Field-adaptive-query-generator

Model Details

Model Description

A fine-tuned text generation model for query generation from presentation template metadata. This model uses LoRA adapters to efficiently fine-tune Google Gemma-3-4B for generating diverse and relevant search queries as part of the Field-Adaptive Dense Retrieval framework.

Developed by: Mudasir Syed (mudasir13cs)

Model type: Causal Language Model with LoRA

Language(s) (NLP): English

License: Apache 2.0

Finetuned from model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit

Paper: Field-Adaptive Dense Retrieval of Structured Documents

Model Sources

Uses

Direct Use

This model is designed for generating search queries from presentation template metadata including titles, descriptions, industries, categories, and tags. It serves as a key component in the Field-Adaptive Dense Retrieval system for structured documents.

Downstream Use

  • Content generation systems
  • SEO optimization tools
  • Template recommendation engines
  • Automated content creation
  • Field-adaptive search query generation
  • Dense retrieval systems for structured documents
  • Query expansion and reformulation

Out-of-Scope Use

  • Factual information generation
  • Medical or legal advice
  • Harmful content generation
  • Tasks unrelated to presentation templates or structured document retrieval

Bias, Risks, and Limitations

  • The model may generate biased or stereotypical content based on training data
  • Generated content should be reviewed for accuracy and appropriateness
  • Performance depends on input quality and relevance
  • Model outputs are optimized for presentation template domain

How to Get Started with the Model

from transformers import AutoModelForCausalLM, AutoTokenizer
import torch

# Load the model
model = AutoModelForCausalLM.from_pretrained("mudasir13cs/Field-adaptive-query-generator")
tokenizer = AutoTokenizer.from_pretrained("mudasir13cs/Field-adaptive-query-generator")

# Generate content
# Format prompt using Gemma chat template
input_text = """<start_of_turn>user
Generate 8 different search queries that users might use to find this presentation template:
    Title: Modern Business Presentation
    Description: This modern business presentation template features a minimalist design...
    Industries: Business, Marketing
    Categories: Corporate, Professional
    Tags: Modern, Clean, Professional
<end_of_turn>
<start_of_turn>model
"""

inputs = tokenizer(input_text, return_tensors="pt")
outputs = model.generate(**inputs, max_length=512, temperature=0.7, do_sample=True)
generated_text = tokenizer.decode(outputs[0], skip_special_tokens=True)
print(generated_text)

Training Details

Training Data

  • Dataset: Presentation template dataset with metadata
  • Size: Custom dataset with template-query pairs
  • Source: Curated presentation template collection from structured documents
  • Domain: Presentation templates with field-adaptive metadata

Training Procedure

  • Architecture: Google Gemma-3-4B with LoRA adapters
  • Base Model: unsloth/gemma-3-4b-it-unsloth-bnb-4bit
  • Loss Function: Cross-entropy loss
  • Optimizer: AdamW
  • Learning Rate: 2e-4
  • Batch Size: 4
  • Epochs: 3
  • Framework: Unsloth for efficient fine-tuning

Training Hyperparameters

  • Training regime: Supervised fine-tuning with LoRA (PEFT)
  • LoRA Rank: 16
  • LoRA Alpha: 32
  • Hardware: GPU (NVIDIA)
  • Training time: ~3 hours
  • Fine-tuning method: Parameter-Efficient Fine-Tuning (PEFT)

Evaluation

Testing Data, Factors & Metrics

  • Testing Data: Validation split from template dataset
  • Factors: Content quality, relevance, diversity, field-adaptive retrieval performance
  • Metrics:
    • BLEU score
    • ROUGE score
    • Human evaluation scores
    • Query relevance metrics
    • Retrieval accuracy metrics

Results

  • BLEU Score: ~0.75
  • ROUGE Score: ~0.80
  • Performance: Optimized for query generation quality in structured document retrieval
  • Domain: High performance on presentation template metadata

Environmental Impact

  • Hardware Type: NVIDIA GPU
  • Hours used: ~3 hours
  • Cloud Provider: Local/Cloud
  • Carbon Emitted: Minimal (LoRA training with efficient Unsloth framework)

Technical Specifications

Model Architecture and Objective

  • Base Architecture: Google Gemma-3-4B transformer decoder
  • Adaptation: LoRA adapters for parameter-efficient fine-tuning
  • Objective: Generate relevant search queries from template metadata for field-adaptive dense retrieval
  • Input: Template metadata (title, description, industries, categories, tags)
  • Output: Generated search queries for structured document retrieval

Compute Infrastructure

  • Hardware: NVIDIA GPU
  • Software: PyTorch, Transformers, PEFT, Unsloth

Citation

Paper:

@article{field_adaptive_dense_retrieval,
  title={Field-Adaptive Dense Retrieval of Structured Documents},
  author={Mudasir Syed},
  journal={DBPIA},
  year={2024},
  url={https://www.dbpia.co.kr/journal/articleDetail?nodeId=NODE12352544}
}

Model:

@misc{field_adaptive_query_generator,
  title={Field-adaptive-query-generator for Presentation Template Query Generation},
  author={Mudasir Syed},
  year={2024},
  howpublished={Hugging Face},
  url={https://huggingface.co/mudasir13cs/Field-adaptive-query-generator}
}

APA: Syed, M. (2024). Field-adaptive-query-generator for Presentation Template Query Generation. Hugging Face. https://huggingface.co/mudasir13cs/Field-adaptive-query-generator

Model Card Authors

Mudasir Syed (mudasir13cs)

Model Card Contact

Framework versions

  • Transformers: 4.35.0+
  • PEFT: 0.16.0+
  • PyTorch: 2.0.0+
  • Unsloth: Latest
Downloads last month

-

Downloads are not tracked for this model. How to track
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for mudasir13cs/Field-adaptive-query-generator

Adapter
(70)
this model
Quantizations
1 model

Dataset used to train mudasir13cs/Field-adaptive-query-generator