metadata
license: apache-2.0
task_categories:
- visual-question-answering
- question-answering
language:
- en
- zh
size_categories:
- 1K<n<10K
configs:
- config_name: DynVQA_en
data_files:
- split: test
path: test/DynVQA_en/DynVQA_en.202412.jsonl
default: true
- config_name: DynVQA_zh
data_files:
- split: test
path: test/DynVQA_zh/DynVQA_zh.202412.jsonl
π Dyn-VQA Dataset
π Dataset for Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent
π This dataset is linked to GitHub at this URL.
The json item of Dyn-VQA dataset is organized in the following format:
{
"image_url": "https://www.pcarmarket.com/static/media/uploads/galleries/photos/uploads/galleries/22387-pasewark-1986-porsche-944/.thumbnails/IMG_7102.JPG.jpg/IMG_7102.JPG-tiny-2048x0-0.5x0.jpg",
"question": "What is the model of car from this brand?",
"question_id": 'qid',
"answer": ["δΏζΆζ· 944", "Porsche 944."]
}
π₯ The Dyn-VQA will be updated regularly. Laset version: 202502.
π Citation
@article{li2024benchmarkingmultimodalretrievalaugmented,
title={Benchmarking Multimodal Retrieval Augmented Generation with Dynamic VQA Dataset and Self-adaptive Planning Agent},
author={Yangning Li and Yinghui Li and Xinyu Wang and Yong Jiang and Zhen Zhang and Xinran Zheng and Hui Wang and Hai-Tao Zheng and Pengjun Xie and Philip S. Yu and Fei Huang and Jingren Zhou},
year={2024},
eprint={2411.02937},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2411.02937},
}
When citing our work, please kindly consider citing the original papers. The relevant citation information is listed here.