Litter Detection Model (YOLOv8)

This model detects plastic litter (bags and bottles) in images using YOLOv8.

Model Description

  • Base Model: yolov8n.pt
  • Task: Object Detection
  • Classes: Litter
  • Framework: PyTorch + Ultralytics YOLO

Training Details

Parameter Value
Epochs 8
Batch Size 16
Image Size 640px
Optimizer AdamW
Learning Rate 0.001

Usage

Install Dependencies

pip install ultralytics huggingface_hub

Download and Use Model

from ultralytics import YOLO
from huggingface_hub import hf_hub_download

# Download model
model_path = hf_hub_download(
    repo_id="esapzoi/litter-detection-yolov8", 
    filename="best.pt"
)

# Load model
model = YOLO(model_path)

# Run inference
results = model.predict("path/to/image.jpg", conf=0.25)

# Process results
for result in results:
    boxes = result.boxes
    for box in boxes:
        class_id = int(box.cls[0])
        confidence = float(box.conf[0])
        class_name = model.names[class_id]
        print(f"Detected: {class_name} ({confidence:.2%})")

Batch Processing

# Process multiple images
results = model.predict(["img1.jpg", "img2.jpg", "img3.jpg"])

# Save annotated images
for i, result in enumerate(results):
    result.save(filename=f"result_{i}.jpg")

Classes

ID Class Name
0 Litter

Performance

Use this model for litter detection systems, environmental monitoring, and waste management applications.

Citation

If you use this model, please cite:

@misc{litter_detection_yolov8,
  author = {Your Name},
  title = {Litter Detection with YOLOv8},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/esapzoi/litter-detection-yolov8}
}

License

MIT License

Training Data

Model trained on plastic litter detection dataset focusing on bags and bottles.

Downloads last month
21
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support