DiffSynth Training Framework
We have implemented a training framework for text-to-image Diffusion models, enabling users to easily train LoRA models using our framework. Our provided scripts come with the following advantages:
- Comprehensive Functionality & User-Friendliness: Our training framework supports multi-GPU and multi-machine setups, facilitates the use of DeepSpeed for acceleration, and includes gradient checkpointing optimizations for models with excessive memory demands.
- Code Conciseness & Researcher Accessibility: We avoid large blocks of complicated code. General-purpose modules are implemented in
diffsynth/trainers/text_to_image.py, while model-specific training scripts contain only minimal code pertinent to the model architecture, making it researcher-friendly. - Modular Design & Developer Flexibility: Built on the universal Pytorch-Lightning framework, our training framework is decoupled in terms of functionality, allowing developers to easily introduce additional training techniques by modifying our scripts to suit their needs.
Image Examples of fine-tuned LoRA. The prompt is "δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ" (for Chinese models) or "a dog is jumping, flowers around the dog, the background is mountains and clouds" (for English models).
Install additional packages
pip install peft lightning pandas
Prepare your dataset
We provide an example dataset here. You need to manage the training images as follows:
data/dog/
βββ train
βββ 00.jpg
βββ 01.jpg
βββ 02.jpg
βββ 03.jpg
βββ 04.jpg
βββ metadata.csv
metadata.csv:
file_name,text
00.jpg,a dog
01.jpg,a dog
02.jpg,a dog
03.jpg,a dog
04.jpg,a dog
Note that if the model is Chinese model (for example, Hunyuan-DiT and Kolors), we recommend to use Chinese texts in the dataset. For example
file_name,text
00.jpg,δΈεͺε°η
01.jpg,δΈεͺε°η
02.jpg,δΈεͺε°η
03.jpg,δΈεͺε°η
04.jpg,δΈεͺε°η
Train a LoRA model
General options:
--lora_target_modules LORA_TARGET_MODULES
Layers with LoRA modules.
--dataset_path DATASET_PATH
The path of the Dataset.
--output_path OUTPUT_PATH
Path to save the model.
--steps_per_epoch STEPS_PER_EPOCH
Number of steps per epoch.
--height HEIGHT Image height.
--width WIDTH Image width.
--center_crop Whether to center crop the input images to the resolution. If not set, the images will be randomly cropped. The images will be resized to the resolution first before cropping.
--random_flip Whether to randomly flip images horizontally
--batch_size BATCH_SIZE
Batch size (per device) for the training dataloader.
--dataloader_num_workers DATALOADER_NUM_WORKERS
Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process.
--precision {32,16,16-mixed}
Training precision
--learning_rate LEARNING_RATE
Learning rate.
--lora_rank LORA_RANK
The dimension of the LoRA update matrices.
--lora_alpha LORA_ALPHA
The weight of the LoRA update matrices.
--use_gradient_checkpointing
Whether to use gradient checkpointing.
--accumulate_grad_batches ACCUMULATE_GRAD_BATCHES
The number of batches in gradient accumulation.
--training_strategy {auto,deepspeed_stage_1,deepspeed_stage_2,deepspeed_stage_3}
Training strategy
--max_epochs MAX_EPOCHS
Number of epochs.
--modelscope_model_id MODELSCOPE_MODEL_ID
Model ID on ModelScope (https://www.modelscope.cn/). The model will be uploaded to ModelScope automatically if you provide a Model ID.
--modelscope_access_token MODELSCOPE_ACCESS_TOKEN
Access key on ModelScope (https://www.modelscope.cn/). Required if you want to upload the model to ModelScope.
FLUX
The following files will be used for constructing FLUX. You can download them from huggingface or modelscope. You can use the following code to download these files:
from diffsynth import download_models
download_models(["FLUX.1-dev"])
models/FLUX/
βββ FLUX.1-dev
βββ ae.safetensors
βββ flux1-dev.safetensors
βββ text_encoder
β βββ model.safetensors
βββ text_encoder_2
βββ config.json
βββ model-00001-of-00002.safetensors
βββ model-00002-of-00002.safetensors
βββ model.safetensors.index.json
Launch the training task using the following command (39G VRAM required):
CUDA_VISIBLE_DEVICES="0" python examples/train/flux/train_flux_lora.py \
--pretrained_text_encoder_path models/FLUX/FLUX.1-dev/text_encoder/model.safetensors \
--pretrained_text_encoder_2_path models/FLUX/FLUX.1-dev/text_encoder_2 \
--pretrained_dit_path models/FLUX/FLUX.1-dev/flux1-dev.safetensors \
--pretrained_vae_path models/FLUX/FLUX.1-dev/ae.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 100 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "bf16" \
--learning_rate 1e-4 \
--lora_rank 16 \
--lora_alpha 16 \
--use_gradient_checkpointing \
--align_to_opensource_format
By adding parameter --quantize "float8_e4m3fn", you can save approximate 10G VRAM.
--align_to_opensource_format means that this script will export the LoRA weights in the opensource format. This format can be loaded in both DiffSynth-Studio and other codebases.
For more information about the parameters, please use python examples/train/flux/train_flux_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, FluxImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.bfloat16, device="cuda",
file_path_list=[
"models/FLUX/FLUX.1-dev/text_encoder/model.safetensors",
"models/FLUX/FLUX.1-dev/text_encoder_2",
"models/FLUX/FLUX.1-dev/ae.safetensors",
"models/FLUX/FLUX.1-dev/flux1-dev.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = FluxImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
num_inference_steps=30, embedded_guidance=3.5
)
image.save("image_with_lora.jpg")
Kolors
The following files will be used for constructing Kolors. You can download Kolors from huggingface or modelscope. Due to precision overflow issues, we need to download an additional VAE model (from huggingface or modelscope). You can use the following code to download these files:
from diffsynth import download_models
download_models(["Kolors", "SDXL-vae-fp16-fix"])
models
βββ kolors
β βββ Kolors
β βββ text_encoder
β β βββ config.json
β β βββ pytorch_model-00001-of-00007.bin
β β βββ pytorch_model-00002-of-00007.bin
β β βββ pytorch_model-00003-of-00007.bin
β β βββ pytorch_model-00004-of-00007.bin
β β βββ pytorch_model-00005-of-00007.bin
β β βββ pytorch_model-00006-of-00007.bin
β β βββ pytorch_model-00007-of-00007.bin
β β βββ pytorch_model.bin.index.json
β βββ unet
β β βββ diffusion_pytorch_model.safetensors
β βββ vae
β βββ diffusion_pytorch_model.safetensors
βββ sdxl-vae-fp16-fix
βββ diffusion_pytorch_model.safetensors
Launch the training task using the following command:
CUDA_VISIBLE_DEVICES="0" python examples/train/kolors/train_kolors_lora.py \
--pretrained_unet_path models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors \
--pretrained_text_encoder_path models/kolors/Kolors/text_encoder \
--pretrained_fp16_vae_path models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/kolors/train_kolors_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, SDXLImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/kolors/Kolors/text_encoder",
"models/kolors/Kolors/unet/diffusion_pytorch_model.safetensors",
"models/sdxl-vae-fp16-fix/diffusion_pytorch_model.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDXLImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ",
negative_prompt="",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
Stable Diffusion 3.5 Series
You need to download the text encoders and DiT model files. Please use the following code to download these files:
from diffsynth import download_models
download_models(["StableDiffusion3.5-large"])
models/stable_diffusion_3
βββ Put Stable Diffusion 3 checkpoints here.txt
βββ sd3.5_large.safetensors
βββ text_encoders
βββ clip_g.safetensors
βββ clip_l.safetensors
βββ t5xxl_fp16.safetensors
Launch the training task using the following command:
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_3/train_sd3_lora.py \
--pretrained_path models/stable_diffusion_3/text_encoders/clip_g.safetensors,models/stable_diffusion_3/text_encoders/clip_l.safetensors,models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors,models/stable_diffusion_3/sd3.5_large.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/stable_diffusion_3/train_sd3_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, SD3ImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/stable_diffusion_3/text_encoders/clip_g.safetensors",
"models/stable_diffusion_3/text_encoders/clip_l.safetensors",
"models/stable_diffusion_3/text_encoders/t5xxl_fp16.safetensors",
"models/stable_diffusion_3/sd3.5_large.safetensors"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SD3ImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
num_inference_steps=30, cfg_scale=7
)
image.save("image_with_lora.jpg")
Stable Diffusion 3
Only one file is required in the training script. You can use sd3_medium_incl_clips.safetensors (without T5 encoder) or sd3_medium_incl_clips_t5xxlfp16.safetensors (with T5 encoder). Please use the following code to download these files:
from diffsynth import download_models
download_models(["StableDiffusion3", "StableDiffusion3_without_T5"])
models/stable_diffusion_3/
βββ Put Stable Diffusion 3 checkpoints here.txt
βββ sd3_medium_incl_clips.safetensors
βββ sd3_medium_incl_clips_t5xxlfp16.safetensors
Launch the training task using the following command:
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_3/train_sd3_lora.py \
--pretrained_path models/stable_diffusion_3/sd3_medium_incl_clips.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/stable_diffusion_3/train_sd3_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, SD3ImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion_3/sd3_medium_incl_clips.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SD3ImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
Hunyuan-DiT
Four files will be used for constructing Hunyuan DiT. You can download them from huggingface or modelscope. You can use the following code to download these files:
from diffsynth import download_models
download_models(["HunyuanDiT"])
models/HunyuanDiT/
βββ Put Hunyuan DiT checkpoints here.txt
βββ t2i
βββ clip_text_encoder
β βββ pytorch_model.bin
βββ model
β βββ pytorch_model_ema.pt
βββ mt5
β βββ pytorch_model.bin
βββ sdxl-vae-fp16-fix
βββ diffusion_pytorch_model.bin
Launch the training task using the following command:
CUDA_VISIBLE_DEVICES="0" python examples/train/hunyuan_dit/train_hunyuan_dit_lora.py \
--pretrained_path models/HunyuanDiT/t2i \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/hunyuan_dit/train_hunyuan_dit_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, HunyuanDiTImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=[
"models/HunyuanDiT/t2i/clip_text_encoder/pytorch_model.bin",
"models/HunyuanDiT/t2i/model/pytorch_model_ema.pt",
"models/HunyuanDiT/t2i/mt5/pytorch_model.bin",
"models/HunyuanDiT/t2i/sdxl-vae-fp16-fix/diffusion_pytorch_model.bin"
])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = HunyuanDiTImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="δΈεͺε°ηθΉ¦θΉ¦θ·³θ·³οΌε¨ε΄ζ―ε§Ήη΄«ε«£ηΊ’ηι²θ±οΌθΏε€ζ―ε±±θ",
negative_prompt="",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")
Stable Diffusion
Only one file is required in the training script. We support the mainstream checkpoints in CivitAI. By default, we use the base Stable Diffusion v1.5. You can download it from huggingface or modelscope. You can use the following code to download this file:
from diffsynth import download_models
download_models(["StableDiffusion_v15"])
models/stable_diffusion
βββ Put Stable Diffusion checkpoints here.txt
βββ v1-5-pruned-emaonly.safetensors
Launch the training task using the following command:
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion/train_sd_lora.py \
--pretrained_path models/stable_diffusion/v1-5-pruned-emaonly.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 512 \
--width 512 \
--center_crop \
--precision "16-mixed" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/stable_diffusion/train_sd_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, SDImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion/v1-5-pruned-emaonly.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=512, height=512,
)
image.save("image_with_lora.jpg")
Stable Diffusion XL
Only one file is required in the training script. We support the mainstream checkpoints in CivitAI. By default, we use the base Stable Diffusion XL. You can download it from huggingface or modelscope. You can use the following code to download this file:
from diffsynth import download_models
download_models(["StableDiffusionXL_v1"])
models/stable_diffusion_xl
βββ Put Stable Diffusion XL checkpoints here.txt
βββ sd_xl_base_1.0.safetensors
We observed that Stable Diffusion XL is not float16-safe, thus we recommend users to use float32.
CUDA_VISIBLE_DEVICES="0" python examples/train/stable_diffusion_xl/train_sdxl_lora.py \
--pretrained_path models/stable_diffusion_xl/sd_xl_base_1.0.safetensors \
--dataset_path data/dog \
--output_path ./models \
--max_epochs 1 \
--steps_per_epoch 500 \
--height 1024 \
--width 1024 \
--center_crop \
--precision "32" \
--learning_rate 1e-4 \
--lora_rank 4 \
--lora_alpha 4 \
--use_gradient_checkpointing
For more information about the parameters, please use python examples/train/stable_diffusion_xl/train_sdxl_lora.py -h to see the details.
After training, use model_manager.load_lora to load the LoRA for inference.
from diffsynth import ModelManager, SDXLImagePipeline
import torch
model_manager = ModelManager(torch_dtype=torch.float16, device="cuda",
file_path_list=["models/stable_diffusion_xl/sd_xl_base_1.0.safetensors"])
model_manager.load_lora("models/lightning_logs/version_0/checkpoints/epoch=0-step=500.ckpt", lora_alpha=1.0)
pipe = SDXLImagePipeline.from_model_manager(model_manager)
torch.manual_seed(0)
image = pipe(
prompt="a dog is jumping, flowers around the dog, the background is mountains and clouds",
negative_prompt="bad quality, poor quality, doll, disfigured, jpg, toy, bad anatomy, missing limbs, missing fingers, 3d, cgi, extra tails",
cfg_scale=7.5,
num_inference_steps=100, width=1024, height=1024,
)
image.save("image_with_lora.jpg")