Efficient Few-Shot Learning Without Prompts
Paper
•
2209.11055
•
Published
•
4
This is a SetFit model that can be used for Text Classification. This SetFit model uses sentence-transformers/all-mpnet-base-v2 as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
| Label | Examples |
|---|---|
| 0 |
|
| 1 |
|
| Label | Accuracy |
|---|---|
| all | 0.8233 |
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the 🤗 Hub
model = SetFitModel.from_pretrained("pEpOo/catastrophy4")
# Run inference
preds = model("ThisIsFaz: Anti Collision Rear- #technology #cool http://t.co/KEfxTjTAKB Via Techesback #Tech")
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 2 | 15.0486 | 30 |
| Label | Training Sample Count |
|---|---|
| 0 | 836 |
| 1 | 686 |
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.0003 | 1 | 0.4126 | - |
| 0.0131 | 50 | 0.2779 | - |
| 0.0263 | 100 | 0.2507 | - |
| 0.0394 | 150 | 0.2475 | - |
| 0.0526 | 200 | 0.1045 | - |
| 0.0657 | 250 | 0.2595 | - |
| 0.0788 | 300 | 0.1541 | - |
| 0.0920 | 350 | 0.1761 | - |
| 0.1051 | 400 | 0.0456 | - |
| 0.1183 | 450 | 0.1091 | - |
| 0.1314 | 500 | 0.1335 | - |
| 0.1445 | 550 | 0.0956 | - |
| 0.1577 | 600 | 0.0583 | - |
| 0.1708 | 650 | 0.0067 | - |
| 0.1840 | 700 | 0.0021 | - |
| 0.1971 | 750 | 0.0057 | - |
| 0.2102 | 800 | 0.065 | - |
| 0.2234 | 850 | 0.0224 | - |
| 0.2365 | 900 | 0.0008 | - |
| 0.2497 | 950 | 0.1282 | - |
| 0.2628 | 1000 | 0.1045 | - |
| 0.2760 | 1050 | 0.001 | - |
| 0.2891 | 1100 | 0.0005 | - |
| 0.3022 | 1150 | 0.0013 | - |
| 0.3154 | 1200 | 0.0007 | - |
| 0.3285 | 1250 | 0.0015 | - |
| 0.3417 | 1300 | 0.0007 | - |
| 0.3548 | 1350 | 0.0027 | - |
| 0.3679 | 1400 | 0.0006 | - |
| 0.3811 | 1450 | 0.0001 | - |
| 0.3942 | 1500 | 0.0009 | - |
| 0.4074 | 1550 | 0.0002 | - |
| 0.4205 | 1600 | 0.0004 | - |
| 0.4336 | 1650 | 0.0003 | - |
| 0.4468 | 1700 | 0.0013 | - |
| 0.4599 | 1750 | 0.0004 | - |
| 0.4731 | 1800 | 0.0007 | - |
| 0.4862 | 1850 | 0.0001 | - |
| 0.4993 | 1900 | 0.0001 | - |
| 0.5125 | 1950 | 0.0476 | - |
| 0.5256 | 2000 | 0.0561 | - |
| 0.5388 | 2050 | 0.0009 | - |
| 0.5519 | 2100 | 0.0381 | - |
| 0.5650 | 2150 | 0.017 | - |
| 0.5782 | 2200 | 0.033 | - |
| 0.5913 | 2250 | 0.0001 | - |
| 0.6045 | 2300 | 0.0077 | - |
| 0.6176 | 2350 | 0.0002 | - |
| 0.6307 | 2400 | 0.0003 | - |
| 0.6439 | 2450 | 0.0001 | - |
| 0.6570 | 2500 | 0.0155 | - |
| 0.6702 | 2550 | 0.0002 | - |
| 0.6833 | 2600 | 0.0001 | - |
| 0.6965 | 2650 | 0.031 | - |
| 0.7096 | 2700 | 0.0215 | - |
| 0.7227 | 2750 | 0.0002 | - |
| 0.7359 | 2800 | 0.0002 | - |
| 0.7490 | 2850 | 0.0001 | - |
| 0.7622 | 2900 | 0.0001 | - |
| 0.7753 | 2950 | 0.0001 | - |
| 0.7884 | 3000 | 0.0001 | - |
| 0.8016 | 3050 | 0.0001 | - |
| 0.8147 | 3100 | 0.0001 | - |
| 0.8279 | 3150 | 0.0001 | - |
| 0.8410 | 3200 | 0.0001 | - |
| 0.8541 | 3250 | 0.0001 | - |
| 0.8673 | 3300 | 0.0001 | - |
| 0.8804 | 3350 | 0.0001 | - |
| 0.8936 | 3400 | 0.0 | - |
| 0.9067 | 3450 | 0.0156 | - |
| 0.9198 | 3500 | 0.0 | - |
| 0.9330 | 3550 | 0.0 | - |
| 0.9461 | 3600 | 0.0001 | - |
| 0.9593 | 3650 | 0.0208 | - |
| 0.9724 | 3700 | 0.0 | - |
| 0.9855 | 3750 | 0.0001 | - |
| 0.9987 | 3800 | 0.0001 | - |
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
Base model
sentence-transformers/all-mpnet-base-v2