LLaDA2.0-flash / README.md
mackenzietechdocs's picture
Add model-index evaluation metadata for LLaDA2.0-flash to README
2a86ac6 verified
|
raw
history blame
8.57 kB
---
license: apache-2.0
library_name: transformers
tags:
- dllm
- diffusion
- llm
- text_generation
model-index:
- name: LLaDA2.0-flash
results:
- task:
name: Text Generation
type: text-generation
dataset:
name: Benchmarks
type: benchmarks
metrics:
- name: Average
type: average
value: 79.32
# Knowledge
- name: MMLU
type: mmlu
value: 87.69
- name: MMLU-Pro
type: mmlu-pro
value: 73.36
- name: GPQA
type: gpqa
value: 61.98
- name: ARC-C
type: arc-c
value: 95.93
- name: CMMLU
type: cmmlu
value: 85.13
- name: C-EVAL
type: c-eval
value: 86.75
- name: GAOKAO-Bench
type: gaokao-bench
value: 93.90
# Reasoning
- name: SQuAD 2.0
type: squad-v2
value: 90.00
- name: DROP
type: drop
value: 87.90
- name: KOR-Bench
type: kor-bench
value: 64.24
- name: HellaSwag
type: hellaswag
value: 84.97
# Coding
- name: CRUXEval-O
type: cruxeval-o
value: 85.12
- name: MBPP
type: mbpp
value: 88.29
- name: MultiPL-E
type: multipl-e
value: 74.87
- name: HumanEval
type: humaneval
value: 94.51
- name: Bigcodebench-Full
type: bigcodebench-full
value: 41.58
- name: LiveCodeBench
type: livecodebench
value: 42.29
- name: Spider
type: spider
value: 82.49
# Math
- name: GSM8K
type: gsm8k
value: 96.06
- name: MATH
type: math
value: 95.44
- name: OlympiadBench
type: olympiadbench
value: 74.07
- name: AIME 2025
type: aime-2025
value: 60.00
# Agent & Alignment
- name: BFCL_Live
type: bfcl_live
value: 75.43
- name: IFEval-strict -prompt
type: ifeval-strict
value: 81.70
---
# LLaDA2.0-flash
**LLaDA2.0-flash** is a diffusion language model featuring a 100BA6B Mixture-of-Experts (MoE) architecture. As an enhanced, instruction-tuned iteration of the LLaDA2.0 series, it is optimized for practical applications.
<div align="center">
<img src="https://mdn.alipayobjects.com/huamei_qa8qxu/afts/img/A*uOo8QKQMiBwAAAAAgNAAAAgAemJ7AQ/original" width="800" />
</div>
---
| Benchmark | Qwen3-30B-A3B-Instruct-2507| Ling-flash-2.0 | LLaDA2.0-flash-preview | LLaDA2.0-flash |
| :---: | :---: | :---: | :---: | :---: |
| **Average** | 79.47 | 78.03 | 71.92 | 79.32 |
| **Knowledge** | | | | |
| MMLU | 87.13 | 87.98 | 83.15 | 87.69 |
| MMLU-Pro | 74.23 | 76.84 | 49.22 | 73.36 |
| GPQA | 57.34 | 67.12 | 46.59 | 61.98 |
| arc-c | 95.81 | 95.08 | 93.90 | 95.93 |
| CMMLU | 86.36 | 86.59 | 67.53 | 85.13 |
| C-EVAL | 88.17 | 88.03 | 66.54 | 86.75 |
| GAOKAO-Bench | 94.53 | 93.24 | 86.12 | 93.90 |
| **Reasoning** | | | | |
| SQuAD 2.0 | 89.51 | 81.32 | 85.61 | 90.00 |
| DROP | 87.57 | 88.32 | 79.49 | 87.90 |
| KOR-Bench | 68.00 | 68.96 | 37.26 | 64.24 |
| HellaSwag | 86.31 | 81.59 | 86.00 | 84.97 |
| **Coding** | | | | |
| CRUXEval-O | 86.75 | 82.75 | 61.88 | 85.12 |
| MBPP | 86.65 | 85.01 | 77.75 | 88.29 |
| MultiPL-E | 70.67 | 65.76 | 62.43 | 74.87 |
| HumanEval | 93.29 | 85.98 | 80.49 | 94.51 |
| Bigcodebench-Full | 41.49 | 40.70 | 30.44 | 41.58 |
| LiveCodeBench | 41.63 | 44.11 | 28.58 | 42.29 |
| Spider | 81.79 | 80.58 | 81.37 | 82.49 |
| **Math** | | | | |
| GSM8K | 96.36 | 95.45 | 89.01 | 96.06 |
| MATH | 96.70 | 96.1 | 73.50 | 95.44 |
| OlympiadBench | 77.59 | 76.19 | 47.78 | 74.07 |
| AIME 2025 | 61.88 | 55.89 | 23.33 | 60.00 |
| **Agent & Alignment** | | | | |
| BFCL_Live | 73.19 | 67.57 | 74.11 | 75.43 |
| IFEval-strict -prompt | 84.29 | 81.52 | 62.50 | 81.70 |
## πŸš€ Performance Highlights
+ **Leading MoE Architecture**:
The open-source **Mixture-of-Experts (MoE) diffusion large language model** continually trained on the Ling2.0 series with approximately **20 trillion tokens**.
+ **Efficient Inference**:
With **100 billion total parameters**, only **6.1 billion** are activated during inference. LLaDA2.0-flash significantly reduces computational costs while outperforming open-source dense models of similar scale.
+ **Impressive Performance on Code & Complex Reasoning**:
Excels in tasks such as **code generation** and **advanced mathematical reasoning**, demonstrating strong reasoning capabilities.
+ **Tool Use**:
Supports **tool calling** and achieves excellent performance in complex agent-based tasks.
+ **Open & Extensible**:
Fully open-source with commitment to transparency. We plan to release a **leading inference framework** in the future and continue investing in cutting-edge areas like **diffusion LLMs (dLLM)** to drive disruptive innovation.
## πŸ—ΊοΈ What's Next
+ **Supercharged Reasoning with LLaDA 2.0:** LLaDA 2.0 series will be fine-tuned with **Reinforcement Learning**, unlocking a new level of sophisticated reasoning and problem-solving abilities.
+ **Tools for Innovators:** The model was finetuned on the [dFactory](https://github.com/inclusionAI/dFactory) framework using Fully Sharded Data Parallel (FSDP2). We have begun open-sourcing dFactory and will continuously release our advanced post-training technologies. Whether you want to master the current model or build your own customized versions, you'll have the tools you need. Stay tuned for more updates!
---
## πŸ“¦ Model Variants
| Model ID | Description | Hugging Face Link |
| --- | --- | --- |
| `inclusionAI/LLaDA2.0-mini` | Instruction-tuned model, ready for downstream applications. | [πŸ€— Model Card](https://huggingface.co/inclusionAI/LLaDA2.0-mini) |
| `inclusionAI/LLaDA2.0-flash` | Instruction-tuned model, ready for downstream applications. | [πŸ€— Model Card](https://huggingface.co/inclusionAI/LLaDA2.0-flash) |
---
## πŸ” Model Overview
**LLaDA2.0-flash** has the following specifications:
+ **Type**: Mixture-of-Experts (MoE) Diffusion Language Model
+ **Total Parameters (Non-Embedding)**: 100B
+ **Number of Layers**: 32
+ **Attention Heads**: 32
+ **Context Length**: 32,768 tokens
+ **Position Embedding**: Rotary (RoPE)
+ **Vocabulary Size**: 157,184
---
### πŸ€— Hugging Face Transformers
Make sure you have `transformers` and its dependencies installed:
```python
import torch
import torch.nn.functional as F
from transformers import AutoModelForCausalLM
from transformers import AutoTokenizer
model_path = "/path/to/LLaDA2.0-mini-preview"
device = "auto"
model = AutoModelForCausalLM.from_pretrained(
model_path, trust_remote_code=True, device_map=device
)
model = model.to(torch.bfloat16)
model.eval()
tokenizer = AutoTokenizer.from_pretrained(model_path, trust_remote_code=True)
prompt = "Why does Camus think that Sisyphus is happy?"
input_ids = tokenizer.apply_chat_template(
[{"role": "user", "content": prompt}],
add_generation_prompt=True,
tokenize=True,
return_tensors="pt",
)
generated_tokens = model.generate(
inputs=input_ids,
eos_early_stop=True,
gen_length=512,
block_length=32,
steps=32,
temperature=0.0,
)
generated_answer = tokenizer.decode(
generated_tokens[0],
skip_special_tokens=True,
)
print(generated_answer)
```
### Best Practices
To achieve optimal performance, we recommend the following settings:
1. **Sampling Parameters**:
We suggest using `Temperature=0.0`, `block_length=32`, and `steps=32`. Using a higher temperature value may occasionally result in language mixing and a slight decrease in model performance.
2. **Adequate Output Length**:
We recommend using an output length of 32768 tokens for most queries.
---
## 🌐 License
This project is licensed under the terms of the [Apache License 2.0](https://www.apache.org/licenses/LICENSE-2.0).
---
## 🀝 Contact & Collaboration
For questions, collaborations, or feedback, please reach out via [Hugging Face](https://huggingface.co/inclusionAI/LLaDA2.0-flash) or open an issue in the [repository](https://github.com/inclusionAI).
πŸ‘‰ Join us in advancing open, efficient, and intelligent language models!