poltextlab's picture
Update README.md
85eacac verified
---
model-index:
- name: poltextlab/media2-25-26-v1-1001
results:
- task:
type: text-classification
metrics:
- name: Accuracy
type: accuracy
value: 71%
- name: F1-Score
type: f1
value: 70%
tags:
- text-classification
- transformers
- roberta
metrics:
- accuracy
- f1_score
language:
- en
base_model:
- xlm-roberta-large
pipeline_tag: text-classification
library_name: transformers
license: cc-by-4.0
extra_gated_prompt: Our models are intended for academic use only. If you are not
affiliated with an academic institution, please provide a rationale for using our
models. Please allow us a few business days to manually review subscriptions.
extra_gated_fields:
Name: text
Country: country
Institution: text
Institution Email: text
Please specify your academic use case: text
---
# media2-25-26-v1-1001
This model uses the poltextLAB Media2 codebook built on top of the CAP codebook.
# How to use the model
```python
from transformers import AutoTokenizer, pipeline
tokenizer = AutoTokenizer.from_pretrained("xlm-roberta-large")
pipe = pipeline(
model="poltextlab/media2-25-26-v1-1001",
task="text-classification",
tokenizer=tokenizer,
use_fast=False,
token="<your_hf_read_only_token>"
)
text = "<text_to_classify>"
pipe(text)
```
# Classification Report
## Overall Performance:
Evaluated on a test set of 1601 English samples.
* **Accuracy:** 71%
* **Macro Avg:** Precision: 0.67, Recall: 0.62, F1-score: 0.62
* **Weighted Avg:** Precision: 0.74, Recall: 0.71, F1-score: 0.70
## Per-Class Metrics:
| Label | Precision | Recall | F1-score | Support |
|--------:|------------:|---------:|-----------:|----------:|
| 1 | 0.77 | 0.8 | 0.78 | 50 |
| 2 | 0.74 | 0.78 | 0.76 | 50 |
| 3 | 0.74 | 0.74 | 0.74 | 50 |
| 4 | 0.7 | 0.86 | 0.77 | 50 |
| 5 | 0.86 | 0.76 | 0.81 | 50 |
| 6 | 0.83 | 0.98 | 0.9 | 50 |
| 7 | 0.85 | 0.88 | 0.86 | 50 |
| 8 | 0.87 | 0.94 | 0.9 | 50 |
| 9 | 0.87 | 0.82 | 0.85 | 50 |
| 10 | 0.77 | 0.94 | 0.85 | 50 |
| 12 | 0.56 | 0.88 | 0.69 | 50 |
| 13 | 0.88 | 0.86 | 0.87 | 50 |
| 14 | 0.73 | 0.76 | 0.75 | 50 |
| 15 | 0.51 | 0.86 | 0.64 | 50 |
| 16 | 0.75 | 0.86 | 0.8 | 50 |
| 17 | 0.63 | 0.76 | 0.69 | 50 |
| 18 | 0.91 | 0.82 | 0.86 | 50 |
| 19 | 0.51 | 0.82 | 0.63 | 50 |
| 20 | 0.62 | 0.92 | 0.74 | 50 |
| 21 | 0.75 | 0.8 | 0.78 | 50 |
| 23 | 0.52 | 0.78 | 0.62 | 50 |
| 24 | 0.71 | 0.57 | 0.63 | 42 |
| 25 | 0.92 | 0.48 | 0.63 | 23 |
| 26 | 0.92 | 0.56 | 0.7 | 43 |
| 27 | 0 | 0 | 0 | 18 |
| 28 | 0 | 0 | 0 | 9 |
| 29 | 0.43 | 0.27 | 0.33 | 33 |
| 30 | 0.72 | 0.28 | 0.41 | 46 |
| 31 | 0.89 | 0.44 | 0.59 | 36 |
| 32 | 0 | 0 | 0 | 20 |
| 33 | 0.12 | 0.08 | 0.1 | 12 |
| 34 | 0.07 | 0.14 | 0.1 | 7 |
| 35 | 0.93 | 0.71 | 0.81 | 35 |
| 36 | 0 | 0 | 0 | 3 |
| 37 | 1 | 0.82 | 0.9 | 44 |
| 38 | 0.81 | 0.81 | 0.81 | 42 |
| 39 | 1 | 0.39 | 0.57 | 33 |
| 40 | 0.88 | 0.21 | 0.34 | 33 |
| 41 | 1 | 0.78 | 0.88 | 32 |
| 998 | 0.92 | 0.55 | 0.69 | 40 |
# Inference platform
This model is used by the [CAP Babel Machine](https://babel.poltextlab.com), an open-source and free natural language processing tool, designed to simplify and speed up projects for comparative research.
# Cooperation
Model performance can be significantly improved by extending our training sets. We appreciate every submission of CAP-coded corpora (of any domain and language) at poltextlab{at}poltextlab{dot}com or by using the [CAP Babel Machine](https://babel.poltextlab.com).
## Debugging and issues
This architecture uses the `sentencepiece` tokenizer. In order to run the model before `transformers==4.27` you need to install it manually.