ChronoMind-Ω
ChronoMind-Ω is a Level-5 causal time-series forecasting engine designed to perform multi-horizon predictions with explainable trend attribution and uncertainty estimation.
It fuses temporal transformer modeling, causal inference, regime change detection, and confidence interval modeling into a single, research-grade forecasting system.
🚀 Key Capabilities
- 🔮 Multi-Horizon Forecasting
- 🧠 Temporal Transformers
- 🔗 Causal Inference
- 🔄 Regime Change Detection
- 📊 Uncertainty & Confidence Intervals
- 🧩 Explainable Trend Attribution
- 🤗 Hugging Face–Ready (
time-series-forecasting)
🧠 System Architecture
Raw Time-Series
↓
Data Loader & Normalization
↓
Temporal Transformer Encoder
↓
Causal Inference Module
↓
Regime Change Detector
↓
Multi-Horizon Forecaster
↓
Uncertainty & Confidence Intervals
↓
Trend Attribution Explainer
📥 Input Format
{
"series": [0.1, 0.2, 0.35, 0.3, 0.45, 0.6],
"horizons": [1, 6, 12],
"causal_features": {
"holiday_effect": [0, 0, 1, 0, 0, 1]
},
"confidence_levels": [0.8, 0.95]
}
📤 Output Format
{
"forecasts": {
"1": 0.63,
"6": 0.79,
"12": 0.95
},
"confidence_intervals": {
"1": {
"0.8": [0.58, 0.68],
"0.95": [0.54, 0.72]
}
},
"causal_effect": 0.12,
"regimes": [0, 0, 1, 0, 1],
"trend": "upward"
}
🛠️ Installation & Usage
git clone https://huggingface.co/<your-username>/chronomind-omega
cd chronomind-omega
python inference.py
📁 Project Structure
chronomind-omega/
├── configs/
├── data/
├── src/
├── inference.py
├── evaluation.py
├── README.md
├── model_card.md
├── LICENSE
└── requirements.txt
🎯 Use Cases
- Financial market forecasting
- Demand & sales prediction
- Energy & climate modeling
- Supply chain forecasting
- Causal time-series analysis
🔮 Future Improvements
- Full transformer encoder
- Bayesian uncertainty modeling
- Multivariate forecasting
- Interactive dashboard
📜 License
Apache License 2.0
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
🙋
Ask for provider support