1716
+ "learning_rate": 5.080628893324475e-06,
1717
+ "loss": 1.4783,
1718
+ "step": 1425
1719
+ },
1720
+ {
1721
+ "epoch": 2.32,
1722
+ "learning_rate": 4.9669733800334955e-06,
1723
+ "loss": 1.4356,
1724
+ "step": 1430
1725
+ },
1726
+ {
1727
+ "epoch": 2.33,
1728
+ "learning_rate": 4.854423045633392e-06,
1729
+ "loss": 1.4809,
1730
+ "step": 1435
1731
+ },
1732
+ {
1733
+ "epoch": 2.33,
1734
+ "learning_rate": 4.742986164456196e-06,
1735
+ "loss": 1.4079,
1736
+ "step": 1440
1737
+ },
1738
+ {
1739
+ "epoch": 2.34,
1740
+ "learning_rate": 4.632670928976501e-06,
1741
+ "loss": 1.4884,
1742
+ "step": 1445
1743
+ },
1744
+ {
1745
+ "epoch": 2.35,
1746
+ "learning_rate": 4.523485449209195e-06,
1747
+ "loss": 1.4499,
1748
+ "step": 1450
1749
+ },
1750
+ {
1751
+ "epoch": 2.36,
1752
+ "learning_rate": 4.415437752113223e-06,
1753
+ "loss": 1.4065,
1754
+ "step": 1455
1755
+ },
1756
+ {
1757
+ "epoch": 2.37,
1758
+ "learning_rate": 4.308535781001457e-06,
1759
+ "loss": 1.4888,
1760
+ "step": 1460
1761
+ },
1762
+ {
1763
+ "epoch": 2.37,
1764
+ "learning_rate": 4.202787394956769e-06,
1765
+ "loss": 1.4707,
1766
+ "step": 1465
1767
+ },
1768
+ {
1769
+ "epoch": 2.38,
1770
+ "learning_rate": 4.0982003682542146e-06,
1771
+ "loss": 1.4426,
1772
+ "step": 1470
1773
+ },
1774
+ {
1775
+ "epoch": 2.39,
1776
+ "learning_rate": 3.994782389789535e-06,
1777
+ "loss": 1.3991,
1778
+ "step": 1475
1779
+ },
1780
+ {
1781
+ "epoch": 2.4,
1782
+ "learning_rate": 3.892541062513853e-06,
1783
+ "loss": 1.4187,
1784
+ "step": 1480
1785
+ },
1786
+ {
1787
+ "epoch": 2.41,
1788
+ "learning_rate": 3.7914839028747507e-06,
1789
+ "loss": 1.4248,
1790
+ "step": 1485
1791
+ },
1792
+ {
1793
+ "epoch": 2.41,
1794
+ "learning_rate": 3.691618340263701e-06,
1795
+ "loss": 1.447,
1796
+ "step": 1490
1797
+ },
1798
+ {
1799
+ "epoch": 2.42,
1800
+ "learning_rate": 3.5929517164698436e-06,
1801
+ "loss": 1.4394,
1802
+ "step": 1495
1803
+ },
1804
+ {
1805
+ "epoch": 2.43,
1806
+ "learning_rate": 3.495491285140282e-06,
1807
+ "loss": 1.4359,
1808
+ "step": 1500
1809
+ },
1810
+ {
1811
+ "epoch": 2.44,
1812
+ "learning_rate": 3.399244211246779e-06,
1813
+ "loss": 1.4752,
1814
+ "step": 1505
1815
+ },
1816
+ {
1817
+ "epoch": 2.45,
1818
+ "learning_rate": 3.304217570559052e-06,
1819
+ "loss": 1.4508,
1820
+ "step": 1510
1821
+ },
1822
+ {
1823
+ "epoch": 2.45,
1824
+ "learning_rate": 3.2104183491245466e-06,
1825
+ "loss": 1.4718,
1826
+ "step": 1515
1827
+ },
1828
+ {
1829
+ "epoch": 2.46,
1830
+ "learning_rate": 3.117853442754879e-06,
1831
+ "loss": 1.4514,
1832
+ "step": 1520
1833
+ },
1834
+ {
1835
+ "epoch": 2.47,
1836
+ "learning_rate": 3.026529656518864e-06,
1837
+ "loss": 1.399,
1838
+ "step": 1525
1839
+ },
1840
+ {
1841
+ "epoch": 2.48,
1842
+ "learning_rate": 2.936453704242215e-06,
1843
+ "loss": 1.4136,
1844
+ "step": 1530
1845
+ },
1846
+ {
1847
+ "epoch": 2.49,
1848
+ "learning_rate": 2.8476322080139862e-06,
1849
+ "loss": 1.4474,
1850
+ "step": 1535
1851
+ },
1852
+ {
1853
+ "epoch": 2.5,
1854
+ "learning_rate": 2.760071697699729e-06,
1855
+ "loss": 1.4542,
1856
+ "step": 1540
1857
+ },
1858
+ {
1859
+ "epoch": 2.5,
1860
+ "learning_rate": 2.673778610461448e-06,
1861
+ "loss": 1.4176,
1862
+ "step": 1545
1863
+ },
1864
+ {
1865
+ "epoch": 2.51,
1866
+ "learning_rate": 2.588759290284337e-06,
1867
+ "loss": 1.4471,
1868
+ "step": 1550
1869
+ },
1870
+ {
1871
+ "epoch": 2.52,
1872
+ "learning_rate": 2.505019987510426e-06,
1873
+ "loss": 1.4217,
1874
+ "step": 1555
1875
+ },
1876
+ {
1877
+ "epoch": 2.53,
1878
+ "learning_rate": 2.4225668583790474e-06,
1879
+ "loss": 1.4194,
1880
+ "step": 1560
1881
+ },
1882
+ {
1883
+ "epoch": 2.54,
1884
+ "learning_rate": 2.3414059645742504e-06,
1885
+ "loss": 1.3959,
1886
+ "step": 1565
1887
+ },
1888
+ {
1889
+ "epoch": 2.54,
1890
+ "learning_rate": 2.261543272779192e-06,
1891
+ "loss": 1.4689,
1892
+ "step": 1570
1893
+ },
1894
+ {
1895
+ "epoch": 2.55,
1896
+ "learning_rate": 2.1829846542374565e-06,
1897
+ "loss": 1.4568,
1898
+ "step": 1575
1899
+ },
1900
+ {
1901
+ "epoch": 2.56,
1902
+ "learning_rate": 2.105735884321436e-06,
1903
+ "loss": 1.451,
1904
+ "step": 1580
1905
+ },
1906
+ {
1907
+ "epoch": 2.57,
1908
+ "learning_rate": 2.029802642107734e-06,
1909
+ "loss": 1.4418,
1910
+ "step": 1585
1911
+ },
1912
+ {
1913
+ "epoch": 2.58,
1914
+ "learning_rate": 1.9551905099596813e-06,
1915
+ "loss": 1.4619,
1916
+ "step": 1590
1917
+ },
1918
+ {
1919
+ "epoch": 2.58,
1920
+ "learning_rate": 1.8819049731169059e-06,
1921
+ "loss": 1.4182,
1922
+ "step": 1595
1923
+ },
1924
+ {
1925
+ "epoch": 2.59,
1926
+ "learning_rate": 1.809951419292104e-06,
1927
+ "loss": 1.4095,
1928
+ "step": 1600
1929
+ },
1930
+ {
1931
+ "epoch": 2.6,
1932
+ "learning_rate": 1.7393351382749424e-06,
1933
+ "loss": 1.4397,
1934
+ "step": 1605
1935
+ },
1936
+ {
1937
+ "epoch": 2.61,
1938
+ "learning_rate": 1.6700613215431549e-06,
1939
+ "loss": 1.4747,
1940
+ "step": 1610
1941
+ },
1942
+ {
1943
+ "epoch": 2.62,
1944
+ "learning_rate": 1.6021350618809184e-06,
1945
+ "loss": 1.4356,
1946
+ "step": 1615
1947
+ },
1948
+ {
1949
+ "epoch": 2.62,
1950
+ "learning_rate": 1.5355613530044089e-06,
1951
+ "loss": 1.4381,
1952
+ "step": 1620
1953
+ },
1954
+ {
1955
+ "epoch": 2.63,
1956
+ "learning_rate": 1.470345089194709e-06,
1957
+ "loss": 1.4444,
1958
+ "step": 1625
1959
+ },
1960
+ {
1961
+ "epoch": 2.64,
1962
+ "learning_rate": 1.4064910649379803e-06,
1963
+ "loss": 1.469,
1964
+ "step": 1630
1965
+ },
1966
+ {
1967
+ "epoch": 2.65,
1968
+ "learning_rate": 1.3440039745729894e-06,
1969
+ "loss": 1.4427,
1970
+ "step": 1635
1971
+ },
1972
+ {
1973
+ "epoch": 2.66,
1974
+ "learning_rate": 1.2828884119460105e-06,
1975
+ "loss": 1.3941,
1976
+ "step": 1640
1977
+ },
1978
+ {
1979
+ "epoch": 2.67,
1980
+ "learning_rate": 1.2231488700730742e-06,
1981
+ "loss": 1.4452,
1982
+ "step": 1645
1983
+ },
1984
+ {
1985
+ "epoch": 2.67,
1986
+ "learning_rate": 1.1647897408096886e-06,
1987
+ "loss": 1.4236,
1988
+ "step": 1650
1989
+ },
1990
+ {
1991
+ "epoch": 2.68,
1992
+ "learning_rate": 1.107815314527929e-06,
1993
+ "loss": 1.4538,
1994
+ "step": 1655
1995
+ },
1996
+ {
1997
+ "epoch": 2.69,
1998
+ "learning_rate": 1.0522297798010594e-06,
1999
+ "loss": 1.4112,
2000
+ "step": 1660
2001
+ },
2002
+ {
2003
+ "epoch": 2.7,
2004
+ "learning_rate": 9.980372230955693e-07,
2005
+ "loss": 1.4808,
2006
+ "step": 1665
2007
+ },
2008
+ {
2009
+ "epoch": 2.71,
2010
+ "learning_rate": 9.452416284707743e-07,
2011
+ "loss": 1.4509,
2012
+ "step": 1670
2013
+ },
2014
+ {
2015
+ "epoch": 2.71,
2016
+ "learning_rate": 8.938468772859132e-07,
2017
+ "loss": 1.4414,
2018
+ "step": 1675
2019
+ },
2020
+ {
2021
+ "epoch": 2.72,
2022
+ "learning_rate": 8.438567479147975e-07,
2023
+ "loss": 1.4203,
2024
+ "step": 1680
2025
+ },
2026
+ {
2027
+ "epoch": 2.73,
2028
+ "learning_rate": 7.952749154680405e-07,
2029
+ "loss": 1.4294,
2030
+ "step": 1685
2031
+ },
2032
+ {
2033
+ "epoch": 2.74,
2034
+ "learning_rate": 7.481049515228811e-07,
2035
+ "loss": 1.4136,
2036
+ "step": 1690
2037
+ },
2038
+ {
2039
+ "epoch": 2.75,
2040
+ "learning_rate": 7.023503238606122e-07,
2041
+ "loss": 1.4316,
2042
+ "step": 1695
2043
+ },
2044
+ {
2045
+ "epoch": 2.75,
2046
+ "learning_rate": 6.580143962116281e-07,
2047
+ "loss": 1.4645,
2048
+ "step": 1700
2049
+ },
2050
+ {
2051
+ "epoch": 2.76,
2052
+ "learning_rate": 6.151004280081574e-07,
2053
+ "loss": 1.4692,
2054
+ "step": 1705
2055
+ },
2056
+ {
2057
+ "epoch": 2.77,
2058
+ "learning_rate": 5.736115741446146e-07,
2059
+ "loss": 1.4408,
2060
+ "step": 1710
2061
+ },
2062
+ {
2063
+ "epoch": 2.78,
2064
+ "learning_rate": 5.335508847456794e-07,
2065
+ "loss": 1.4552,
2066
+ "step": 1715
2067
+ },
2068
+ {
2069
+ "epoch": 2.79,
2070
+ "learning_rate": 4.949213049420576e-07,
2071
+ "loss": 1.4657,
2072
+ "step": 1720
2073
+ },
2074
+ {
2075
+ "epoch": 2.79,
2076
+ "learning_rate": 4.577256746539638e-07,
2077
+ "loss": 1.4189,
2078
+ "step": 1725
2079
+ },
2080
+ {
2081
+ "epoch": 2.8,
2082
+ "learning_rate": 4.2196672838233257e-07,
2083
+ "loss": 1.4573,
2084
+ "step": 1730
2085
+ },
2086
+ {
2087
+ "epoch": 2.81,
2088
+ "learning_rate": 3.876470950078037e-07,
2089
+ "loss": 1.4382,
2090
+ "step": 1735
2091
+ },
2092
+ {
2093
+ "epoch": 2.82,
2094
+ "learning_rate": 3.5476929759743927e-07,
2095
+ "loss": 1.4272,
2096
+ "step": 1740
2097
+ },
2098
+ {
2099
+ "epoch": 2.83,
2100
+ "learning_rate": 3.233357532192494e-07,
2101
+ "loss": 1.4866,
2102
+ "step": 1745
2103
+ },
2104
+ {
2105
+ "epoch": 2.84,
2106
+ "learning_rate": 2.933487727644813e-07,
2107
+ "loss": 1.4132,
2108
+ "step": 1750
2109
+ },
2110
+ {
2111
+ "epoch": 2.84,
2112
+ "learning_rate": 2.648105607777507e-07,
2113
+ "loss": 1.4498,
2114
+ "step": 1755
2115
+ },
2116
+ {
2117
+ "epoch": 2.85,
2118
+ "learning_rate": 2.3772321529494712e-07,
2119
+ "loss": 1.4505,
2120
+ "step": 1760
2121
+ },
2122
+ {
2123
+ "epoch": 2.86,
2124
+ "learning_rate": 2.1208872768901713e-07,
2125
+ "loss": 1.4338,
2126
+ "step": 1765
2127
+ },
2128
+ {
2129
+ "epoch": 2.87,
2130
+ "learning_rate": 1.8790898252354583e-07,
2131
+ "loss": 1.4299,
2132
+ "step": 1770
2133
+ },
2134
+ {
2135
+ "epoch": 2.88,
2136
+ "learning_rate": 1.6518575741421904e-07,
2137
+ "loss": 1.4378,
2138
+ "step": 1775
2139
+ },
2140
+ {
2141
+ "epoch": 2.88,
2142
+ "learning_rate": 1.4392072289814319e-07,
2143
+ "loss": 1.4323,
2144
+ "step": 1780
2145
+ },
2146
+ {
2147
+ "epoch": 2.89,
2148
+ "learning_rate": 1.241154423110169e-07,
2149
+ "loss": 1.4144,
2150
+ "step": 1785
2151
+ },
2152
+ {
2153
+ "epoch": 2.9,
2154
+ "learning_rate": 1.0577137167221863e-07,
2155
+ "loss": 1.4343,
2156
+ "step": 1790
2157
+ },
2158
+ {
2159
+ "epoch": 2.91,
2160
+ "learning_rate": 8.88898595777543e-08,
2161
+ "loss": 1.4625,
2162
+ "step": 1795
2163
+ },
2164
+ {
2165
+ "epoch": 2.92,
2166
+ "learning_rate": 7.347214710111239e-08,
2167
+ "loss": 1.3614,
2168
+ "step": 1800
2169
+ },
2170
+ {
2171
+ "epoch": 2.92,
2172
+ "learning_rate": 5.951936770202782e-08,
2173
+ "loss": 1.4099,
2174
+ "step": 1805
2175
+ },
2176
+ {
2177
+ "epoch": 2.93,
2178
+ "learning_rate": 4.7032547143155417e-08,
2179
+ "loss": 1.4601,
2180
+ "step": 1810
2181
+ },
2182
+ {
2183
+ "epoch": 2.94,
2184
+ "learning_rate": 3.60126034146524e-08,
2185
+ "loss": 1.4231,
2186
+ "step": 1815
2187
+ },
2188
+ {
2189
+ "epoch": 2.95,
2190
+ "learning_rate": 2.6460346666696835e-08,
2191
+ "loss": 1.4549,
2192
+ "step": 1820
2193
+ },
2194
+ {
2195
+ "epoch": 2.96,
2196
+ "learning_rate": 1.8376479149926353e-08,
2197
+ "loss": 1.4122,
2198
+ "step": 1825
2199
+ },
2200
+ {
2201
+ "epoch": 2.96,
2202
+ "learning_rate": 1.176159516380837e-08,
2203
+ "loss": 1.3961,
2204
+ "step": 1830
2205
+ },
2206
+ {
2207
+ "epoch": 2.97,
2208
+ "learning_rate": 6.616181012955025e-09,
2209
+ "loss": 1.4652,
2210
+ "step": 1835
2211
+ },
2212
+ {
2213
+ "epoch": 2.98,
2214
+ "learning_rate": 2.9406149713628874e-09,
2215
+ "loss": 1.425,
2216
+ "step": 1840
2217
+ },
2218
+ {
2219
+ "epoch": 2.99,
2220
+ "learning_rate": 7.351672546129785e-10,
2221
+ "loss": 1.4916,
2222
+ "step": 1845
2223
+ },
2224
+ {
2225
+ "epoch": 3.0,
2226
+ "learning_rate": 0.0,
2227
+ "loss": 1.3883,
2228
+ "step": 1850
2229
+ },
2230
+ {
2231
+ "epoch": 3.0,
2232
+ "step": 1851,
2233
+ "total_flos": 1.8340911973547377e+18,
2234
+ "train_loss": 2.0081952639620475,
2235
+ "train_runtime": 43810.4873,
2236
+ "train_samples_per_second": 5.415,
2237
+ "train_steps_per_second": 0.042
2238
  }
2239
  ],
2240
+ "max_steps": 1851,
2241
+ "num_train_epochs": 3,
2242
+ "total_flos": 1.8340911973547377e+18,
2243
  "trial_name": null,
2244
  "trial_params": null
2245
  }
training_args.bin CHANGED
@@ -1,3 +1,3 @@
1
  version https://git-lfs.github.com/spec/v1
2
- oid sha256:de2ba60d145cb1598356d13c34552cb02e8a823370db813704fe0b11ee852e92
3
- size 4271
 
1
  version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2b8aabfc07bd4f8b579a13e3c5ed3e8dbbef17b9bcbe8603b010a6c6aac8df2d
3
+ size 4207
zero_to_fp32.py ADDED
@@ -0,0 +1,484 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # This script extracts fp32 consolidated weights from a zero 2 and 3 DeepSpeed checkpoints. It gets
4
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
5
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
6
+ # application.
7
+ #
8
+ # example: python zero_to_fp32.py . pytorch_model.bin
9
+
10
+ import argparse
11
+ import torch
12
+ import glob
13
+ import math
14
+ import os
15
+ import re
16
+ from collections import OrderedDict
17
+
18
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
19
+ # DeepSpeed data structures it has to be available in the current python environment.
20
+ import deepspeed
21
+ from deepspeed.utils import logger
22
+ from deepspeed.checkpoint.constants import (DS_VERSION,
23
+ OPTIMIZER_STATE_DICT,
24
+ PARAM_SHAPES,
25
+ SINGLE_PARTITION_OF_FP32_GROUPS,
26
+ FP32_FLAT_GROUPS,
27
+ ZERO_STAGE,
28
+ PARTITION_COUNT,
29
+ PARAM_SHAPES,
30
+ BUFFER_NAMES)
31
+
32
+ debug = 0
33
+
34
+ # load to cpu
35
+ device = torch.device('cpu')
36
+
37
+
38
+ def atoi(text):
39
+ return int(text) if text.isdigit() else text
40
+
41
+
42
+ def natural_keys(text):
43
+ '''
44
+ alist.sort(key=natural_keys) sorts in human order
45
+ http://nedbatchelder.com/blog/200712/human_sorting.html
46
+ (See Toothy's implementation in the comments)
47
+ '''
48
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
49
+
50
+
51
+ def get_model_state_file(checkpoint_dir, zero_stage):
52
+ if not os.path.isdir(checkpoint_dir):
53
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
54
+
55
+ # there should be only one file
56
+ if zero_stage == 2:
57
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
58
+ elif zero_stage == 3:
59
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
60
+
61
+ if not os.path.exists(file):
62
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
63
+
64
+ return file
65
+
66
+
67
+ def get_optim_files(checkpoint_dir):
68
+ # XXX: need to test that this simple glob rule works for multi-node setup too
69
+ optim_files = sorted(glob.glob(os.path.join(checkpoint_dir,
70
+ "*_optim_states.pt")),
71
+ key=natural_keys)
72
+
73
+ if len(optim_files) == 0:
74
+ raise FileNotFoundError(
75
+ f"can't find '*_optim_states.pt' files in directory '{checkpoint_dir}'")
76
+
77
+ return optim_files
78
+
79
+
80
+ def parse_model_state(file):
81
+ state_dict = torch.load(file, map_location=device)
82
+
83
+ if BUFFER_NAMES not in state_dict:
84
+ raise ValueError(f"{file} is not a model state checkpoint")
85
+ buffer_names = state_dict[BUFFER_NAMES]
86
+ if debug:
87
+ print("Found buffers:", buffer_names)
88
+
89
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
90
+ buffers = {
91
+ k: v.float()
92
+ for k,
93
+ v in state_dict["module"].items() if k in buffer_names
94
+ }
95
+ param_shapes = state_dict[PARAM_SHAPES]
96
+
97
+ ds_version = state_dict.get(DS_VERSION, None)
98
+
99
+ return buffers, param_shapes, ds_version
100
+
101
+
102
+ def parse_optim_states(files, ds_checkpoint_dir):
103
+
104
+ total_files = len(files)
105
+ state_dicts = []
106
+ for f in files:
107
+ state_dicts.append(torch.load(f, map_location=device))
108
+
109
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
110
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
111
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
112
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
113
+
114
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
115
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
116
+ # use the max of the partition_count to get the dp world_size.
117
+
118
+ if type(world_size) is list:
119
+ world_size = max(world_size)
120
+
121
+ if world_size != total_files:
122
+ raise ValueError(
123
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
124
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
125
+ )
126
+
127
+ # the groups are named differently in each stage
128
+ if zero_stage == 2:
129
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
130
+ elif zero_stage == 3:
131
+ fp32_groups_key = FP32_FLAT_GROUPS
132
+ else:
133
+ raise ValueError(f"unknown zero stage {zero_stage}")
134
+
135
+ if zero_stage == 2:
136
+ fp32_flat_groups = [
137
+ state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key]
138
+ for i in range(len(state_dicts))
139
+ ]
140
+ elif zero_stage == 3:
141
+ # if there is more than one param group, there will be multiple flattened tensors - one
142
+ # flattened tensor per group - for simplicity merge them into a single tensor
143
+ #
144
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
145
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
146
+
147
+ fp32_flat_groups = [
148
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key],
149
+ 0) for i in range(len(state_dicts))
150
+ ]
151
+
152
+ return zero_stage, world_size, fp32_flat_groups
153
+
154
+
155
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir):
156
+ """
157
+ Returns fp32 state_dict reconstructed from ds checkpoint
158
+
159
+ Args:
160
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
161
+
162
+ """
163
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
164
+
165
+ optim_files = get_optim_files(ds_checkpoint_dir)
166
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
167
+ print(
168
+ f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
169
+
170
+ model_file = get_model_state_file(ds_checkpoint_dir, zero_stage)
171
+ buffers, param_shapes, ds_version = parse_model_state(model_file)
172
+ print(f'Parsing checkpoint created by deepspeed=={ds_version}')
173
+
174
+ if zero_stage == 2:
175
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size,
176
+ param_shapes,
177
+ fp32_flat_groups,
178
+ buffers)
179
+ elif zero_stage == 3:
180
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size,
181
+ param_shapes,
182
+ fp32_flat_groups,
183
+ buffers)
184
+
185
+
186
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size,
187
+ param_shapes,
188
+ fp32_flat_groups,
189
+ buffers):
190
+
191
+ # Reconstruction protocol:
192
+ #
193
+ # XXX: document this
194
+
195
+ if debug:
196
+ for i in range(world_size):
197
+ for j in range(len(fp32_flat_groups[0])):
198
+ print(
199
+ f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
200
+
201
+ # XXX: memory usage doubles here (zero2)
202
+ num_param_groups = len(fp32_flat_groups[0])
203
+ merged_single_partition_of_fp32_groups = []
204
+ for i in range(num_param_groups):
205
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
206
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
207
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
208
+ avail_numel = sum([
209
+ full_single_fp32_vector.numel()
210
+ for full_single_fp32_vector in merged_single_partition_of_fp32_groups
211
+ ])
212
+
213
+ if debug:
214
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
215
+ wanted_numel = sum(
216
+ [sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
217
+ # not asserting if there is a mismatch due to possible padding
218
+ print(f"Have {avail_numel} numels to process.")
219
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
220
+
221
+ state_dict = OrderedDict()
222
+
223
+ # buffers
224
+ state_dict.update(buffers)
225
+ if debug:
226
+ print(f"added {len(buffers)} buffers")
227
+
228
+ # params
229
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
230
+ # out-of-core computing solution
231
+ total_numel = 0
232
+ total_params = 0
233
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
234
+ offset = 0
235
+ avail_numel = full_single_fp32_vector.numel()
236
+ for name, shape in shapes.items():
237
+
238
+ unpartitioned_numel = shape.numel()
239
+ total_numel += unpartitioned_numel
240
+ total_params += 1
241
+
242
+ if debug:
243
+ print(
244
+ f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} "
245
+ )
246
+ state_dict[name] = full_single_fp32_vector.narrow(
247
+ 0,
248
+ offset,
249
+ unpartitioned_numel).view(shape)
250
+ offset += unpartitioned_numel
251
+
252
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
253
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
254
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
255
+ # live optimizer object, so we are checking that the numbers are within the right range
256
+ align_to = 2 * world_size
257
+
258
+ def zero2_align(x):
259
+ return align_to * math.ceil(x / align_to)
260
+
261
+ if debug:
262
+ print(f"original offset={offset}, avail_numel={avail_numel}")
263
+
264
+ offset = zero2_align(offset)
265
+ avail_numel = zero2_align(avail_numel)
266
+
267
+ if debug:
268
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
269
+
270
+ # Sanity check
271
+ if offset != avail_numel:
272
+ raise ValueError(
273
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
274
+
275
+ print(
276
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
277
+ )
278
+
279
+ return state_dict
280
+
281
+
282
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
283
+ remainder = unpartitioned_numel % world_size
284
+ padding_numel = (world_size - remainder) if remainder else 0
285
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
286
+ return partitioned_numel, padding_numel
287
+
288
+
289
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size,
290
+ param_shapes,
291
+ fp32_flat_groups,
292
+ buffers):
293
+
294
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
295
+ # param, re-consolidating each param, while dealing with padding if any
296
+
297
+ avail_numel = fp32_flat_groups[0].numel() * world_size
298
+ # merge list of dicts, preserving order
299
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
300
+
301
+ if debug:
302
+ for i in range(world_size):
303
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
304
+
305
+ wanted_params = len(param_shapes)
306
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
307
+ # not asserting if there is a mismatch due to possible padding
308
+ print(f"Have {avail_numel} numels to process.")
309
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
310
+
311
+ state_dict = OrderedDict()
312
+
313
+ # buffers
314
+ state_dict.update(buffers)
315
+ if debug:
316
+ print(f"added {len(buffers)} buffers")
317
+
318
+ # params
319
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
320
+ # out-of-core computing solution
321
+ offset = 0
322
+ total_numel = 0
323
+ total_params = 0
324
+ for name, shape in param_shapes.items():
325
+
326
+ unpartitioned_numel = shape.numel()
327
+ total_numel += unpartitioned_numel
328
+ total_params += 1
329
+
330
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
331
+
332
+ if debug:
333
+ print(
334
+ f"{total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
335
+ )
336
+
337
+ # XXX: memory usage doubles here
338
+ state_dict[name] = torch.cat(
339
+ tuple(fp32_flat_groups[i].narrow(0,
340
+ offset,
341
+ partitioned_numel)
342
+ for i in range(world_size)),
343
+ 0).narrow(0,
344
+ 0,
345
+ unpartitioned_numel).view(shape)
346
+ offset += partitioned_numel
347
+
348
+ offset *= world_size
349
+
350
+ # Sanity check
351
+ if offset != avail_numel:
352
+ raise ValueError(
353
+ f"consumed {offset} numels out of {avail_numel} - something is wrong")
354
+
355
+ print(
356
+ f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements"
357
+ )
358
+
359
+ return state_dict
360
+
361
+
362
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None):
363
+ """
364
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
365
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
366
+ via a model hub.
367
+
368
+ Args:
369
+ - ``checkpoint_dir``: path to the desired checkpoint folder
370
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
371
+
372
+ Returns:
373
+ - pytorch ``state_dict``
374
+
375
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
376
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
377
+ the checkpoint.
378
+
379
+ A typical usage might be ::
380
+
381
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
382
+ # do the training and checkpoint saving
383
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
384
+ model = model.cpu() # move to cpu
385
+ model.load_state_dict(state_dict)
386
+ # submit to model hub or save the model to share with others
387
+
388
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
389
+ application. i.e. you will need to re-initialize the deepspeed engine, since
390
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
391
+
392
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
393
+
394
+ """
395
+ if tag is None:
396
+ latest_path = os.path.join(checkpoint_dir, 'latest')
397
+ if os.path.isfile(latest_path):
398
+ with open(latest_path, 'r') as fd:
399
+ tag = fd.read().strip()
400
+ else:
401
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
402
+
403
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
404
+
405
+ if not os.path.isdir(ds_checkpoint_dir):
406
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
407
+
408
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir)
409
+
410
+
411
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None):
412
+ """
413
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
414
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
415
+
416
+ Args:
417
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
418
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
419
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
420
+ """
421
+
422
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
423
+ print(f"Saving fp32 state dict to {output_file}")
424
+ torch.save(state_dict, output_file)
425
+
426
+
427
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
428
+ """
429
+ 1. Put the provided model to cpu
430
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
431
+ 3. Load it into the provided model
432
+
433
+ Args:
434
+ - ``model``: the model object to update
435
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
436
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
437
+
438
+ Returns:
439
+ - ``model`: modified model
440
+
441
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
442
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
443
+ conveniently placed for you in the checkpoint folder.
444
+
445
+ A typical usage might be ::
446
+
447
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
448
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
449
+ # submit to model hub or save the model to share with others
450
+
451
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
452
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
453
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
454
+
455
+ """
456
+ logger.info(f"Extracting fp32 weights")
457
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
458
+
459
+ logger.info(f"Overwriting model with fp32 weights")
460
+ model = model.cpu()
461
+ model.load_state_dict(state_dict, strict=False)
462
+
463
+ return model
464
+
465
+
466
+ if __name__ == "__main__":
467
+
468
+ parser = argparse.ArgumentParser()
469
+ parser.add_argument(
470
+ "checkpoint_dir",
471
+ type=str,
472
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
473
+ parser.add_argument(
474
+ "output_file",
475
+ type=str,
476
+ help=
477
+ "path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)"
478
+ )
479
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
480
+ args = parser.parse_args()
481
+
482
+ debug = args.debug
483
+
484
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir, args.output_file)