swin-tiny-patch4-window7-224-finetuned-galaxy
This model is a fine-tuned version of matthieulel/swin-tiny-patch4-window7-224-finetuned-galaxy on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.5336
- Accuracy: 0.8516
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 20
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|---|---|---|---|---|
| 0.3447 | 0.9978 | 112 | 0.5080 | 0.8384 |
| 0.3511 | 1.9955 | 224 | 0.5638 | 0.8372 |
| 0.2986 | 2.9933 | 336 | 0.5371 | 0.8341 |
| 0.3484 | 4.0 | 449 | 0.6118 | 0.8303 |
| 0.2946 | 4.9978 | 561 | 0.5799 | 0.8334 |
| 0.3378 | 5.9955 | 673 | 0.6073 | 0.8215 |
| 0.3418 | 6.9933 | 785 | 0.5790 | 0.8272 |
| 0.3625 | 8.0 | 898 | 0.5552 | 0.8378 |
| 0.3532 | 8.9978 | 1010 | 0.5870 | 0.8297 |
| 0.3402 | 9.9955 | 1122 | 0.5448 | 0.8372 |
| 0.2695 | 10.9933 | 1234 | 0.5966 | 0.8347 |
| 0.2787 | 12.0 | 1347 | 0.5727 | 0.8322 |
| 0.3075 | 12.9978 | 1459 | 0.5451 | 0.8403 |
| 0.3008 | 13.9955 | 1571 | 0.5888 | 0.8328 |
| 0.2825 | 14.9933 | 1683 | 0.5411 | 0.8466 |
| 0.3083 | 16.0 | 1796 | 0.5473 | 0.8460 |
| 0.3319 | 16.9978 | 1908 | 0.5336 | 0.8516 |
| 0.2984 | 17.9955 | 2020 | 0.5299 | 0.8460 |
| 0.2926 | 18.9933 | 2132 | 0.5276 | 0.8503 |
| 0.2845 | 19.9555 | 2240 | 0.5281 | 0.8516 |
Framework versions
- Transformers 4.40.0
- Pytorch 2.2.1+cu121
- Datasets 2.19.0
- Tokenizers 0.19.1
- Downloads last month
- 5
Model tree for matthieulel/swin-tiny-patch4-window7-224-finetuned-galaxy10-decals
Unable to build the model tree, the base model loops to the model itself. Learn more.