| # DiffSynth-Studio | |
| <a href="https://github.com/modelscope/DiffSynth-Studio"><img src=".github/workflows/logo.gif" title="Logo" style="max-width:100%;" width="55" /></a> <a href="https://trendshift.io/repositories/10946" target="_blank"><img src="https://trendshift.io/api/badge/repositories/10946" alt="modelscope%2FDiffSynth-Studio | Trendshift" style="width: 250px; height: 55px;" width="250" height="55"/></a></p> | |
| [](https://pypi.org/project/DiffSynth/) | |
| [](https://github.com/modelscope/DiffSynth-Studio/blob/master/LICENSE) | |
| [](https://github.com/modelscope/DiffSynth-Studio/issues) | |
| [](https://GitHub.com/modelscope/DiffSynth-Studio/pull/) | |
| [](https://GitHub.com/modelscope/DiffSynth-Studio/commit/) | |
| [Switch to English](./README.md) | |
| ## 简介 | |
| 欢迎来到 Diffusion 模型的魔法世界!DiffSynth-Studio 是由[魔搭社区](https://www.modelscope.cn/)团队开发和维护的开源 Diffusion 模型引擎。我们期望以框架建设孵化技术创新,凝聚开源社区的力量,探索生成式模型技术的边界! | |
| DiffSynth 目前包括两个开源项目: | |
| * [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio): 聚焦于激进的技术探索,面向学术界,提供更前沿的模型能力支持。 | |
| * [DiffSynth-Engine](https://github.com/modelscope/DiffSynth-Engine): 聚焦于稳定的模型部署,面向工业界,提供更高的计算性能与更稳定的功能。 | |
| [DiffSynth-Studio](https://github.com/modelscope/DiffSynth-Studio) 与 [DiffSynth-Engine](https://github.com/modelscope/DiffSynth-Engine) 作为魔搭社区 [AIGC 专区](https://modelscope.cn/aigc/home) 的核心技术支撑,提供了强大的AI生成内容能力。欢迎体验我们精心打造的产品化功能,开启您的AI创作之旅! | |
| ## 安装 | |
| 从源码安装(推荐): | |
| ``` | |
| git clone https://github.com/modelscope/DiffSynth-Studio.git | |
| cd DiffSynth-Studio | |
| pip install -e . | |
| ``` | |
| <details> | |
| <summary>其他安装方式</summary> | |
| 从 pypi 安装(存在版本更新延迟,如需使用最新功能,请从源码安装) | |
| ``` | |
| pip install diffsynth | |
| ``` | |
| 如果在安装过程中遇到问题,可能是由上游依赖包导致的,请参考这些包的文档: | |
| * [torch](https://pytorch.org/get-started/locally/) | |
| * [sentencepiece](https://github.com/google/sentencepiece) | |
| * [cmake](https://cmake.org) | |
| * [cupy](https://docs.cupy.dev/en/stable/install.html) | |
| </details> | |
| ## 基础框架 | |
| DiffSynth-Studio 为主流 Diffusion 模型(包括 FLUX、Wan 等)重新设计了推理和训练流水线,能够实现高效的显存管理、灵活的模型训练。 | |
| ### Qwen-Image 系列 (🔥新模型) | |
| 详细页面:[./examples/qwen_image/](./examples/qwen_image/) | |
|  | |
| <details> | |
| <summary>快速开始</summary> | |
| ```python | |
| from diffsynth.pipelines.qwen_image import QwenImagePipeline, ModelConfig | |
| from PIL import Image | |
| import torch | |
| pipe = QwenImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="transformer/diffusion_pytorch_model*.safetensors"), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="text_encoder/model*.safetensors"), | |
| ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="vae/diffusion_pytorch_model.safetensors"), | |
| ], | |
| tokenizer_config=ModelConfig(model_id="Qwen/Qwen-Image", origin_file_pattern="tokenizer/"), | |
| ) | |
| prompt = "精致肖像,水下少女,蓝裙飘逸,发丝轻扬,光影透澈,气泡环绕,面容恬静,细节精致,梦幻唯美。" | |
| image = pipe( | |
| prompt, seed=0, num_inference_steps=40, | |
| # edit_image=Image.open("xxx.jpg").resize((1328, 1328)) # For Qwen-Image-Edit | |
| ) | |
| image.save("image.jpg") | |
| ``` | |
| </details> | |
| <details> | |
| <summary>模型总览</summary> | |
| |模型 ID|推理|低显存推理|全量训练|全量训练后验证|LoRA 训练|LoRA 训练后验证| | |
| |-|-|-|-|-|-|-| | |
| |[Qwen/Qwen-Image](https://www.modelscope.cn/models/Qwen/Qwen-Image)|[code](./examples/qwen_image/model_inference/Qwen-Image.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image.py)| | |
| |[Qwen/Qwen-Image-Edit](https://www.modelscope.cn/models/Qwen/Qwen-Image-Edit)|[code](./examples/qwen_image/model_inference/Qwen-Image-Edit.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Edit.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Edit.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Edit.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Edit.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Edit.py)| | |
| |[Qwen/Qwen-Image-Edit-2509](https://www.modelscope.cn/models/Qwen/Qwen-Image-Edit-2509)|[code](./examples/qwen_image/model_inference/Qwen-Image-Edit-2509.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Edit-2509.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Edit-2509.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Edit-2509.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Edit-2509.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Edit-2509.py)| | |
| |[DiffSynth-Studio/Qwen-Image-EliGen-V2](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen-V2)|[code](./examples/qwen_image/model_inference/Qwen-Image-EliGen-V2.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-EliGen-V2.py)|-|-|[code](./examples/qwen_image/model_training/lora/Qwen-Image-EliGen.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-EliGen.py)| | |
| |[DiffSynth-Studio/Qwen-Image-EliGen-Poster](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen-Poster)|[code](./examples/qwen_image/model_inference/Qwen-Image-EliGen-Poster.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-EliGen-Poster.py)|-|-|[code](./examples/qwen_image/model_training/lora/Qwen-Image-EliGen-Poster.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-EliGen-Poster.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Distill-Full](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Distill-Full)|[code](./examples/qwen_image/model_inference/Qwen-Image-Distill-Full.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Distill-Full.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Distill-Full.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Distill-Full.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Distill-Full.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Distill-Full.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Distill-LoRA](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Distill-LoRA)|[code](./examples/qwen_image/model_inference/Qwen-Image-Distill-LoRA.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Distill-LoRA.py)|-|-|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Distill-LoRA.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Distill-LoRA.py)| | |
| |[DiffSynth-Studio/Qwen-Image-EliGen](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen)|[code](./examples/qwen_image/model_inference/Qwen-Image-EliGen.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-EliGen.py)|-|-|[code](./examples/qwen_image/model_training/lora/Qwen-Image-EliGen.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-EliGen.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny)|[code](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Canny.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Blockwise-ControlNet-Canny.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Blockwise-ControlNet-Canny.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Blockwise-ControlNet-Canny.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Blockwise-ControlNet-Canny.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Blockwise-ControlNet-Canny.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth)|[code](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Depth.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Blockwise-ControlNet-Depth.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Blockwise-ControlNet-Depth.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Blockwise-ControlNet-Depth.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Blockwise-ControlNet-Depth.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Blockwise-ControlNet-Depth.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint)|[code](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Inpaint.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Blockwise-ControlNet-Inpaint.py)|[code](./examples/qwen_image/model_training/full/Qwen-Image-Blockwise-ControlNet-Inpaint.sh)|[code](./examples/qwen_image/model_training/validate_full/Qwen-Image-Blockwise-ControlNet-Inpaint.py)|[code](./examples/qwen_image/model_training/lora/Qwen-Image-Blockwise-ControlNet-Inpaint.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-Blockwise-ControlNet-Inpaint.py)| | |
| |[DiffSynth-Studio/Qwen-Image-In-Context-Control-Union](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union)|[code](./examples/qwen_image/model_inference/Qwen-Image-In-Context-Control-Union.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-In-Context-Control-Union.py)|-|-|[code](./examples/qwen_image/model_training/lora/Qwen-Image-In-Context-Control-Union.sh)|[code](./examples/qwen_image/model_training/validate_lora/Qwen-Image-In-Context-Control-Union.py)| | |
| |[DiffSynth-Studio/Qwen-Image-Edit-Lowres-Fix](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Edit-Lowres-Fix)|[code](./examples/qwen_image/model_inference/Qwen-Image-Edit-Lowres-Fix.py)|[code](./examples/qwen_image/model_inference_low_vram/Qwen-Image-Edit-Lowres-Fix.py)|-|-|-|-| | |
| </details> | |
| ### FLUX 系列 | |
| 详细页面:[./examples/flux/](./examples/flux/) | |
|  | |
| <details> | |
| <summary>快速开始</summary> | |
| ```python | |
| import torch | |
| from diffsynth.pipelines.flux_image_new import FluxImagePipeline, ModelConfig | |
| pipe = FluxImagePipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="flux1-dev.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder/model.safetensors"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="text_encoder_2/"), | |
| ModelConfig(model_id="black-forest-labs/FLUX.1-dev", origin_file_pattern="ae.safetensors"), | |
| ], | |
| ) | |
| image = pipe(prompt="a cat", seed=0) | |
| image.save("image.jpg") | |
| ``` | |
| </details> | |
| <details> | |
| <summary>模型总览</summary> | |
| |模型 ID|额外参数|推理|低显存推理|全量训练|全量训练后验证|LoRA 训练|LoRA 训练后验证| | |
| |-|-|-|-|-|-|-|-| | |
| |[FLUX.1-dev](https://www.modelscope.cn/models/black-forest-labs/FLUX.1-dev)||[code](./examples/flux/model_inference/FLUX.1-dev.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev.py)|[code](./examples/flux/model_training/full/FLUX.1-dev.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev.py)| | |
| |[FLUX.1-Krea-dev](https://www.modelscope.cn/models/black-forest-labs/FLUX.1-Krea-dev)||[code](./examples/flux/model_inference/FLUX.1-Krea-dev.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-Krea-dev.py)|[code](./examples/flux/model_training/full/FLUX.1-Krea-dev.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-Krea-dev.py)|[code](./examples/flux/model_training/lora/FLUX.1-Krea-dev.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-Krea-dev.py)| | |
| |[FLUX.1-Kontext-dev](https://www.modelscope.cn/models/black-forest-labs/FLUX.1-Kontext-dev)|`kontext_images`|[code](./examples/flux/model_inference/FLUX.1-Kontext-dev.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-Kontext-dev.py)|[code](./examples/flux/model_training/full/FLUX.1-Kontext-dev.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-Kontext-dev.py)|[code](./examples/flux/model_training/lora/FLUX.1-Kontext-dev.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-Kontext-dev.py)| | |
| |[FLUX.1-dev-Controlnet-Inpainting-Beta](https://www.modelscope.cn/models/alimama-creative/FLUX.1-dev-Controlnet-Inpainting-Beta)|`controlnet_inputs`|[code](./examples/flux/model_inference/FLUX.1-dev-Controlnet-Inpainting-Beta.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-Controlnet-Inpainting-Beta.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-Controlnet-Inpainting-Beta.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-Controlnet-Inpainting-Beta.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev-Controlnet-Inpainting-Beta.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-Controlnet-Inpainting-Beta.py)| | |
| |[FLUX.1-dev-Controlnet-Union-alpha](https://www.modelscope.cn/models/InstantX/FLUX.1-dev-Controlnet-Union-alpha)|`controlnet_inputs`|[code](./examples/flux/model_inference/FLUX.1-dev-Controlnet-Union-alpha.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-Controlnet-Union-alpha.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-Controlnet-Union-alpha.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-Controlnet-Union-alpha.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev-Controlnet-Union-alpha.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-Controlnet-Union-alpha.py)| | |
| |[FLUX.1-dev-Controlnet-Upscaler](https://www.modelscope.cn/models/jasperai/Flux.1-dev-Controlnet-Upscaler)|`controlnet_inputs`|[code](./examples/flux/model_inference/FLUX.1-dev-Controlnet-Upscaler.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-Controlnet-Upscaler.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-Controlnet-Upscaler.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-Controlnet-Upscaler.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev-Controlnet-Upscaler.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-Controlnet-Upscaler.py)| | |
| |[FLUX.1-dev-IP-Adapter](https://www.modelscope.cn/models/InstantX/FLUX.1-dev-IP-Adapter)|`ipadapter_images`, `ipadapter_scale`|[code](./examples/flux/model_inference/FLUX.1-dev-IP-Adapter.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-IP-Adapter.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-IP-Adapter.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-IP-Adapter.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev-IP-Adapter.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-IP-Adapter.py)| | |
| |[FLUX.1-dev-InfiniteYou](https://www.modelscope.cn/models/ByteDance/InfiniteYou)|`infinityou_id_image`, `infinityou_guidance`, `controlnet_inputs`|[code](./examples/flux/model_inference/FLUX.1-dev-InfiniteYou.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-InfiniteYou.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-InfiniteYou.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-InfiniteYou.py)|[code](./examples/flux/model_training/lora/FLUX.1-dev-InfiniteYou.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-InfiniteYou.py)| | |
| |[FLUX.1-dev-EliGen](https://www.modelscope.cn/models/DiffSynth-Studio/Eligen)|`eligen_entity_prompts`, `eligen_entity_masks`, `eligen_enable_on_negative`, `eligen_enable_inpaint`|[code](./examples/flux/model_inference/FLUX.1-dev-EliGen.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-EliGen.py)|-|-|[code](./examples/flux/model_training/lora/FLUX.1-dev-EliGen.sh)|[code](./examples/flux/model_training/validate_lora/FLUX.1-dev-EliGen.py)| | |
| |[FLUX.1-dev-LoRA-Encoder](https://www.modelscope.cn/models/DiffSynth-Studio/LoRA-Encoder-FLUX.1-Dev)|`lora_encoder_inputs`, `lora_encoder_scale`|[code](./examples/flux/model_inference/FLUX.1-dev-LoRA-Encoder.py)|[code](./examples/flux/model_inference_low_vram/FLUX.1-dev-LoRA-Encoder.py)|[code](./examples/flux/model_training/full/FLUX.1-dev-LoRA-Encoder.sh)|[code](./examples/flux/model_training/validate_full/FLUX.1-dev-LoRA-Encoder.py)|-|-| | |
| |[FLUX.1-dev-LoRA-Fusion-Preview](https://modelscope.cn/models/DiffSynth-Studio/LoRAFusion-preview-FLUX.1-dev)||[code](./examples/flux/model_inference/FLUX.1-dev-LoRA-Fusion.py)|-|-|-|-|-| | |
| |[Step1X-Edit](https://www.modelscope.cn/models/stepfun-ai/Step1X-Edit)|`step1x_reference_image`|[code](./examples/flux/model_inference/Step1X-Edit.py)|[code](./examples/flux/model_inference_low_vram/Step1X-Edit.py)|[code](./examples/flux/model_training/full/Step1X-Edit.sh)|[code](./examples/flux/model_training/validate_full/Step1X-Edit.py)|[code](./examples/flux/model_training/lora/Step1X-Edit.sh)|[code](./examples/flux/model_training/validate_lora/Step1X-Edit.py)| | |
| |[FLEX.2-preview](https://www.modelscope.cn/models/ostris/Flex.2-preview)|`flex_inpaint_image`, `flex_inpaint_mask`, `flex_control_image`, `flex_control_strength`, `flex_control_stop`|[code](./examples/flux/model_inference/FLEX.2-preview.py)|[code](./examples/flux/model_inference_low_vram/FLEX.2-preview.py)|[code](./examples/flux/model_training/full/FLEX.2-preview.sh)|[code](./examples/flux/model_training/validate_full/FLEX.2-preview.py)|[code](./examples/flux/model_training/lora/FLEX.2-preview.sh)|[code](./examples/flux/model_training/validate_lora/FLEX.2-preview.py)| | |
| |[Nexus-Gen](https://www.modelscope.cn/models/DiffSynth-Studio/Nexus-GenV2)|`nexus_gen_reference_image`|[code](./examples/flux/model_inference/Nexus-Gen-Editing.py)|[code](./examples/flux/model_inference_low_vram/Nexus-Gen-Editing.py)|[code](./examples/flux/model_training/full/Nexus-Gen.sh)|[code](./examples/flux/model_training/validate_full/Nexus-Gen.py)|[code](./examples/flux/model_training/lora/Nexus-Gen.sh)|[code](./examples/flux/model_training/validate_lora/Nexus-Gen.py)| | |
| </details> | |
| ### Wan 系列 | |
| 详细页面:[./examples/wanvideo/](./examples/wanvideo/) | |
| https://github.com/user-attachments/assets/1d66ae74-3b02-40a9-acc3-ea95fc039314 | |
| <details> | |
| <summary>快速开始</summary> | |
| ```python | |
| import torch | |
| from diffsynth import save_video | |
| from diffsynth.pipelines.wan_video_new import WanVideoPipeline, ModelConfig | |
| pipe = WanVideoPipeline.from_pretrained( | |
| torch_dtype=torch.bfloat16, | |
| device="cuda", | |
| model_configs=[ | |
| ModelConfig(model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="diffusion_pytorch_model*.safetensors", offload_device="cpu"), | |
| ModelConfig(model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="models_t5_umt5-xxl-enc-bf16.pth", offload_device="cpu"), | |
| ModelConfig(model_id="Wan-AI/Wan2.1-T2V-1.3B", origin_file_pattern="Wan2.1_VAE.pth", offload_device="cpu"), | |
| ], | |
| ) | |
| pipe.enable_vram_management() | |
| video = pipe( | |
| prompt="纪实摄影风格画面,一只活泼的小狗在绿茵茵的草地上迅速奔跑。小狗毛色棕黄,两只耳朵立起,神情专注而欢快。阳光洒在它身上,使得毛发看上去格外柔软而闪亮。背景是一片开阔的草地,偶尔点缀着几朵野花,远处隐约可见蓝天和几片白云。透视感鲜明,捕捉小狗奔跑时的动感和四周草地的生机。中景侧面移动视角。", | |
| negative_prompt="色调艳丽,过曝,静态,细节模糊不清,字幕,风格,作品,画作,画面,静止,整体发灰,最差质量,低质量,JPEG压缩残留,丑陋的,残缺的,多余的手指,画得不好的手部,画得不好的脸部,畸形的,毁容的,形态畸形的肢体,手指融合,静止不动的画面,杂乱的背景,三条腿,背景人很多,倒着走", | |
| seed=0, tiled=True, | |
| ) | |
| save_video(video, "video1.mp4", fps=15, quality=5) | |
| ``` | |
| </details> | |
| <details> | |
| <summary>模型总览</summary> | |
| |模型 ID|额外参数|推理|全量训练|全量训练后验证|LoRA 训练|LoRA 训练后验证| | |
| |-|-|-|-|-|-|-| | |
| |[Wan-AI/Wan2.2-Animate-14B](https://www.modelscope.cn/models/Wan-AI/Wan2.2-Animate-14B)|`input_image`, `animate_pose_video`, `animate_face_video`, `animate_inpaint_video`, `animate_mask_video`|[code](./examples/wanvideo/model_inference/Wan2.2-Animate-14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-Animate-14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-Animate-14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-Animate-14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-Animate-14B.py)| | |
| |[Wan-AI/Wan2.2-S2V-14B](https://www.modelscope.cn/models/Wan-AI/Wan2.2-S2V-14B)|`input_image`, `input_audio`, `audio_sample_rate`, `s2v_pose_video`|[code](./examples/wanvideo/model_inference/Wan2.2-S2V-14B_multi_clips.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-S2V-14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-S2V-14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-S2V-14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-S2V-14B.py)| | |
| |[Wan-AI/Wan2.2-I2V-A14B](https://modelscope.cn/models/Wan-AI/Wan2.2-I2V-A14B)|`input_image`|[code](./examples/wanvideo/model_inference/Wan2.2-I2V-A14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-I2V-A14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-I2V-A14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-I2V-A14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-I2V-A14B.py)| | |
| |[Wan-AI/Wan2.2-T2V-A14B](https://modelscope.cn/models/Wan-AI/Wan2.2-T2V-A14B)||[code](./examples/wanvideo/model_inference/Wan2.2-T2V-A14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-T2V-A14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-T2V-A14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-T2V-A14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-T2V-A14B.py)| | |
| |[Wan-AI/Wan2.2-TI2V-5B](https://modelscope.cn/models/Wan-AI/Wan2.2-TI2V-5B)|`input_image`|[code](./examples/wanvideo/model_inference/Wan2.2-TI2V-5B.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-TI2V-5B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-TI2V-5B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-TI2V-5B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-TI2V-5B.py)| | |
| |[Wan-AI/Wan2.2-VACE-Fun-A14B](https://www.modelscope.cn/models/PAI/Wan2.2-VACE-Fun-A14B)|`vace_control_video`, `vace_reference_image`|[code](./examples/wanvideo/model_inference/Wan2.2-VACE-Fun-A14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-VACE-Fun-A14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-VACE-Fun-A14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-VACE-Fun-A14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-VACE-Fun-A14B.py)| | |
| |[PAI/Wan2.2-Fun-A14B-InP](https://modelscope.cn/models/PAI/Wan2.2-Fun-A14B-InP)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.2-Fun-A14B-InP.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-Fun-A14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-Fun-A14B-InP.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-Fun-A14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-Fun-A14B-InP.py)| | |
| |[PAI/Wan2.2-Fun-A14B-Control](https://modelscope.cn/models/PAI/Wan2.2-Fun-A14B-Control)|`control_video`, `reference_image`|[code](./examples/wanvideo/model_inference/Wan2.2-Fun-A14B-Control.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-Fun-A14B-Control.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-Fun-A14B-Control.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-Fun-A14B-Control.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-Fun-A14B-Control.py)| | |
| |[PAI/Wan2.2-Fun-A14B-Control-Camera](https://modelscope.cn/models/PAI/Wan2.2-Fun-A14B-Control-Camera)|`control_camera_video`, `input_image`|[code](./examples/wanvideo/model_inference/Wan2.2-Fun-A14B-Control-Camera.py)|[code](./examples/wanvideo/model_training/full/Wan2.2-Fun-A14B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.2-Fun-A14B-Control-Camera.py)|[code](./examples/wanvideo/model_training/lora/Wan2.2-Fun-A14B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.2-Fun-A14B-Control-Camera.py)| | |
| |[Wan-AI/Wan2.1-T2V-1.3B](https://modelscope.cn/models/Wan-AI/Wan2.1-T2V-1.3B)||[code](./examples/wanvideo/model_inference/Wan2.1-T2V-1.3B.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-T2V-1.3B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-T2V-1.3B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-T2V-1.3B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-T2V-1.3B.py)| | |
| |[Wan-AI/Wan2.1-T2V-14B](https://modelscope.cn/models/Wan-AI/Wan2.1-T2V-14B)||[code](./examples/wanvideo/model_inference/Wan2.1-T2V-14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-T2V-14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-T2V-14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-T2V-14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-T2V-14B.py)| | |
| |[Wan-AI/Wan2.1-I2V-14B-480P](https://modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-480P)|`input_image`|[code](./examples/wanvideo/model_inference/Wan2.1-I2V-14B-480P.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-I2V-14B-480P.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-I2V-14B-480P.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-I2V-14B-480P.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-I2V-14B-480P.py)| | |
| |[Wan-AI/Wan2.1-I2V-14B-720P](https://modelscope.cn/models/Wan-AI/Wan2.1-I2V-14B-720P)|`input_image`|[code](./examples/wanvideo/model_inference/Wan2.1-I2V-14B-720P.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-I2V-14B-720P.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-I2V-14B-720P.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-I2V-14B-720P.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-I2V-14B-720P.py)| | |
| |[Wan-AI/Wan2.1-FLF2V-14B-720P](https://modelscope.cn/models/Wan-AI/Wan2.1-FLF2V-14B-720P)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.1-FLF2V-14B-720P.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-FLF2V-14B-720P.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-FLF2V-14B-720P.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-FLF2V-14B-720P.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-FLF2V-14B-720P.py)| | |
| |[PAI/Wan2.1-Fun-1.3B-InP](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-InP)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-1.3B-InP.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-1.3B-InP.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-1.3B-InP.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-1.3B-InP.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-1.3B-InP.py)| | |
| |[PAI/Wan2.1-Fun-1.3B-Control](https://modelscope.cn/models/PAI/Wan2.1-Fun-1.3B-Control)|`control_video`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-1.3B-Control.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-1.3B-Control.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-1.3B-Control.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-1.3B-Control.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-1.3B-Control.py)| | |
| |[PAI/Wan2.1-Fun-14B-InP](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-InP)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-14B-InP.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-14B-InP.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-14B-InP.py)| | |
| |[PAI/Wan2.1-Fun-14B-Control](https://modelscope.cn/models/PAI/Wan2.1-Fun-14B-Control)|`control_video`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-14B-Control.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-14B-Control.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-14B-Control.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-14B-Control.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-14B-Control.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-1.3B-Control](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-Control)|`control_video`, `reference_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-1.3B-Control.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-1.3B-Control.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-1.3B-Control.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-1.3B-Control.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-V1.1-1.3B-Control.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-14B-Control](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-Control)|`control_video`, `reference_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-14B-Control.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-14B-Control.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-14B-Control.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-14B-Control.sh)|[code](./examples/wanvideo/examples/wanmodel_training/validate_lora/Wan2.1-Fun-V1.1-14B-Control.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-1.3B-InP](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-InP)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-1.3B-InP.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-1.3B-InP.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-1.3B-InP.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-1.3B-InP.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-V1.1-1.3B-InP.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-14B-InP](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-InP)|`input_image`, `end_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-14B-InP.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-14B-InP.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-14B-InP.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-V1.1-14B-InP.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-1.3B-Control-Camera](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-1.3B-Control-Camera)|`control_camera_video`, `input_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-1.3B-Control-Camera.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-1.3B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-1.3B-Control-Camera.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-1.3B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-V1.1-1.3B-Control-Camera.py)| | |
| |[PAI/Wan2.1-Fun-V1.1-14B-Control-Camera](https://modelscope.cn/models/PAI/Wan2.1-Fun-V1.1-14B-Control-Camera)|`control_camera_video`, `input_image`|[code](./examples/wanvideo/model_inference/Wan2.1-Fun-V1.1-14B-Control-Camera.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-Fun-V1.1-14B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-Fun-V1.1-14B-Control-Camera.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-Fun-V1.1-14B-Control-Camera.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-Fun-V1.1-14B-Control-Camera.py)| | |
| |[iic/VACE-Wan2.1-1.3B-Preview](https://modelscope.cn/models/iic/VACE-Wan2.1-1.3B-Preview)|`vace_control_video`, `vace_reference_image`|[code](./examples/wanvideo/model_inference/Wan2.1-VACE-1.3B-Preview.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-VACE-1.3B-Preview.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-VACE-1.3B-Preview.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-VACE-1.3B-Preview.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-VACE-1.3B-Preview.py)| | |
| |[Wan-AI/Wan2.1-VACE-1.3B](https://modelscope.cn/models/Wan-AI/Wan2.1-VACE-1.3B)|`vace_control_video`, `vace_reference_image`|[code](./examples/wanvideo/model_inference/Wan2.1-VACE-1.3B.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-VACE-1.3B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-VACE-1.3B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-VACE-1.3B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-VACE-1.3B.py)| | |
| |[Wan-AI/Wan2.1-VACE-14B](https://modelscope.cn/models/Wan-AI/Wan2.1-VACE-14B)|`vace_control_video`, `vace_reference_image`|[code](./examples/wanvideo/model_inference/Wan2.1-VACE-14B.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-VACE-14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-VACE-14B.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-VACE-14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-VACE-14B.py)| | |
| |[DiffSynth-Studio/Wan2.1-1.3b-speedcontrol-v1](https://modelscope.cn/models/DiffSynth-Studio/Wan2.1-1.3b-speedcontrol-v1)|`motion_bucket_id`|[code](./examples/wanvideo/model_inference/Wan2.1-1.3b-speedcontrol-v1.py)|[code](./examples/wanvideo/model_training/full/Wan2.1-1.3b-speedcontrol-v1.sh)|[code](./examples/wanvideo/model_training/validate_full/Wan2.1-1.3b-speedcontrol-v1.py)|[code](./examples/wanvideo/model_training/lora/Wan2.1-1.3b-speedcontrol-v1.sh)|[code](./examples/wanvideo/model_training/validate_lora/Wan2.1-1.3b-speedcontrol-v1.py)| | |
| |[krea/krea-realtime-video](https://www.modelscope.cn/models/krea/krea-realtime-video)||[code](./examples/wanvideo/model_inference/krea-realtime-video.py)|[code](./examples/wanvideo/model_training/full/krea-realtime-video.sh)|[code](./examples/wanvideo/model_training/validate_full/krea-realtime-video.py)|[code](./examples/wanvideo/model_training/lora/krea-realtime-video.sh)|[code](./examples/wanvideo/model_training/validate_lora/krea-realtime-video.py)| | |
| |[meituan-longcat/LongCat-Video](https://www.modelscope.cn/models/meituan-longcat/LongCat-Video)|`longcat_video`|[code](./examples/wanvideo/model_inference/LongCat-Video.py)|[code](./examples/wanvideo/model_training/full/LongCat-Video.sh)|[code](./examples/wanvideo/model_training/validate_full/LongCat-Video.py)|[code](./examples/wanvideo/model_training/lora/LongCat-Video.sh)|[code](./examples/wanvideo/model_training/validate_lora/LongCat-Video.py)| | |
| |[ByteDance/Video-As-Prompt-Wan2.1-14B](https://modelscope.cn/models/ByteDance/Video-As-Prompt-Wan2.1-14B)|`vap_video`, `vap_prompt`|[code](./examples/wanvideo/model_inference/Video-As-Prompt-Wan2.1-14B.py)|[code](./examples/wanvideo/model_training/full/Video-As-Prompt-Wan2.1-14B.sh)|[code](./examples/wanvideo/model_training/validate_full/Video-As-Prompt-Wan2.1-14B.py)|[code](./examples/wanvideo/model_training/lora/Video-As-Prompt-Wan2.1-14B.sh)|[code](./examples/wanvideo/model_training/validate_lora/Video-As-Prompt-Wan2.1-14B.py)| | |
| </details> | |
| ### 更多模型 | |
| <details> | |
| <summary>图像生成模型</summary> | |
| 详细页面:[./examples/image_synthesis/](./examples/image_synthesis/) | |
| |FLUX|Stable Diffusion 3| | |
| |-|-| | |
| ||| | |
| |Kolors|Hunyuan-DiT| | |
| |-|-| | |
| ||| | |
| |Stable Diffusion|Stable Diffusion XL| | |
| |-|-| | |
| ||| | |
| </details> | |
| <details> | |
| <summary>视频生成模型</summary> | |
| - HunyuanVideo:[./examples/HunyuanVideo/](./examples/HunyuanVideo/) | |
| https://github.com/user-attachments/assets/48dd24bb-0cc6-40d2-88c3-10feed3267e9 | |
| - StepVideo:[./examples/stepvideo/](./examples/stepvideo/) | |
| https://github.com/user-attachments/assets/5954fdaa-a3cf-45a3-bd35-886e3cc4581b | |
| - CogVideoX:[./examples/CogVideoX/](./examples/CogVideoX/) | |
| https://github.com/user-attachments/assets/26b044c1-4a60-44a4-842f-627ff289d006 | |
| </details> | |
| <details> | |
| <summary>图像质量评估模型</summary> | |
| 我们集成了一系列图像质量评估模型,这些模型可以用于图像生成模型的评测、对齐训练等场景中。 | |
| 详细页面:[./examples/image_quality_metric/](./examples/image_quality_metric/) | |
| * [ImageReward](https://github.com/THUDM/ImageReward) | |
| * [Aesthetic](https://github.com/christophschuhmann/improved-aesthetic-predictor) | |
| * [PickScore](https://github.com/yuvalkirstain/pickscore) | |
| * [CLIP](https://github.com/openai/CLIP) | |
| * [HPSv2](https://github.com/tgxs002/HPSv2) | |
| * [HPSv2.1](https://github.com/tgxs002/HPSv2) | |
| * [MPS](https://github.com/Kwai-Kolors/MPS) | |
| </details> | |
| ## 创新成果 | |
| DiffSynth-Studio 不仅仅是一个工程化的模型框架,更是创新成果的孵化器。 | |
| <details> | |
| <summary>Nexus-Gen: 统一架构的图像理解、生成、编辑</summary> | |
| - 详细页面:https://github.com/modelscope/Nexus-Gen | |
| - 论文:[Nexus-Gen: Unified Image Understanding, Generation, and Editing via Prefilled Autoregression in Shared Embedding Space](https://arxiv.org/pdf/2504.21356) | |
| - 模型:[ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Nexus-GenV2), [HuggingFace](https://huggingface.co/modelscope/Nexus-GenV2) | |
| - 数据集:[ModelScope Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Nexus-Gen-Training-Dataset) | |
| - 在线体验:[ModelScope Nexus-Gen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/Nexus-Gen) | |
|  | |
| </details> | |
| <details> | |
| <summary>ArtAug: 图像生成模型的美学提升</summary> | |
| - 详细页面:[./examples/ArtAug/](./examples/ArtAug/) | |
| - 论文:[ArtAug: Enhancing Text-to-Image Generation through Synthesis-Understanding Interaction](https://arxiv.org/abs/2412.12888) | |
| - 模型:[ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1), [HuggingFace](https://huggingface.co/ECNU-CILab/ArtAug-lora-FLUX.1dev-v1) | |
| - 在线体验:[ModelScope AIGC Tab](https://www.modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=7228&modelType=LoRA&sdVersion=FLUX_1&modelUrl=modelscope%3A%2F%2FDiffSynth-Studio%2FArtAug-lora-FLUX.1dev-v1%3Frevision%3Dv1.0) | |
| |FLUX.1-dev|FLUX.1-dev + ArtAug LoRA| | |
| |-|-| | |
| ||| | |
| </details> | |
| <details> | |
| <summary>EliGen: 精准的图像分区控制</summary> | |
| - 详细页面:[./examples/EntityControl/](./examples/EntityControl/) | |
| - 论文:[EliGen: Entity-Level Controlled Image Generation with Regional Attention](https://arxiv.org/abs/2501.01097) | |
| - 模型:[ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Eligen), [HuggingFace](https://huggingface.co/modelscope/EliGen) | |
| - 在线体验:[ModelScope EliGen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/EliGen) | |
| - 数据集:[EliGen Train Set](https://www.modelscope.cn/datasets/DiffSynth-Studio/EliGenTrainSet) | |
| |实体控制区域|生成图像| | |
| |-|-| | |
| ||| | |
| </details> | |
| <details> | |
| <summary>ExVideo: 视频生成模型的扩展训练</summary> | |
| - 项目页面:[Project Page](https://ecnu-cilab.github.io/ExVideoProjectPage/) | |
| - 论文:[ExVideo: Extending Video Diffusion Models via Parameter-Efficient Post-Tuning](https://arxiv.org/abs/2406.14130) | |
| - 代码样例:[./examples/ExVideo/](./examples/ExVideo/) | |
| - 模型:[ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-SVD-128f-v1), [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1) | |
| https://github.com/modelscope/DiffSynth-Studio/assets/35051019/d97f6aa9-8064-4b5b-9d49-ed6001bb9acc | |
| </details> | |
| <details> | |
| <summary>Diffutoon: 高分辨率动漫风格视频渲染</summary> | |
| - 项目页面:[Project Page](https://ecnu-cilab.github.io/DiffutoonProjectPage/) | |
| - 论文:[Diffutoon: High-Resolution Editable Toon Shading via Diffusion Models](https://arxiv.org/abs/2401.16224) | |
| - 代码样例:[./examples/Diffutoon/](./examples/Diffutoon/) | |
| https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/b54c05c5-d747-4709-be5e-b39af82404dd | |
| </details> | |
| <details> | |
| <summary>DiffSynth: 本项目的初代版本</summary> | |
| - 项目页面:[Project Page](https://ecnu-cilab.github.io/DiffSynth.github.io/) | |
| - 论文:[DiffSynth: Latent In-Iteration Deflickering for Realistic Video Synthesis](https://arxiv.org/abs/2308.03463) | |
| - 代码样例:[./examples/diffsynth/](./examples/diffsynth/) | |
| https://github.com/Artiprocher/DiffSynth-Studio/assets/35051019/59fb2f7b-8de0-4481-b79f-0c3a7361a1ea | |
| </details> | |
| ## 更新历史 | |
| - **2025年11月4日** 支持了 [ByteDance/Video-As-Prompt-Wan2.1-14B](https://modelscope.cn/models/ByteDance/Video-As-Prompt-Wan2.1-14B) 模型,该模型基于 Wan 2.1 训练,支持根据参考视频生成相应的动作。 | |
| - **2025年10月30日** 支持了 [meituan-longcat/LongCat-Video](https://www.modelscope.cn/models/meituan-longcat/LongCat-Video) 模型,该模型支持文生视频、图生视频、视频续写。这个模型在本项目中沿用 Wan 的框架进行推理和训练。 | |
| - **2025年10月27日** 支持了 [krea/krea-realtime-video](https://www.modelscope.cn/models/krea/krea-realtime-video) 模型,Wan 模型生态再添一员。 | |
| - **2025年9月23日** [DiffSynth-Studio/Qwen-Image-EliGen-Poster](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen-Poster) 发布!本模型由我们与淘天体验设计团队联合研发并开源。模型基于 Qwen-Image 构建,专为电商海报场景设计,支持精确的分区布局控制。 请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-EliGen-Poster.py)。 | |
| - **2025年9月9日** 我们的训练框架支持了多种训练模式,目前已适配 Qwen-Image,除标准 SFT 训练模式外,已支持 Direct Distill,请参考[我们的示例代码](./examples/qwen_image/model_training/lora/Qwen-Image-Distill-LoRA.sh)。这项功能是实验性的,我们将会继续完善已支持更全面的模型训练功能。 | |
| - **2025年8月28日** 我们支持了Wan2.2-S2V,一个音频驱动的电影级视频生成模型。请参见[./examples/wanvideo/](./examples/wanvideo/)。 | |
| - **2025年8月21日** [DiffSynth-Studio/Qwen-Image-EliGen-V2](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen-V2) 发布!相比于 V1 版本,训练数据集变为 [Qwen-Image-Self-Generated-Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Qwen-Image-Self-Generated-Dataset),因此,生成的图像更符合 Qwen-Image 本身的图像分布和风格。 请参考[我们的示例代码](./examples/qwen_image/model_inference_low_vram/Qwen-Image-EliGen-V2.py)。 | |
| - **2025年8月21日** 我们开源了 [DiffSynth-Studio/Qwen-Image-In-Context-Control-Union](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-In-Context-Control-Union) 结构控制 LoRA 模型,采用 In Context 的技术路线,支持多种类别的结构控制条件,包括 canny, depth, lineart, softedge, normal, openpose。 请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-In-Context-Control-Union.py)。 | |
| - **2025年8月20日** 我们开源了 [DiffSynth-Studio/Qwen-Image-Edit-Lowres-Fix](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Edit-Lowres-Fix) 模型,提升了 Qwen-Image-Edit 对低分辨率图像输入的编辑效果。请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-Edit-Lowres-Fix.py) | |
| - **2025年8月19日** 🔥 Qwen-Image-Edit 开源,欢迎图像编辑模型新成员! | |
| - **2025年8月18日** 我们训练并开源了 Qwen-Image 的图像重绘 ControlNet 模型 [DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Inpaint),模型结构采用了轻量化的设计,请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Inpaint.py)。 | |
| - **2025年8月15日** 我们开源了 [Qwen-Image-Self-Generated-Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Qwen-Image-Self-Generated-Dataset) 数据集。这是一个使用 Qwen-Image 模型生成的图像数据集,共包含 160,000 张`1024 x 1024`图像。它包括通用、英文文本渲染和中文文本渲染子集。我们为每张图像提供了图像描述、实体和结构控制图像的标注。开发者可以使用这个数据集来训练 Qwen-Image 模型的 ControlNet 和 EliGen 等模型,我们旨在通过开源推动技术发展! | |
| - **2025年8月13日** 我们训练并开源了 Qwen-Image 的 ControlNet 模型 [DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Depth),模型结构采用了轻量化的设计,请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Depth.py)。 | |
| - **2025年8月12日** 我们训练并开源了 Qwen-Image 的 ControlNet 模型 [DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny](https://modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Blockwise-ControlNet-Canny),模型结构采用了轻量化的设计,请参考[我们的示例代码](./examples/qwen_image/model_inference/Qwen-Image-Blockwise-ControlNet-Canny.py)。 | |
| - **2025年8月11日** 我们开源了 Qwen-Image 的蒸馏加速模型 [DiffSynth-Studio/Qwen-Image-Distill-LoRA](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Distill-LoRA),沿用了与 [DiffSynth-Studio/Qwen-Image-Distill-Full](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Distill-Full) 相同的训练流程,但模型结构修改为了 LoRA,因此能够更好地与其他开源生态模型兼容。 | |
| - **2025年8月7日** 我们开源了 Qwen-Image 的实体控制 LoRA 模型 [DiffSynth-Studio/Qwen-Image-EliGen](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-EliGen)。Qwen-Image-EliGen 能够实现实体级可控的文生图。技术细节请参见[论文](https://arxiv.org/abs/2501.01097)。训练数据集:[EliGenTrainSet](https://www.modelscope.cn/datasets/DiffSynth-Studio/EliGenTrainSet)。 | |
| - **2025年8月5日** 我们开源了 Qwen-Image 的蒸馏加速模型 [DiffSynth-Studio/Qwen-Image-Distill-Full](https://www.modelscope.cn/models/DiffSynth-Studio/Qwen-Image-Distill-Full),实现了约 5 倍加速。 | |
| - **2025年8月4日** 🔥 Qwen-Image 开源,欢迎图像生成模型家族新成员! | |
| - **2025年8月1日** [FLUX.1-Krea-dev](https://www.modelscope.cn/models/black-forest-labs/FLUX.1-Krea-dev) 开源,这是一个专注于美学摄影的文生图模型。我们第一时间提供了全方位支持,包括低显存逐层 offload、LoRA 训练、全量训练。详细信息请参考 [./examples/flux/](./examples/flux/)。 | |
| - **2025年7月28日** Wan 2.2 开源,我们第一时间提供了全方位支持,包括低显存逐层 offload、FP8 量化、序列并行、LoRA 训练、全量训练。详细信息请参考 [./examples/wanvideo/](./examples/wanvideo/)。 | |
| - **2025年7月11日** 我们提出 Nexus-Gen,一个将大语言模型(LLM)的语言推理能力与扩散模型的图像生成能力相结合的统一框架。该框架支持无缝的图像理解、生成和编辑任务。 | |
| - 论文: [Nexus-Gen: Unified Image Understanding, Generation, and Editing via Prefilled Autoregression in Shared Embedding Space](https://arxiv.org/pdf/2504.21356) | |
| - Github 仓库: https://github.com/modelscope/Nexus-Gen | |
| - 模型: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Nexus-GenV2), [HuggingFace](https://huggingface.co/modelscope/Nexus-GenV2) | |
| - 训练数据集: [ModelScope Dataset](https://www.modelscope.cn/datasets/DiffSynth-Studio/Nexus-Gen-Training-Dataset) | |
| - 在线体验: [ModelScope Nexus-Gen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/Nexus-Gen) | |
| <details> | |
| <summary>更多</summary> | |
| - **2025年6月15日** ModelScope 官方评测框架 [EvalScope](https://github.com/modelscope/evalscope) 现已支持文生图生成评测。请参考[最佳实践](https://evalscope.readthedocs.io/zh-cn/latest/best_practice/t2i_eval.html)指南进行尝试。 | |
| - **2025年3月25日** 我们的新开源项目 [DiffSynth-Engine](https://github.com/modelscope/DiffSynth-Engine) 现已开源!专注于稳定的模型部署,面向工业界,提供更好的工程支持、更高的计算性能和更稳定的功能。 | |
| - **2025年3月31日** 我们支持 InfiniteYou,一种用于 FLUX 的人脸特征保留方法。更多细节请参考 [./examples/InfiniteYou/](./examples/InfiniteYou/)。 | |
| - **2025年3月13日** 我们支持 HunyuanVideo-I2V,即腾讯开源的 HunyuanVideo 的图像到视频生成版本。更多细节请参考 [./examples/HunyuanVideo/](./examples/HunyuanVideo/)。 | |
| - **2025年2月25日** 我们支持 Wan-Video,这是阿里巴巴开源的一系列最先进的视频合成模型。详见 [./examples/wanvideo/](./examples/wanvideo/)。 | |
| - **2025年2月17日** 我们支持 [StepVideo](https://modelscope.cn/models/stepfun-ai/stepvideo-t2v/summary)!先进的视频合成模型!详见 [./examples/stepvideo](./examples/stepvideo/)。 | |
| - **2024年12月31日** 我们提出 EliGen,一种用于精确实体级别控制的文本到图像生成的新框架,并辅以修复融合管道,将其能力扩展到图像修复任务。EliGen 可以无缝集成现有的社区模型,如 IP-Adapter 和 In-Context LoRA,提升其通用性。更多详情,请见 [./examples/EntityControl](./examples/EntityControl/)。 | |
| - 论文: [EliGen: Entity-Level Controlled Image Generation with Regional Attention](https://arxiv.org/abs/2501.01097) | |
| - 模型: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/Eligen), [HuggingFace](https://huggingface.co/modelscope/EliGen) | |
| - 在线体验: [ModelScope EliGen Studio](https://www.modelscope.cn/studios/DiffSynth-Studio/EliGen) | |
| - 训练数据集: [EliGen Train Set](https://www.modelscope.cn/datasets/DiffSynth-Studio/EliGenTrainSet) | |
| - **2024年12月19日** 我们为 HunyuanVideo 实现了高级显存管理,使得在 24GB 显存下可以生成分辨率为 129x720x1280 的视频,或在仅 6GB 显存下生成分辨率为 129x512x384 的视频。更多细节请参考 [./examples/HunyuanVideo/](./examples/HunyuanVideo/)。 | |
| - **2024年12月18日** 我们提出 ArtAug,一种通过合成-理解交互来改进文生图模型的方法。我们以 LoRA 格式为 FLUX.1-dev 训练了一个 ArtAug 增强模块。该模型将 Qwen2-VL-72B 的美学理解融入 FLUX.1-dev,从而提升了生成图像的质量。 | |
| - 论文: https://arxiv.org/abs/2412.12888 | |
| - 示例: https://github.com/modelscope/DiffSynth-Studio/tree/main/examples/ArtAug | |
| - 模型: [ModelScope](https://www.modelscope.cn/models/DiffSynth-Studio/ArtAug-lora-FLUX.1dev-v1), [HuggingFace](https://huggingface.co/ECNU-CILab/ArtAug-lora-FLUX.1dev-v1) | |
| - 演示: [ModelScope](https://modelscope.cn/aigc/imageGeneration?tab=advanced&versionId=7228&modelType=LoRA&sdVersion=FLUX_1&modelUrl=modelscope%3A%2F%2FDiffSynth-Studio%2FArtAug-lora-FLUX.1dev-v1%3Frevision%3Dv1.0), HuggingFace (即将上线) | |
| - **2024年10月25日** 我们提供了广泛的 FLUX ControlNet 支持。该项目支持许多不同的 ControlNet 模型,并且可以自由组合,即使它们的结构不同。此外,ControlNet 模型兼容高分辨率优化和分区控制技术,能够实现非常强大的可控图像生成。详见 [`./examples/ControlNet/`](./examples/ControlNet/)。 | |
| - **2024年10月8日** 我们发布了基于 CogVideoX-5B 和 ExVideo 的扩展 LoRA。您可以从 [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1) 或 [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-CogVideoX-LoRA-129f-v1) 下载此模型。 | |
| - **2024年8月22日** 本项目现已支持 CogVideoX-5B。详见 [此处](/examples/video_synthesis/)。我们为这个文生视频模型提供了几个有趣的功能,包括: | |
| - 文本到视频 | |
| - 视频编辑 | |
| - 自我超分 | |
| - 视频插帧 | |
| - **2024年8月22日** 我们实现了一个有趣的画笔功能,支持所有文生图模型。现在,您可以在 AI 的辅助下使用画笔创作惊艳的图像了! | |
| - 在我们的 [WebUI](#usage-in-webui) 中使用它。 | |
| - **2024年8月21日** DiffSynth-Studio 现已支持 FLUX。 | |
| - 启用 CFG 和高分辨率修复以提升视觉质量。详见 [此处](/examples/image_synthesis/README.md) | |
| - LoRA、ControlNet 和其他附加模型将很快推出。 | |
| - **2024年6月21日** 我们提出 ExVideo,一种旨在增强视频生成模型能力的后训练微调技术。我们将 Stable Video Diffusion 进行了扩展,实现了长达 128 帧的长视频生成。 | |
| - [项目页面](https://ecnu-cilab.github.io/ExVideoProjectPage/) | |
| - 源代码已在此仓库中发布。详见 [`examples/ExVideo`](./examples/ExVideo/)。 | |
| - 模型已发布于 [HuggingFace](https://huggingface.co/ECNU-CILab/ExVideo-SVD-128f-v1) 和 [ModelScope](https://modelscope.cn/models/ECNU-CILab/ExVideo-SVD-128f-v1)。 | |
| - 技术报告已发布于 [arXiv](https://arxiv.org/abs/2406.14130)。 | |
| - 您可以在此 [演示](https://huggingface.co/spaces/modelscope/ExVideo-SVD-128f-v1) 中试用 ExVideo! | |
| - **2024年6月13日** DiffSynth Studio 已迁移至 ModelScope。开发团队也从“我”转变为“我们”。当然,我仍会参与后续的开发和维护工作。 | |
| - **2024年1月29日** 我们提出 Diffutoon,这是一个出色的卡通着色解决方案。 | |
| - [项目页面](https://ecnu-cilab.github.io/DiffutoonProjectPage/) | |
| - 源代码已在此项目中发布。 | |
| - 技术报告(IJCAI 2024)已发布于 [arXiv](https://arxiv.org/abs/2401.16224)。 | |
| - **2023年12月8日** 我们决定启动一个新项目,旨在释放扩散模型的潜力,尤其是在视频合成方面。该项目的开发工作正式开始。 | |
| - **2023年11月15日** 我们提出 FastBlend,一种强大的视频去闪烁算法。 | |
| - sd-webui 扩展已发布于 [GitHub](https://github.com/Artiprocher/sd-webui-fastblend)。 | |
| - 演示视频已在 Bilibili 上展示,包含三个任务: | |
| - [视频去闪烁](https://www.bilibili.com/video/BV1d94y1W7PE) | |
| - [视频插帧](https://www.bilibili.com/video/BV1Lw411m71p) | |
| - [图像驱动的视频渲染](https://www.bilibili.com/video/BV1RB4y1Z7LF) | |
| - 技术报告已发布于 [arXiv](https://arxiv.org/abs/2311.09265)。 | |
| - 其他用户开发的非官方 ComfyUI 扩展已发布于 [GitHub](https://github.com/AInseven/ComfyUI-fastblend)。 | |
| - **2023年10月1日** 我们发布了该项目的早期版本,名为 FastSDXL。这是构建一个扩散引擎的初步尝试。 | |
| - 源代码已发布于 [GitHub](https://github.com/Artiprocher/FastSDXL)。 | |
| - FastSDXL 包含一个可训练的 OLSS 调度器,以提高效率。 | |
| - OLSS 的原始仓库位于 [此处](https://github.com/alibaba/EasyNLP/tree/master/diffusion/olss_scheduler)。 | |
| - 技术报告(CIKM 2023)已发布于 [arXiv](https://arxiv.org/abs/2305.14677)。 | |
| - 演示视频已发布于 [Bilibili](https://www.bilibili.com/video/BV1w8411y7uj)。 | |
| - 由于 OLSS 需要额外训练,我们未在本项目中实现它。 | |
| - **2023年8月29日** 我们提出 DiffSynth,一个视频合成框架。 | |
| - [项目页面](https://ecnu-cilab.github.io/DiffSynth.github.io/)。 | |
| - 源代码已发布在 [EasyNLP](https://github.com/alibaba/EasyNLP/tree/master/diffusion/DiffSynth)。 | |
| - 技术报告(ECML PKDD 2024)已发布于 [arXiv](https://arxiv.org/abs/2308.03463)。 | |
| </details> | |