tinyllama-lora-malicious-classifier

This model is a fine-tuned version of TinyLlama/TinyLlama_v1.1 on an unknown dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4833
  • Accuracy: 0.8289
  • Precision Weighted: 0.8220
  • Recall Weighted: 0.8289
  • F1 Weighted: 0.8239
  • Mcc: 0.7203
  • Balanced Accuracy: 0.7724
  • Macro Fnr: 0.2276
  • Macro Fpr: 0.0897
  • Macro Specificity: 0.9103
  • Per Class: {'jailbreaking': {'TP': 228, 'FP': 103, 'FN': 161, 'TN': 1437, 'FNR': 0.4138817480719794, 'FPR': 0.06688311688311688, 'Specificity': 0.9331168831168831}, 'prompt injection': {'TP': 439, 'FP': 112, 'FN': 131, 'TN': 1247, 'FNR': 0.22982456140350876, 'FPR': 0.08241353936718175, 'Specificity': 0.9175864606328182}, 'unharmful': {'TP': 932, 'FP': 115, 'FN': 38, 'TN': 844, 'FNR': 0.03917525773195876, 'FPR': 0.11991657977059438, 'Specificity': 0.8800834202294057}}

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 2e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • lr_scheduler_warmup_ratio: 0.1
  • num_epochs: 15
  • mixed_precision_training: Native AMP

Training results

Training Loss Epoch Step Validation Loss Accuracy Precision Weighted Recall Weighted F1 Weighted Mcc Balanced Accuracy Macro Fnr Macro Fpr Macro Specificity Per Class
1.0323 1.0 1107 1.0327 0.5702 0.5595 0.5702 0.5636 0.2924 0.5112 0.4888 0.2364 0.7636 {'jailbreaking': {'TP': 113, 'FP': 209, 'FN': 276, 'TN': 1331, 'FNR': 0.7095115681233933, 'FPR': 0.1357142857142857, 'Specificity': 0.8642857142857143}, 'prompt injection': {'TP': 312, 'FP': 238, 'FN': 258, 'TN': 1121, 'FNR': 0.45263157894736844, 'FPR': 0.1751287711552612, 'Specificity': 0.8248712288447387}, 'unharmful': {'TP': 675, 'FP': 382, 'FN': 295, 'TN': 577, 'FNR': 0.30412371134020616, 'FPR': 0.3983315954118874, 'Specificity': 0.6016684045881127}}
0.7496 2.0 2214 0.7073 0.7252 0.7112 0.7252 0.7144 0.5463 0.6529 0.3471 0.1502 0.8498 {'jailbreaking': {'TP': 154, 'FP': 132, 'FN': 235, 'TN': 1408, 'FNR': 0.6041131105398457, 'FPR': 0.08571428571428572, 'Specificity': 0.9142857142857143}, 'prompt injection': {'TP': 386, 'FP': 163, 'FN': 184, 'TN': 1196, 'FNR': 0.32280701754385965, 'FPR': 0.1199411331861663, 'Specificity': 0.8800588668138337}, 'unharmful': {'TP': 859, 'FP': 235, 'FN': 111, 'TN': 724, 'FNR': 0.11443298969072165, 'FPR': 0.24504692387904067, 'Specificity': 0.7549530761209593}}
0.5695 3.0 3321 0.6096 0.7766 0.7636 0.7766 0.7654 0.6323 0.7031 0.2969 0.1215 0.8785 {'jailbreaking': {'TP': 171, 'FP': 106, 'FN': 218, 'TN': 1434, 'FNR': 0.5604113110539846, 'FPR': 0.06883116883116883, 'Specificity': 0.9311688311688312}, 'prompt injection': {'TP': 417, 'FP': 141, 'FN': 153, 'TN': 1218, 'FNR': 0.26842105263157895, 'FPR': 0.10375275938189846, 'Specificity': 0.8962472406181016}, 'unharmful': {'TP': 910, 'FP': 184, 'FN': 60, 'TN': 775, 'FNR': 0.061855670103092786, 'FPR': 0.19186652763295098, 'Specificity': 0.808133472367049}}
0.5059 4.0 4428 0.5686 0.7926 0.7817 0.7926 0.7843 0.6596 0.7245 0.2755 0.1107 0.8893 {'jailbreaking': {'TP': 191, 'FP': 114, 'FN': 198, 'TN': 1426, 'FNR': 0.5089974293059126, 'FPR': 0.07402597402597402, 'Specificity': 0.925974025974026}, 'prompt injection': {'TP': 419, 'FP': 131, 'FN': 151, 'TN': 1228, 'FNR': 0.2649122807017544, 'FPR': 0.0963944076526858, 'Specificity': 0.9036055923473142}, 'unharmful': {'TP': 919, 'FP': 155, 'FN': 51, 'TN': 804, 'FNR': 0.05257731958762887, 'FPR': 0.1616266944734098, 'Specificity': 0.8383733055265902}}
0.4583 5.0 5535 0.5413 0.8056 0.7953 0.8056 0.7977 0.6812 0.7389 0.2611 0.1032 0.8968 {'jailbreaking': {'TP': 199, 'FP': 109, 'FN': 190, 'TN': 1431, 'FNR': 0.4884318766066838, 'FPR': 0.07077922077922078, 'Specificity': 0.9292207792207792}, 'prompt injection': {'TP': 426, 'FP': 126, 'FN': 144, 'TN': 1233, 'FNR': 0.25263157894736843, 'FPR': 0.09271523178807947, 'Specificity': 0.9072847682119205}, 'unharmful': {'TP': 929, 'FP': 140, 'FN': 41, 'TN': 819, 'FNR': 0.042268041237113405, 'FPR': 0.145985401459854, 'Specificity': 0.8540145985401459}}
0.4763 6.0 6642 0.5243 0.8113 0.8028 0.8113 0.8052 0.6910 0.7498 0.2502 0.0994 0.9006 {'jailbreaking': {'TP': 212, 'FP': 113, 'FN': 177, 'TN': 1427, 'FNR': 0.455012853470437, 'FPR': 0.07337662337662337, 'Specificity': 0.9266233766233766}, 'prompt injection': {'TP': 428, 'FP': 120, 'FN': 142, 'TN': 1239, 'FNR': 0.24912280701754386, 'FPR': 0.08830022075055188, 'Specificity': 0.9116997792494481}, 'unharmful': {'TP': 925, 'FP': 131, 'FN': 45, 'TN': 828, 'FNR': 0.04639175257731959, 'FPR': 0.13660062565172054, 'Specificity': 0.8633993743482794}}
0.4283 7.0 7749 0.5095 0.8170 0.8083 0.8170 0.8104 0.7003 0.7546 0.2454 0.0969 0.9031 {'jailbreaking': {'TP': 213, 'FP': 105, 'FN': 176, 'TN': 1435, 'FNR': 0.4524421593830334, 'FPR': 0.06818181818181818, 'Specificity': 0.9318181818181818}, 'prompt injection': {'TP': 430, 'FP': 118, 'FN': 140, 'TN': 1241, 'FNR': 0.24561403508771928, 'FPR': 0.08682855040470934, 'Specificity': 0.9131714495952906}, 'unharmful': {'TP': 933, 'FP': 130, 'FN': 37, 'TN': 829, 'FNR': 0.03814432989690722, 'FPR': 0.13555787278415016, 'Specificity': 0.8644421272158499}}
0.4119 8.0 8856 0.5033 0.8191 0.8116 0.8191 0.8135 0.7041 0.7592 0.2408 0.0951 0.9049 {'jailbreaking': {'TP': 223, 'FP': 118, 'FN': 166, 'TN': 1422, 'FNR': 0.4267352185089974, 'FPR': 0.07662337662337662, 'Specificity': 0.9233766233766234}, 'prompt injection': {'TP': 422, 'FP': 105, 'FN': 148, 'TN': 1254, 'FNR': 0.2596491228070175, 'FPR': 0.0772626931567329, 'Specificity': 0.9227373068432672}, 'unharmful': {'TP': 935, 'FP': 126, 'FN': 35, 'TN': 833, 'FNR': 0.03608247422680412, 'FPR': 0.13138686131386862, 'Specificity': 0.8686131386861314}}
0.412 9.0 9963 0.4955 0.8253 0.8178 0.8253 0.8199 0.7143 0.7671 0.2329 0.0916 0.9084 {'jailbreaking': {'TP': 222, 'FP': 103, 'FN': 167, 'TN': 1437, 'FNR': 0.42930591259640105, 'FPR': 0.06688311688311688, 'Specificity': 0.9331168831168831}, 'prompt injection': {'TP': 440, 'FP': 118, 'FN': 130, 'TN': 1241, 'FNR': 0.22807017543859648, 'FPR': 0.08682855040470934, 'Specificity': 0.9131714495952906}, 'unharmful': {'TP': 930, 'FP': 116, 'FN': 40, 'TN': 843, 'FNR': 0.041237113402061855, 'FPR': 0.12095933263816476, 'Specificity': 0.8790406673618353}}
0.496 10.0 11070 0.4926 0.8289 0.8214 0.8289 0.8232 0.7202 0.7703 0.2297 0.0903 0.9097 {'jailbreaking': {'TP': 224, 'FP': 98, 'FN': 165, 'TN': 1442, 'FNR': 0.4241645244215938, 'FPR': 0.06363636363636363, 'Specificity': 0.9363636363636364}, 'prompt injection': {'TP': 439, 'FP': 113, 'FN': 131, 'TN': 1246, 'FNR': 0.22982456140350876, 'FPR': 0.08314937454010302, 'Specificity': 0.9168506254598969}, 'unharmful': {'TP': 936, 'FP': 119, 'FN': 34, 'TN': 840, 'FNR': 0.03505154639175258, 'FPR': 0.12408759124087591, 'Specificity': 0.8759124087591241}}
0.428 11.0 12177 0.4890 0.8258 0.8191 0.8258 0.8207 0.7154 0.7677 0.2323 0.0913 0.9087 {'jailbreaking': {'TP': 230, 'FP': 117, 'FN': 159, 'TN': 1423, 'FNR': 0.4087403598971722, 'FPR': 0.07597402597402597, 'Specificity': 0.924025974025974}, 'prompt injection': {'TP': 424, 'FP': 99, 'FN': 146, 'TN': 1260, 'FNR': 0.256140350877193, 'FPR': 0.0728476821192053, 'Specificity': 0.9271523178807947}, 'unharmful': {'TP': 939, 'FP': 120, 'FN': 31, 'TN': 839, 'FNR': 0.031958762886597936, 'FPR': 0.1251303441084463, 'Specificity': 0.8748696558915537}}
0.4103 12.0 13284 0.4866 0.8269 0.8191 0.8269 0.8206 0.7166 0.7669 0.2331 0.0922 0.9078 {'jailbreaking': {'TP': 221, 'FP': 99, 'FN': 168, 'TN': 1441, 'FNR': 0.4318766066838046, 'FPR': 0.06428571428571428, 'Specificity': 0.9357142857142857}, 'prompt injection': {'TP': 437, 'FP': 107, 'FN': 133, 'TN': 1252, 'FNR': 0.23333333333333334, 'FPR': 0.07873436350257543, 'Specificity': 0.9212656364974245}, 'unharmful': {'TP': 937, 'FP': 128, 'FN': 33, 'TN': 831, 'FNR': 0.03402061855670103, 'FPR': 0.1334723670490094, 'Specificity': 0.8665276329509907}}
0.4009 13.0 14391 0.4833 0.8289 0.8220 0.8289 0.8239 0.7203 0.7724 0.2276 0.0897 0.9103 {'jailbreaking': {'TP': 228, 'FP': 103, 'FN': 161, 'TN': 1437, 'FNR': 0.4138817480719794, 'FPR': 0.06688311688311688, 'Specificity': 0.9331168831168831}, 'prompt injection': {'TP': 439, 'FP': 112, 'FN': 131, 'TN': 1247, 'FNR': 0.22982456140350876, 'FPR': 0.08241353936718175, 'Specificity': 0.9175864606328182}, 'unharmful': {'TP': 932, 'FP': 115, 'FN': 38, 'TN': 844, 'FNR': 0.03917525773195876, 'FPR': 0.11991657977059438, 'Specificity': 0.8800834202294057}}
0.4242 14.0 15498 0.4834 0.8284 0.8211 0.8284 0.8228 0.7193 0.7700 0.2300 0.0906 0.9094 {'jailbreaking': {'TP': 226, 'FP': 105, 'FN': 163, 'TN': 1435, 'FNR': 0.4190231362467866, 'FPR': 0.06818181818181818, 'Specificity': 0.9318181818181818}, 'prompt injection': {'TP': 435, 'FP': 104, 'FN': 135, 'TN': 1255, 'FNR': 0.23684210526315788, 'FPR': 0.07652685798381163, 'Specificity': 0.9234731420161884}, 'unharmful': {'TP': 937, 'FP': 122, 'FN': 33, 'TN': 837, 'FNR': 0.03402061855670103, 'FPR': 0.12721584984358708, 'Specificity': 0.872784150156413}}
0.3859 15.0 16605 0.4829 0.8269 0.8197 0.8269 0.8215 0.7168 0.7692 0.2308 0.0912 0.9088 {'jailbreaking': {'TP': 226, 'FP': 106, 'FN': 163, 'TN': 1434, 'FNR': 0.4190231362467866, 'FPR': 0.06883116883116883, 'Specificity': 0.9311688311688312}, 'prompt injection': {'TP': 436, 'FP': 107, 'FN': 134, 'TN': 1252, 'FNR': 0.23508771929824562, 'FPR': 0.07873436350257543, 'Specificity': 0.9212656364974245}, 'unharmful': {'TP': 933, 'FP': 121, 'FN': 37, 'TN': 838, 'FNR': 0.03814432989690722, 'FPR': 0.1261730969760167, 'Specificity': 0.8738269030239834}}

Framework versions

  • PEFT 0.17.1
  • Transformers 4.53.3
  • Pytorch 2.6.0+cu124
  • Datasets 4.3.0
  • Tokenizers 0.21.4
Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for hurtmongoose/tinyllama-lora-malicious-classifier

Adapter
(318)
this model

Evaluation results