function_name
stringlengths 1
57
| function_code
stringlengths 20
4.99k
| documentation
stringlengths 50
2k
| language
stringclasses 5
values | file_path
stringlengths 8
166
| line_number
int32 4
16.7k
| parameters
listlengths 0
20
| return_type
stringlengths 0
131
| has_type_hints
bool 2
classes | complexity
int32 1
51
| quality_score
float32 6
9.68
| repo_name
stringclasses 34
values | repo_stars
int32 2.9k
242k
| docstring_style
stringclasses 7
values | is_async
bool 2
classes |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
indexOf
|
@Override
public int indexOf(Advisor advisor) {
Assert.notNull(advisor, "Advisor must not be null");
return this.advisors.indexOf(advisor);
}
|
Remove a proxied interface.
<p>Does nothing if the given interface isn't proxied.
@param ifc the interface to remove from the proxy
@return {@code true} if the interface was removed; {@code false}
if the interface was not found and hence could not be removed
|
java
|
spring-aop/src/main/java/org/springframework/aop/framework/AdvisedSupport.java
| 348
|
[
"advisor"
] | true
| 1
| 7.04
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
tryUpdatingPreferredReadReplica
|
public synchronized boolean tryUpdatingPreferredReadReplica(TopicPartition tp,
int preferredReadReplicaId,
LongSupplier timeMs) {
final TopicPartitionState state = assignedStateOrNull(tp);
if (state != null) {
assignedState(tp).updatePreferredReadReplica(preferredReadReplicaId, timeMs);
return true;
}
return false;
}
|
Tries to set the preferred read replica with a lease timeout. After this time, the replica will no longer be valid and
{@link #preferredReadReplica(TopicPartition, long)} will return an empty result. If the preferred replica of
the partition could not be updated (e.g. because the partition is not assigned) this method will return
{@code false}, otherwise it will return {@code true}.
@param tp The topic partition
@param preferredReadReplicaId The preferred read replica
@param timeMs The time at which this preferred replica is no longer valid
@return {@code true} if the preferred read replica was updated, {@code false} otherwise.
|
java
|
clients/src/main/java/org/apache/kafka/clients/consumer/internals/SubscriptionState.java
| 733
|
[
"tp",
"preferredReadReplicaId",
"timeMs"
] | true
| 2
| 7.92
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
baseHasIn
|
function baseHasIn(object, key) {
return object != null && key in Object(object);
}
|
The base implementation of `_.hasIn` without support for deep paths.
@private
@param {Object} [object] The object to query.
@param {Array|string} key The key to check.
@returns {boolean} Returns `true` if `key` exists, else `false`.
|
javascript
|
lodash.js
| 3,147
|
[
"object",
"key"
] | false
| 2
| 6
|
lodash/lodash
| 61,490
|
jsdoc
| false
|
|
default_dtypes
|
def default_dtypes(self, *, device=None):
"""
The default data types used for new PyTorch arrays.
Parameters
----------
device : Device, optional
The device to get the default data types for.
Unused for PyTorch, as all devices use the same default dtypes.
Returns
-------
dtypes : dict
A dictionary describing the default data types used for new PyTorch
arrays.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = xp.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': torch.float32,
'complex floating': torch.complex64,
'integral': torch.int64,
'indexing': torch.int64}
"""
# Note: if the default is set to float64, the devices like MPS that
# don't support float64 will error. We still return the default_dtype
# value here because this error doesn't represent a different default
# per-device.
default_floating = torch.get_default_dtype()
default_complex = torch.complex64 if default_floating == torch.float32 else torch.complex128
default_integral = torch.int64
return {
"real floating": default_floating,
"complex floating": default_complex,
"integral": default_integral,
"indexing": default_integral,
}
|
The default data types used for new PyTorch arrays.
Parameters
----------
device : Device, optional
The device to get the default data types for.
Unused for PyTorch, as all devices use the same default dtypes.
Returns
-------
dtypes : dict
A dictionary describing the default data types used for new PyTorch
arrays.
See Also
--------
__array_namespace_info__.capabilities,
__array_namespace_info__.default_device,
__array_namespace_info__.dtypes,
__array_namespace_info__.devices
Examples
--------
>>> info = xp.__array_namespace_info__()
>>> info.default_dtypes()
{'real floating': torch.float32,
'complex floating': torch.complex64,
'integral': torch.int64,
'indexing': torch.int64}
|
python
|
sklearn/externals/array_api_compat/torch/_info.py
| 126
|
[
"self",
"device"
] | false
| 2
| 7.2
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
getKeyParameters
|
public CacheInvocationParameter[] getKeyParameters(@Nullable Object... values) {
List<CacheInvocationParameter> result = new ArrayList<>();
for (CacheParameterDetail keyParameterDetail : this.keyParameterDetails) {
int parameterPosition = keyParameterDetail.getParameterPosition();
if (parameterPosition >= values.length) {
throw new IllegalStateException("Values mismatch, key parameter at position " +
parameterPosition + " cannot be matched against " + values.length + " value(s)");
}
result.add(keyParameterDetail.toCacheInvocationParameter(values[parameterPosition]));
}
return result.toArray(new CacheInvocationParameter[0]);
}
|
Return the {@link CacheInvocationParameter} for the parameters that are to be
used to compute the key.
<p>Per the spec, if some method parameters are annotated with
{@link javax.cache.annotation.CacheKey}, only those parameters should be part
of the key. If none are annotated, all parameters except the parameter annotated
with {@link javax.cache.annotation.CacheValue} should be part of the key.
<p>The method arguments must match the signature of the related method invocation
@param values the parameters value for a particular invocation
@return the {@link CacheInvocationParameter} instances for the parameters to be
used to compute the key
|
java
|
spring-context-support/src/main/java/org/springframework/cache/jcache/interceptor/AbstractJCacheKeyOperation.java
| 79
|
[] | true
| 2
| 7.44
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
get_params
|
def get_params(self, deep=True):
"""Get parameters of this kernel.
Parameters
----------
deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
"""
params = dict()
# introspect the constructor arguments to find the model parameters
# to represent
cls = self.__class__
init = getattr(cls.__init__, "deprecated_original", cls.__init__)
init_sign = signature(init)
args, varargs = [], []
for parameter in init_sign.parameters.values():
if parameter.kind != parameter.VAR_KEYWORD and parameter.name != "self":
args.append(parameter.name)
if parameter.kind == parameter.VAR_POSITIONAL:
varargs.append(parameter.name)
if len(varargs) != 0:
raise RuntimeError(
"scikit-learn kernels should always "
"specify their parameters in the signature"
" of their __init__ (no varargs)."
" %s doesn't follow this convention." % (cls,)
)
for arg in args:
params[arg] = getattr(self, arg)
return params
|
Get parameters of this kernel.
Parameters
----------
deep : bool, default=True
If True, will return the parameters for this estimator and
contained subobjects that are estimators.
Returns
-------
params : dict
Parameter names mapped to their values.
|
python
|
sklearn/gaussian_process/kernels.py
| 178
|
[
"self",
"deep"
] | false
| 7
| 6.08
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
put
|
public JSONArray put(boolean value) {
this.values.add(value);
return this;
}
|
Appends {@code value} to the end of this array.
@param value the value
@return this array.
|
java
|
cli/spring-boot-cli/src/json-shade/java/org/springframework/boot/cli/json/JSONArray.java
| 133
|
[
"value"
] |
JSONArray
| true
| 1
| 6.96
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
getOrder
|
public int getOrder(String beanName, Object beanInstance) {
OrderComparator comparator = (getDependencyComparator() instanceof OrderComparator orderComparator ?
orderComparator : OrderComparator.INSTANCE);
return comparator.getOrder(beanInstance,
new FactoryAwareOrderSourceProvider(Collections.singletonMap(beanInstance, beanName)));
}
|
Public method to determine the applicable order value for a given bean.
@param beanName the name of the bean
@param beanInstance the bean instance to check
@return the corresponding order value (default is {@link Ordered#LOWEST_PRECEDENCE})
@since 7.0
@see #getOrder(String)
|
java
|
spring-beans/src/main/java/org/springframework/beans/factory/support/DefaultListableBeanFactory.java
| 2,375
|
[
"beanName",
"beanInstance"
] | true
| 2
| 7.44
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
humanReadable
|
public boolean humanReadable() {
return this.humanReadable;
}
|
@return the value of the "human readable" flag. When the value is equal to true,
some types of values are written in a format easier to read for a human.
|
java
|
libs/x-content/src/main/java/org/elasticsearch/xcontent/XContentBuilder.java
| 323
|
[] | true
| 1
| 6.96
|
elastic/elasticsearch
| 75,680
|
javadoc
| false
|
|
matches
|
public static boolean matches(MethodMatcher mm, Method method, Class<?> targetClass, boolean hasIntroductions) {
Assert.notNull(mm, "MethodMatcher must not be null");
return (mm instanceof IntroductionAwareMethodMatcher iamm ?
iamm.matches(method, targetClass, hasIntroductions) :
mm.matches(method, targetClass));
}
|
Apply the given MethodMatcher to the given Method, supporting an
{@link org.springframework.aop.IntroductionAwareMethodMatcher}
(if applicable).
@param mm the MethodMatcher to apply (may be an IntroductionAwareMethodMatcher)
@param method the candidate method
@param targetClass the target class
@param hasIntroductions {@code true} if the object on whose behalf we are
asking is the subject on one or more introductions; {@code false} otherwise
@return whether this method matches statically
|
java
|
spring-aop/src/main/java/org/springframework/aop/support/MethodMatchers.java
| 109
|
[
"mm",
"method",
"targetClass",
"hasIntroductions"
] | true
| 2
| 7.44
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
_nan_mask
|
def _nan_mask(a, out=None):
"""
Parameters
----------
a : array-like
Input array with at least 1 dimension.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output and will prevent the allocation of a new array.
Returns
-------
y : bool ndarray or True
A bool array where ``np.nan`` positions are marked with ``False``
and other positions are marked with ``True``. If the type of ``a``
is such that it can't possibly contain ``np.nan``, returns ``True``.
"""
# we assume that a is an array for this private function
if a.dtype.kind not in 'fc':
return True
y = np.isnan(a, out=out)
y = np.invert(y, out=y)
return y
|
Parameters
----------
a : array-like
Input array with at least 1 dimension.
out : ndarray, optional
Alternate output array in which to place the result. The default
is ``None``; if provided, it must have the same shape as the
expected output and will prevent the allocation of a new array.
Returns
-------
y : bool ndarray or True
A bool array where ``np.nan`` positions are marked with ``False``
and other positions are marked with ``True``. If the type of ``a``
is such that it can't possibly contain ``np.nan``, returns ``True``.
|
python
|
numpy/lib/_nanfunctions_impl.py
| 43
|
[
"a",
"out"
] | false
| 2
| 6.24
|
numpy/numpy
| 31,054
|
numpy
| false
|
|
meanBy
|
function meanBy(array, iteratee) {
return baseMean(array, getIteratee(iteratee, 2));
}
|
This method is like `_.mean` except that it accepts `iteratee` which is
invoked for each element in `array` to generate the value to be averaged.
The iteratee is invoked with one argument: (value).
@static
@memberOf _
@since 4.7.0
@category Math
@param {Array} array The array to iterate over.
@param {Function} [iteratee=_.identity] The iteratee invoked per element.
@returns {number} Returns the mean.
@example
var objects = [{ 'n': 4 }, { 'n': 2 }, { 'n': 8 }, { 'n': 6 }];
_.meanBy(objects, function(o) { return o.n; });
// => 5
// The `_.property` iteratee shorthand.
_.meanBy(objects, 'n');
// => 5
|
javascript
|
lodash.js
| 16,491
|
[
"array",
"iteratee"
] | false
| 1
| 6.24
|
lodash/lodash
| 61,490
|
jsdoc
| false
|
|
toString
|
@Override
public String toString() {
ToStringCreator creator = new ToStringCreator(this);
creator.append("type", this.type);
creator.append("value", (this.value != null) ? "provided" : "none");
creator.append("annotations", this.annotations);
creator.append("bindMethod", this.bindMethod);
return creator.toString();
}
|
Returns the {@link BindMethod method} to be used to bind this bindable, or
{@code null} if no specific binding method is required.
@return the bind method or {@code null}
@since 3.0.8
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/context/properties/bind/Bindable.java
| 164
|
[] |
String
| true
| 2
| 8.08
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
check_for_bucket
|
def check_for_bucket(self, bucket_name: str | None = None) -> bool:
"""
Check if bucket_name exists.
.. seealso::
- :external+boto3:py:meth:`S3.Client.head_bucket`
:param bucket_name: the name of the bucket
:return: True if it exists and False if not.
"""
try:
self.get_conn().head_bucket(Bucket=bucket_name)
return True
except ClientError as e:
# The head_bucket api is odd in that it cannot return proper
# exception objects, so error codes must be used. Only 200, 404 and 403
# are ever returned. See the following links for more details:
# https://github.com/boto/boto3/issues/2499
# https://boto3.amazonaws.com/v1/documentation/api/latest/reference/services/s3.html#S3.Client.head_bucket
return_code = int(e.response["Error"]["Code"])
if return_code == 404:
self.log.info('Bucket "%s" does not exist', bucket_name)
elif return_code == 403:
self.log.error(
'Access to bucket "%s" is forbidden or there was an error with the request',
bucket_name,
)
self.log.error(e)
return False
|
Check if bucket_name exists.
.. seealso::
- :external+boto3:py:meth:`S3.Client.head_bucket`
:param bucket_name: the name of the bucket
:return: True if it exists and False if not.
|
python
|
providers/amazon/src/airflow/providers/amazon/aws/hooks/s3.py
| 296
|
[
"self",
"bucket_name"
] |
bool
| true
| 3
| 7.76
|
apache/airflow
| 43,597
|
sphinx
| false
|
create_multiarch_bundle
|
def create_multiarch_bundle(code_objects: dict, output_bundle_path: str) -> bool:
"""
Bundle multiple architecture code objects into a single multi-arch bundle.
Uses clang-offload-bundler to create a fat binary that HIP runtime can load.
The runtime automatically selects the correct architecture at load time.
Args:
code_objects: Dict mapping architecture to code object path
output_bundle_path: Path for output bundle
Returns:
True if successful
"""
if not code_objects:
return False
os.makedirs(os.path.dirname(output_bundle_path), exist_ok=True)
try:
bundler = get_rocm_bundler()
except RuntimeError:
return False
# Build targets and inputs lists for clang-offload-bundler
targets = ["host-x86_64-unknown-linux-gnu"]
# We include a dummy host entry to satisfy the bundler format
inputs = ["/dev/null"]
for arch, path in sorted(code_objects.items()):
if not os.path.exists(path):
continue
# hipv4 = HIP version 4 code object format
# amdgcn-amd-amdhsa = target triple for ROCm/HSA runtime
# arch = specific GPU (gfx90a, gfx942, etc.)
targets.append(f"hipv4-amdgcn-amd-amdhsa--{arch}")
inputs.append(path)
if len(inputs) == 1: # Only host, no device code
return False
cmd = [
bundler,
"--type=o",
# CRITICAL: HIP runtime expects 4096-byte alignment for loading bundles
# Without this, hipModuleLoadData gives segmentation fault
"-bundle-align=4096", # CRITICAL: Required by HIP runtime!
f"--targets={','.join(targets)}",
]
for input_file in inputs:
cmd.append(f"--input={input_file}")
cmd.append(f"--output={output_bundle_path}")
try:
subprocess.run(cmd, capture_output=True, text=True, check=True)
if not os.path.exists(output_bundle_path):
return False
return True
except subprocess.CalledProcessError:
return False
|
Bundle multiple architecture code objects into a single multi-arch bundle.
Uses clang-offload-bundler to create a fat binary that HIP runtime can load.
The runtime automatically selects the correct architecture at load time.
Args:
code_objects: Dict mapping architecture to code object path
output_bundle_path: Path for output bundle
Returns:
True if successful
|
python
|
torch/_inductor/rocm_multiarch_utils.py
| 147
|
[
"code_objects",
"output_bundle_path"
] |
bool
| true
| 7
| 7.6
|
pytorch/pytorch
| 96,034
|
google
| false
|
load_file
|
def load_file(
self,
filename: Path | str,
key: str,
bucket_name: str | None = None,
replace: bool = False,
encrypt: bool = False,
gzip: bool = False,
acl_policy: str | None = None,
) -> None:
"""
Load a local file to S3.
.. seealso::
- :external+boto3:py:meth:`S3.Client.upload_file`
:param filename: path to the file to load.
:param key: S3 key that will point to the file
:param bucket_name: Name of the bucket in which to store the file
:param replace: A flag to decide whether or not to overwrite the key
if it already exists. If replace is False and the key exists, an
error will be raised.
:param encrypt: If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.
:param gzip: If True, the file will be compressed locally
:param acl_policy: String specifying the canned ACL policy for the file being
uploaded to the S3 bucket.
"""
filename = str(filename)
if not replace and self.check_for_key(key, bucket_name):
raise ValueError(f"The key {key} already exists.")
extra_args = self.extra_args
if encrypt:
extra_args["ServerSideEncryption"] = "AES256"
if gzip:
with open(filename, "rb") as f_in:
filename_gz = f"{f_in.name}.gz"
with gz.open(filename_gz, "wb") as f_out:
shutil.copyfileobj(f_in, f_out)
filename = filename_gz
if acl_policy:
extra_args["ACL"] = acl_policy
if self._requester_pays:
extra_args["RequestPayer"] = "requester"
client = self.get_conn()
client.upload_file(
filename,
bucket_name,
key,
ExtraArgs=extra_args,
Config=self.transfer_config,
)
get_hook_lineage_collector().add_input_asset(
context=self, scheme="file", asset_kwargs={"path": filename}
)
get_hook_lineage_collector().add_output_asset(
context=self, scheme="s3", asset_kwargs={"bucket": bucket_name, "key": key}
)
|
Load a local file to S3.
.. seealso::
- :external+boto3:py:meth:`S3.Client.upload_file`
:param filename: path to the file to load.
:param key: S3 key that will point to the file
:param bucket_name: Name of the bucket in which to store the file
:param replace: A flag to decide whether or not to overwrite the key
if it already exists. If replace is False and the key exists, an
error will be raised.
:param encrypt: If True, the file will be encrypted on the server-side
by S3 and will be stored in an encrypted form while at rest in S3.
:param gzip: If True, the file will be compressed locally
:param acl_policy: String specifying the canned ACL policy for the file being
uploaded to the S3 bucket.
|
python
|
providers/amazon/src/airflow/providers/amazon/aws/hooks/s3.py
| 1,172
|
[
"self",
"filename",
"key",
"bucket_name",
"replace",
"encrypt",
"gzip",
"acl_policy"
] |
None
| true
| 7
| 6.8
|
apache/airflow
| 43,597
|
sphinx
| false
|
get_variable
|
def get_variable(self, key: str, team_name: str | None = None) -> str | None:
"""
Get Airflow Variable.
:param key: Variable Key
:param team_name: Team name associated to the task trying to access the variable (if any)
:return: Variable Value
"""
if self.variables_prefix is None:
return None
return self._get_secret(self.variables_prefix, key, self.variables_lookup_pattern)
|
Get Airflow Variable.
:param key: Variable Key
:param team_name: Team name associated to the task trying to access the variable (if any)
:return: Variable Value
|
python
|
providers/amazon/src/airflow/providers/amazon/aws/secrets/secrets_manager.py
| 228
|
[
"self",
"key",
"team_name"
] |
str | None
| true
| 2
| 7.92
|
apache/airflow
| 43,597
|
sphinx
| false
|
toString
|
@Override
public String toString() {
try {
return this.file.getCanonicalPath();
}
catch (IOException ex) {
throw new IllegalStateException(ex);
}
}
|
Create a new {@link ProcessBuilder} that will run with the Java executable.
@param arguments the command arguments
@return a {@link ProcessBuilder}
|
java
|
loader/spring-boot-loader-tools/src/main/java/org/springframework/boot/loader/tools/JavaExecutable.java
| 61
|
[] |
String
| true
| 2
| 7.44
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
create
|
public static <T extends @Nullable Object> BloomFilter<T> create(
Funnel<? super T> funnel, int expectedInsertions, double fpp) {
return create(funnel, (long) expectedInsertions, fpp);
}
|
Creates a {@link BloomFilter} with the expected number of insertions and expected false
positive probability.
<p>Note that overflowing a {@code BloomFilter} with significantly more elements than specified,
will result in its saturation, and a sharp deterioration of its false positive probability.
<p>The constructed {@code BloomFilter} will be serializable if the provided {@code Funnel<T>}
is.
<p>It is recommended that the funnel be implemented as a Java enum. This has the benefit of
ensuring proper serialization and deserialization, which is important since {@link #equals}
also relies on object identity of funnels.
@param funnel the funnel of T's that the constructed {@code BloomFilter} will use
@param expectedInsertions the number of expected insertions to the constructed {@code
BloomFilter}; must be positive
@param fpp the desired false positive probability (must be positive and less than 1.0)
@return a {@code BloomFilter}
|
java
|
android/guava/src/com/google/common/hash/BloomFilter.java
| 396
|
[
"funnel",
"expectedInsertions",
"fpp"
] | true
| 1
| 6.48
|
google/guava
| 51,352
|
javadoc
| false
|
|
equals
|
@Override
public boolean equals(@Nullable Object other) {
return (this == other || (other instanceof AnnotationClassFilter otherCf &&
this.annotationType.equals(otherCf.annotationType) &&
this.checkInherited == otherCf.checkInherited));
}
|
Create a new AnnotationClassFilter for the given annotation type.
@param annotationType the annotation type to look for
@param checkInherited whether to also check the superclasses and
interfaces as well as meta-annotations for the annotation type
(i.e. whether to use {@link AnnotatedElementUtils#hasAnnotation}
semantics instead of standard Java {@link Class#isAnnotationPresent})
|
java
|
spring-aop/src/main/java/org/springframework/aop/support/annotation/AnnotationClassFilter.java
| 70
|
[
"other"
] | true
| 4
| 6.24
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
countNumberOfUnboundAnnotationArguments
|
private int countNumberOfUnboundAnnotationArguments() {
int count = 0;
for (int i = 0; i < this.argumentTypes.length; i++) {
if (isUnbound(i) && isSubtypeOf(Annotation.class, i)) {
count++;
}
}
return count;
}
|
Return {@code true} if the given argument type is a subclass
of the given supertype.
|
java
|
spring-aop/src/main/java/org/springframework/aop/aspectj/AspectJAdviceParameterNameDiscoverer.java
| 699
|
[] | true
| 4
| 7.04
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
iterator
|
public static Iterator<?> iterator(final Object calendar, final int rangeStyle) {
Objects.requireNonNull(calendar, "calendar");
if (calendar instanceof Date) {
return iterator((Date) calendar, rangeStyle);
}
if (calendar instanceof Calendar) {
return iterator((Calendar) calendar, rangeStyle);
}
throw new ClassCastException("Could not iterate based on " + calendar);
}
|
Constructs an {@link Iterator} over each day in a date
range defined by a focus date and range style.
<p>For instance, passing Thursday, July 4, 2002 and a
{@code RANGE_MONTH_SUNDAY} will return an {@link Iterator}
that starts with Sunday, June 30, 2002 and ends with Saturday, August 3,
2002, returning a Calendar instance for each intermediate day.</p>
@param calendar the date to work with, either {@link Date} or {@link Calendar}, not null.
@param rangeStyle the style constant to use. Must be one of the range
styles listed for the {@link #iterator(Calendar, int)} method.
@return the date iterator, not null.
@throws NullPointerException if the date is {@code null}.
@throws ClassCastException if the object type is not a {@link Date} or {@link Calendar}.
|
java
|
src/main/java/org/apache/commons/lang3/time/DateUtils.java
| 1,087
|
[
"calendar",
"rangeStyle"
] | true
| 3
| 8.08
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
setNameFormat
|
@CanIgnoreReturnValue
public ThreadFactoryBuilder setNameFormat(String nameFormat) {
String unused = format(nameFormat, 0); // fail fast if the format is bad or null
this.nameFormat = nameFormat;
return this;
}
|
Sets the naming format to use when naming threads ({@link Thread#setName}) which are created
with this ThreadFactory.
<p><b>Java 21+ users:</b> use {@link Thread.Builder#name(String, long)} instead. Note that
{@link #setNameFormat} accepts a thread name <i>format string</i> (e.g., {@code
threadFactoryBuilder.setNameFormat("rpc-pool-%d")}), while {@code threadBuilder.name()} accepts
a thread name <i>prefix</i> and initial counter value (e.g., {@code
threadBuilder.name("rpc-pool-", 0)}.
@param nameFormat a {@link String#format(String, Object...)}-compatible format String, to which
a unique integer (0, 1, etc.) will be supplied as the single parameter. This integer will
be unique to the built instance of the ThreadFactory and will be assigned sequentially. For
example, {@code "rpc-pool-%d"} will generate thread names like {@code "rpc-pool-0"}, {@code
"rpc-pool-1"}, {@code "rpc-pool-2"}, etc.
@return this for the builder pattern
|
java
|
android/guava/src/com/google/common/util/concurrent/ThreadFactoryBuilder.java
| 88
|
[
"nameFormat"
] |
ThreadFactoryBuilder
| true
| 1
| 6.4
|
google/guava
| 51,352
|
javadoc
| false
|
when
|
default ValueExtractor<T> when(Predicate<? super @Nullable T> predicate) {
return (instance) -> test(extract(instance), predicate);
}
|
Only extract when the given predicate matches.
@param predicate the predicate to test
@return a new {@link ValueExtractor}
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/json/JsonWriter.java
| 712
|
[
"predicate"
] | true
| 1
| 6.48
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
|
_fill_limit_area_1d
|
def _fill_limit_area_1d(
mask: npt.NDArray[np.bool_], limit_area: Literal["outside", "inside"]
) -> None:
"""Prepare 1d mask for ffill/bfill with limit_area.
Caller is responsible for checking at least one value of mask is False.
When called, mask will no longer faithfully represent when
the corresponding are NA or not.
Parameters
----------
mask : np.ndarray[bool, ndim=1]
Mask representing NA values when filling.
limit_area : { "outside", "inside" }
Whether to limit filling to outside or inside the outer most non-NA value.
"""
neg_mask = ~mask
first = neg_mask.argmax()
last = len(neg_mask) - neg_mask[::-1].argmax() - 1
if limit_area == "inside":
mask[:first] = False
mask[last + 1 :] = False
elif limit_area == "outside":
mask[first + 1 : last] = False
|
Prepare 1d mask for ffill/bfill with limit_area.
Caller is responsible for checking at least one value of mask is False.
When called, mask will no longer faithfully represent when
the corresponding are NA or not.
Parameters
----------
mask : np.ndarray[bool, ndim=1]
Mask representing NA values when filling.
limit_area : { "outside", "inside" }
Whether to limit filling to outside or inside the outer most non-NA value.
|
python
|
pandas/core/missing.py
| 966
|
[
"mask",
"limit_area"
] |
None
| true
| 3
| 6.72
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
parseList
|
List<Object> parseList(@Nullable String json) throws JsonParseException;
|
Parse the specified JSON string into a List.
@param json the JSON to parse
@return the parsed JSON as a list
@throws JsonParseException if the JSON cannot be parsed
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/json/JsonParser.java
| 50
|
[
"json"
] | true
| 1
| 6.32
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
|
listConsumerGroups
|
@Deprecated(since = "4.1", forRemoval = true)
ListConsumerGroupsResult listConsumerGroups(ListConsumerGroupsOptions options);
|
List the consumer groups available in the cluster.
@deprecated Since 4.1. Use {@link Admin#listGroups(ListGroupsOptions)} instead.
@param options The options to use when listing the consumer groups.
@return The ListConsumerGroupsResult.
|
java
|
clients/src/main/java/org/apache/kafka/clients/admin/Admin.java
| 887
|
[
"options"
] |
ListConsumerGroupsResult
| true
| 1
| 6
|
apache/kafka
| 31,560
|
javadoc
| false
|
printStackTrace
|
@Override
public void printStackTrace(PrintWriter pw) {
if (ObjectUtils.isEmpty(this.messageExceptions)) {
super.printStackTrace(pw);
}
else {
pw.println(super.toString() + "; message exception details (" +
this.messageExceptions.length + ") are:");
for (int i = 0; i < this.messageExceptions.length; i++) {
Exception subEx = this.messageExceptions[i];
pw.println("Failed message " + (i + 1) + ":");
subEx.printStackTrace(pw);
}
}
}
|
Return an array with thrown message exceptions.
<p>Note that a general mail server connection failure will not result
in failed messages being returned here: A message will only be
contained here if actually sending it was attempted but failed.
@return the array of thrown message exceptions,
or an empty array if no failed messages
|
java
|
spring-context-support/src/main/java/org/springframework/mail/MailSendException.java
| 182
|
[
"pw"
] |
void
| true
| 3
| 6.88
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
getLibFileFromReference
|
function getLibFileFromReference(ref: FileReference) {
const libFileName = getLibFileNameFromLibReference(ref);
const actualFileName = libFileName && resolvedLibReferences?.get(libFileName)?.actual;
return actualFileName !== undefined ? getSourceFile(actualFileName) : undefined;
}
|
@returns The line index marked as preceding the diagnostic, or -1 if none was.
|
typescript
|
src/compiler/program.ts
| 3,416
|
[
"ref"
] | false
| 3
| 6.24
|
microsoft/TypeScript
| 107,154
|
jsdoc
| false
|
|
topicNameValues
|
public Map<String, KafkaFuture<Void>> topicNameValues() {
return nameFutures;
}
|
Use when {@link Admin#deleteTopics(TopicCollection, DeleteTopicsOptions)} used a TopicNameCollection
@return a map from topic names to futures which can be used to check the status of
individual deletions if the deleteTopics request used topic names. Otherwise return null.
|
java
|
clients/src/main/java/org/apache/kafka/clients/admin/DeleteTopicsResult.java
| 65
|
[] | true
| 1
| 6
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
max
|
public abstract double max(double q, double compression, double n);
|
Computes the maximum relative size a cluster can have at quantile q. Note that exactly where within the range
spanned by a cluster that q should be isn't clear. That means that this function usually has to be taken at
multiple points and the smallest value used.
<p>
Note that this is the relative size of a cluster. To get the max number of samples in the cluster, multiply this
value times the total number of samples in the digest.
@param q The quantile
@param compression The compression factor, typically delta in the literature
@param n The number of samples seen so far in the digest
@return The maximum number of samples that can be in the cluster
|
java
|
libs/tdigest/src/main/java/org/elasticsearch/tdigest/ScaleFunction.java
| 543
|
[
"q",
"compression",
"n"
] | true
| 1
| 6.64
|
elastic/elasticsearch
| 75,680
|
javadoc
| false
|
|
nop
|
@SuppressWarnings("unchecked")
static <T, E extends Throwable> FailableToBooleanFunction<T, E> nop() {
return NOP;
}
|
Gets the NOP singleton.
@param <T> the type of the argument to the function
@param <E> The kind of thrown exception or error.
@return The NOP singleton.
|
java
|
src/main/java/org/apache/commons/lang3/function/FailableToBooleanFunction.java
| 41
|
[] | true
| 1
| 6.96
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
getAllLoggers
|
private Map<String, LoggerConfig> getAllLoggers() {
Map<String, LoggerConfig> loggers = new LinkedHashMap<>();
for (Logger logger : getLoggerContext().getLoggers()) {
addLogger(loggers, logger.getName());
}
getLoggerContext().getConfiguration().getLoggers().keySet().forEach((name) -> addLogger(loggers, name));
return loggers;
}
|
Return the configuration location. The result may be:
<ul>
<li>{@code null}: if DefaultConfiguration is used (no explicit config loaded)</li>
<li>A file path: if provided explicitly by the user</li>
<li>A URI: if loaded from the classpath default or a custom location</li>
</ul>
@param configuration the source configuration
@return the config location or {@code null}
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/logging/log4j2/Log4J2LoggingSystem.java
| 404
|
[] | true
| 1
| 6.08
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
|
_replace_coerce
|
def _replace_coerce(
self,
to_replace,
value,
mask: npt.NDArray[np.bool_],
inplace: bool = True,
regex: bool = False,
) -> list[Block]:
"""
Replace value corresponding to the given boolean array with another
value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
mask : np.ndarray[bool]
True indicate corresponding element is ignored.
inplace : bool, default True
Perform inplace modification.
regex : bool, default False
If true, perform regular expression substitution.
Returns
-------
List[Block]
"""
if should_use_regex(regex, to_replace):
return self._replace_regex(
to_replace,
value,
inplace=inplace,
mask=mask,
)
else:
if value is None:
# gh-45601, gh-45836, gh-46634
if mask.any():
has_ref = self.refs.has_reference()
nb = self.astype(np.dtype(object))
if not inplace:
nb = nb.copy(deep=True)
elif inplace and has_ref and nb.refs.has_reference():
# no copy in astype and we had refs before
nb = nb.copy(deep=True)
putmask_inplace(nb.values, mask, value)
return [nb]
return [self.copy(deep=False)]
return self.replace(
to_replace=to_replace,
value=value,
inplace=inplace,
mask=mask,
)
|
Replace value corresponding to the given boolean array with another
value.
Parameters
----------
to_replace : object or pattern
Scalar to replace or regular expression to match.
value : object
Replacement object.
mask : np.ndarray[bool]
True indicate corresponding element is ignored.
inplace : bool, default True
Perform inplace modification.
regex : bool, default False
If true, perform regular expression substitution.
Returns
-------
List[Block]
|
python
|
pandas/core/internals/blocks.py
| 882
|
[
"self",
"to_replace",
"value",
"mask",
"inplace",
"regex"
] |
list[Block]
| true
| 9
| 6.32
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
_generate_kernel_call_helper
|
def _generate_kernel_call_helper(
self,
kernel_name: str,
call_args,
*,
device=None,
triton=True,
arg_types=None,
raw_keys=None,
raw_args=None,
triton_meta=None,
graph_name="",
original_fxnode_name=None,
):
"""
Generates kernel call code.
triton: Defines whether the GPU backend uses Triton for codegen.
Otherwise it uses the CUDA language for codegen.
Only valid when cuda == True.
"""
assert arg_types is not None and len(call_args) == len(arg_types), (
"Mismatch call_args and arg_types in generate_kernel_call:\n"
f"call_args: {call_args}\n"
f"arg_types: {arg_types}"
)
new_args = []
for idx, arg in enumerate(call_args):
if isinstance(arg_types[idx], str) and "*" in arg_types[idx]:
new_args.append(f"({arg_types[idx]})({arg}.data_ptr())")
else:
# arg is a scalar - ensure it's a string for C++ codegen
# With Triton support, arg might be a SymPy expression or other type
new_args.append(str(arg) if not isinstance(arg, str) else arg)
# debug printer related logic for cpp kernel type.
debug_printer_manager = V.graph.wrapper_code.debug_printer
debug_printer_manager.set_printer_args(
call_args,
kernel_name,
None,
None,
"cpp",
)
with debug_printer_manager:
self.writeline(self.wrap_kernel_call(kernel_name, new_args))
|
Generates kernel call code.
triton: Defines whether the GPU backend uses Triton for codegen.
Otherwise it uses the CUDA language for codegen.
Only valid when cuda == True.
|
python
|
torch/_inductor/codegen/cpp_wrapper_cpu.py
| 135
|
[
"self",
"kernel_name",
"call_args",
"device",
"triton",
"arg_types",
"raw_keys",
"raw_args",
"triton_meta",
"graph_name",
"original_fxnode_name"
] | true
| 7
| 6.88
|
pytorch/pytorch
| 96,034
|
unknown
| false
|
|
left
|
public static String left(final String str, final int len) {
if (str == null) {
return null;
}
if (len < 0) {
return EMPTY;
}
if (str.length() <= len) {
return str;
}
return str.substring(0, len);
}
|
Gets the leftmost {@code len} characters of a String.
<p>
If {@code len} characters are not available, or the String is {@code null}, the String will be returned without an exception. An empty String is returned
if len is negative.
</p>
<pre>
StringUtils.left(null, *) = null
StringUtils.left(*, -ve) = ""
StringUtils.left("", *) = ""
StringUtils.left("abc", 0) = ""
StringUtils.left("abc", 2) = "ab"
StringUtils.left("abc", 4) = "abc"
</pre>
@param str the String to get the leftmost characters from, may be null.
@param len the length of the required String.
@return the leftmost characters, {@code null} if null String input.
|
java
|
src/main/java/org/apache/commons/lang3/StringUtils.java
| 5,058
|
[
"str",
"len"
] |
String
| true
| 4
| 8.08
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
getNodesForSpan
|
function getNodesForSpan(file: SourceFile, span: TextSpan): Node[] | undefined {
// Span is the whole file
if (textSpanContainsTextRange(span, file)) {
return undefined;
}
const endToken = findTokenOnLeftOfPosition(file, textSpanEnd(span)) || file;
const enclosingNode = findAncestor(endToken, node => textRangeContainsTextSpan(node, span))!;
const nodes: Node[] = [];
chooseOverlappingNodes(span, enclosingNode, nodes);
if (file.end === span.start + span.length) {
nodes.push(file.endOfFileToken);
}
// Span would include the whole file
if (some(nodes, isSourceFile)) {
return undefined;
}
return nodes;
}
|
Gets nodes that overlap the given span to be partially checked.
@returns an array of nodes that overlap the span and are source element nodes (c.f. {@link isSourceElement}),
or undefined if a partial check would be the same as a whole file check.
|
typescript
|
src/services/services.ts
| 2,128
|
[
"file",
"span"
] | true
| 5
| 7.04
|
microsoft/TypeScript
| 107,154
|
jsdoc
| false
|
|
toBeStarted
|
private boolean toBeStarted(String beanName, Lifecycle bean) {
Set<String> stoppedBeans = this.stoppedBeans;
return (stoppedBeans != null ? stoppedBeans.contains(beanName) :
(!(bean instanceof SmartLifecycle smartLifecycle) || smartLifecycle.isAutoStartup()));
}
|
Start the specified bean as part of the given set of Lifecycle beans,
making sure that any beans that it depends on are started first.
@param lifecycleBeans a Map with bean name as key and Lifecycle instance as value
@param beanName the name of the bean to start
|
java
|
spring-context/src/main/java/org/springframework/context/support/DefaultLifecycleProcessor.java
| 430
|
[
"beanName",
"bean"
] | true
| 3
| 6.72
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
|
_acquire_lock_with_timeout
|
def _acquire_lock_with_timeout(
lock: Lock,
timeout: float | None = None,
) -> Generator[None, None, None]:
"""Context manager that safely acquires a threading.Lock with timeout and automatically releases it.
This function provides a safe way to acquire a lock with timeout support, ensuring
the lock is always released even if an exception occurs during execution.
Args:
lock: The threading.Lock object to acquire
timeout: Timeout in seconds. If None, uses _DEFAULT_TIMEOUT.
- Use _BLOCKING (-1.0) for infinite wait
- Use _NON_BLOCKING (0.0) for immediate return
- Use positive value for finite timeout
Yields:
None: Yields control to the caller while holding the lock
Raises:
LockTimeoutError: If the lock cannot be acquired within the timeout period
Example:
with _acquire_lock_with_timeout(my_lock, timeout=30.0):
# Critical section - lock is held
perform_critical_operation()
# Lock is automatically released here
"""
_unsafe_acquire_lock_with_timeout(lock, timeout=timeout)
try:
yield
finally:
lock.release()
|
Context manager that safely acquires a threading.Lock with timeout and automatically releases it.
This function provides a safe way to acquire a lock with timeout support, ensuring
the lock is always released even if an exception occurs during execution.
Args:
lock: The threading.Lock object to acquire
timeout: Timeout in seconds. If None, uses _DEFAULT_TIMEOUT.
- Use _BLOCKING (-1.0) for infinite wait
- Use _NON_BLOCKING (0.0) for immediate return
- Use positive value for finite timeout
Yields:
None: Yields control to the caller while holding the lock
Raises:
LockTimeoutError: If the lock cannot be acquired within the timeout period
Example:
with _acquire_lock_with_timeout(my_lock, timeout=30.0):
# Critical section - lock is held
perform_critical_operation()
# Lock is automatically released here
|
python
|
torch/_inductor/runtime/caching/locks.py
| 48
|
[
"lock",
"timeout"
] |
Generator[None, None, None]
| true
| 1
| 7.12
|
pytorch/pytorch
| 96,034
|
google
| false
|
get_printoptions
|
def get_printoptions():
"""
Return the current print options.
Returns
-------
print_opts : dict
Dictionary of current print options with keys
- precision : int
- threshold : int
- edgeitems : int
- linewidth : int
- suppress : bool
- nanstr : str
- infstr : str
- sign : str
- formatter : dict of callables
- floatmode : str
- legacy : str or False
For a full description of these options, see `set_printoptions`.
Notes
-----
These print options apply only to NumPy ndarrays, not to scalars.
**Concurrency note:** see :ref:`text_formatting_options`
See Also
--------
set_printoptions, printoptions
Examples
--------
>>> import numpy as np
>>> np.get_printoptions()
{'edgeitems': 3, 'threshold': 1000, ..., 'override_repr': None}
>>> np.get_printoptions()['linewidth']
75
>>> np.set_printoptions(linewidth=100)
>>> np.get_printoptions()['linewidth']
100
"""
opts = format_options.get().copy()
opts['legacy'] = {
113: '1.13', 121: '1.21', 125: '1.25', 201: '2.1',
202: '2.2', sys.maxsize: False,
}[opts['legacy']]
return opts
|
Return the current print options.
Returns
-------
print_opts : dict
Dictionary of current print options with keys
- precision : int
- threshold : int
- edgeitems : int
- linewidth : int
- suppress : bool
- nanstr : str
- infstr : str
- sign : str
- formatter : dict of callables
- floatmode : str
- legacy : str or False
For a full description of these options, see `set_printoptions`.
Notes
-----
These print options apply only to NumPy ndarrays, not to scalars.
**Concurrency note:** see :ref:`text_formatting_options`
See Also
--------
set_printoptions, printoptions
Examples
--------
>>> import numpy as np
>>> np.get_printoptions()
{'edgeitems': 3, 'threshold': 1000, ..., 'override_repr': None}
>>> np.get_printoptions()['linewidth']
75
>>> np.set_printoptions(linewidth=100)
>>> np.get_printoptions()['linewidth']
100
|
python
|
numpy/_core/arrayprint.py
| 336
|
[] | false
| 1
| 6.32
|
numpy/numpy
| 31,054
|
unknown
| false
|
|
getDeclarationDiagnosticsForFileNoCache
|
function getDeclarationDiagnosticsForFileNoCache(sourceFile: SourceFile, cancellationToken: CancellationToken | undefined): readonly DiagnosticWithLocation[] {
return runWithCancellationToken(() => {
const resolver = getTypeChecker().getEmitResolver(sourceFile, cancellationToken);
// Don't actually write any files since we're just getting diagnostics.
return ts_getDeclarationDiagnostics(getEmitHost(noop), resolver, sourceFile) || emptyArray;
});
}
|
@returns The line index marked as preceding the diagnostic, or -1 if none was.
|
typescript
|
src/compiler/program.ts
| 3,250
|
[
"sourceFile",
"cancellationToken"
] | true
| 2
| 7.2
|
microsoft/TypeScript
| 107,154
|
jsdoc
| false
|
|
newCopyOnWriteArraySet
|
@J2ktIncompatible
@GwtIncompatible // CopyOnWriteArraySet
public static <E extends @Nullable Object> CopyOnWriteArraySet<E> newCopyOnWriteArraySet(
Iterable<? extends E> elements) {
// We copy elements to an ArrayList first, rather than incurring the
// quadratic cost of adding them to the COWAS directly.
Collection<? extends E> elementsCollection =
(elements instanceof Collection)
? (Collection<? extends E>) elements
: Lists.newArrayList(elements);
return new CopyOnWriteArraySet<>(elementsCollection);
}
|
Creates a {@code CopyOnWriteArraySet} instance containing the given elements.
@param elements the elements that the set should contain, in order
@return a new {@code CopyOnWriteArraySet} containing those elements
@since 12.0
|
java
|
android/guava/src/com/google/common/collect/Sets.java
| 479
|
[
"elements"
] | true
| 2
| 7.44
|
google/guava
| 51,352
|
javadoc
| false
|
|
getObjectName
|
@Override
public ObjectName getObjectName(Object managedBean, @Nullable String beanKey) throws MalformedObjectNameException {
ObjectName name = super.getObjectName(managedBean, beanKey);
if (this.ensureUniqueRuntimeObjectNames) {
return JmxUtils.appendIdentityToObjectName(name, managedBean);
}
if (parentContextContainsSameBean(this.applicationContext, beanKey)) {
return appendToObjectName(name, "context", ObjectUtils.getIdentityHexString(this.applicationContext));
}
return name;
}
|
Set if unique runtime object names should be ensured.
@param ensureUniqueRuntimeObjectNames {@code true} if unique names should be
ensured.
|
java
|
core/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/jmx/ParentAwareNamingStrategy.java
| 68
|
[
"managedBean",
"beanKey"
] |
ObjectName
| true
| 3
| 6.24
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
cleanUpJavaDoc
|
private String cleanUpJavaDoc(String javadoc) {
StringBuilder result = new StringBuilder(javadoc.length());
char lastChar = '.';
for (int i = 0; i < javadoc.length(); i++) {
char ch = javadoc.charAt(i);
boolean repeatedSpace = ch == ' ' && lastChar == ' ';
if (ch != '\r' && ch != '\n' && !repeatedSpace) {
result.append(ch);
lastChar = ch;
}
}
return result.toString().trim();
}
|
Return the {@link PrimitiveType} of the specified type or {@code null} if the type
does not represent a valid wrapper type.
@param typeMirror a type
@return the primitive type or {@code null} if the type is not a wrapper type
|
java
|
configuration-metadata/spring-boot-configuration-processor/src/main/java/org/springframework/boot/configurationprocessor/TypeUtils.java
| 270
|
[
"javadoc"
] |
String
| true
| 6
| 7.92
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
_unbox
|
def _unbox(self, other) -> np.int64 | np.datetime64 | np.timedelta64 | np.ndarray:
"""
Unbox either a scalar with _unbox_scalar or an instance of our own type.
"""
if lib.is_scalar(other):
other = self._unbox_scalar(other)
else:
# same type as self
self._check_compatible_with(other)
other = other._ndarray
return other
|
Unbox either a scalar with _unbox_scalar or an instance of our own type.
|
python
|
pandas/core/arrays/datetimelike.py
| 738
|
[
"self",
"other"
] |
np.int64 | np.datetime64 | np.timedelta64 | np.ndarray
| true
| 3
| 6
|
pandas-dev/pandas
| 47,362
|
unknown
| false
|
add
|
protected void add(final String str) {
if (str == null) {
return;
}
final int len = str.length();
int pos = 0;
while (pos < len) {
final int remainder = len - pos;
if (remainder >= 4 && str.charAt(pos) == '^' && str.charAt(pos + 2) == '-') {
// negated range
set.add(CharRange.isNotIn(str.charAt(pos + 1), str.charAt(pos + 3)));
pos += 4;
} else if (remainder >= 3 && str.charAt(pos + 1) == '-') {
// range
set.add(CharRange.isIn(str.charAt(pos), str.charAt(pos + 2)));
pos += 3;
} else if (remainder >= 2 && str.charAt(pos) == '^') {
// negated char
set.add(CharRange.isNot(str.charAt(pos + 1)));
pos += 2;
} else {
// char
set.add(CharRange.is(str.charAt(pos)));
pos += 1;
}
}
}
|
Add a set definition string to the {@link CharSet}.
@param str set definition string
|
java
|
src/main/java/org/apache/commons/lang3/CharSet.java
| 184
|
[
"str"
] |
void
| true
| 10
| 6.88
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
polynomial_kernel
|
def polynomial_kernel(X, Y=None, degree=3, gamma=None, coef0=1):
"""
Compute the polynomial kernel between X and Y.
.. code-block:: text
K(X, Y) = (gamma <X, Y> + coef0) ^ degree
Read more in the :ref:`User Guide <polynomial_kernel>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
A feature array.
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
An optional second feature array. If `None`, uses `Y=X`.
degree : float, default=3
Kernel degree.
gamma : float, default=None
Coefficient of the vector inner product. If None, defaults to 1.0 / n_features.
coef0 : float, default=1
Constant offset added to scaled inner product.
Returns
-------
kernel : ndarray of shape (n_samples_X, n_samples_Y)
The polynomial kernel.
Examples
--------
>>> from sklearn.metrics.pairwise import polynomial_kernel
>>> X = [[0, 0, 0], [1, 1, 1]]
>>> Y = [[1, 0, 0], [1, 1, 0]]
>>> polynomial_kernel(X, Y, degree=2)
array([[1. , 1. ],
[1.77, 2.77]])
"""
X, Y = check_pairwise_arrays(X, Y)
if gamma is None:
gamma = 1.0 / X.shape[1]
K = safe_sparse_dot(X, Y.T, dense_output=True)
K *= gamma
K += coef0
K **= degree
return K
|
Compute the polynomial kernel between X and Y.
.. code-block:: text
K(X, Y) = (gamma <X, Y> + coef0) ^ degree
Read more in the :ref:`User Guide <polynomial_kernel>`.
Parameters
----------
X : {array-like, sparse matrix} of shape (n_samples_X, n_features)
A feature array.
Y : {array-like, sparse matrix} of shape (n_samples_Y, n_features), default=None
An optional second feature array. If `None`, uses `Y=X`.
degree : float, default=3
Kernel degree.
gamma : float, default=None
Coefficient of the vector inner product. If None, defaults to 1.0 / n_features.
coef0 : float, default=1
Constant offset added to scaled inner product.
Returns
-------
kernel : ndarray of shape (n_samples_X, n_samples_Y)
The polynomial kernel.
Examples
--------
>>> from sklearn.metrics.pairwise import polynomial_kernel
>>> X = [[0, 0, 0], [1, 1, 1]]
>>> Y = [[1, 0, 0], [1, 1, 0]]
>>> polynomial_kernel(X, Y, degree=2)
array([[1. , 1. ],
[1.77, 2.77]])
|
python
|
sklearn/metrics/pairwise.py
| 1,444
|
[
"X",
"Y",
"degree",
"gamma",
"coef0"
] | false
| 2
| 7.52
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
roots
|
def roots(p):
"""
Return the roots of a polynomial with coefficients given in p.
.. note::
This forms part of the old polynomial API. Since version 1.4, the
new polynomial API defined in `numpy.polynomial` is preferred.
A summary of the differences can be found in the
:doc:`transition guide </reference/routines.polynomials>`.
The values in the rank-1 array `p` are coefficients of a polynomial.
If the length of `p` is n+1 then the polynomial is described by::
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
Parameters
----------
p : array_like
Rank-1 array of polynomial coefficients.
Returns
-------
out : ndarray
An array containing the roots of the polynomial.
Raises
------
ValueError
When `p` cannot be converted to a rank-1 array.
See also
--------
poly : Find the coefficients of a polynomial with a given sequence
of roots.
polyval : Compute polynomial values.
polyfit : Least squares polynomial fit.
poly1d : A one-dimensional polynomial class.
Notes
-----
The algorithm relies on computing the eigenvalues of the
companion matrix [1]_.
References
----------
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
Cambridge University Press, 1999, pp. 146-7.
Examples
--------
>>> import numpy as np
>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])
"""
# If input is scalar, this makes it an array
p = atleast_1d(p)
if p.ndim != 1:
raise ValueError("Input must be a rank-1 array.")
# find non-zero array entries
non_zero = NX.nonzero(NX.ravel(p))[0]
# Return an empty array if polynomial is all zeros
if len(non_zero) == 0:
return NX.array([])
# find the number of trailing zeros -- this is the number of roots at 0.
trailing_zeros = len(p) - non_zero[-1] - 1
# strip leading and trailing zeros
p = p[int(non_zero[0]):int(non_zero[-1]) + 1]
# casting: if incoming array isn't floating point, make it floating point.
if not issubclass(p.dtype.type, (NX.floating, NX.complexfloating)):
p = p.astype(float)
N = len(p)
if N > 1:
# build companion matrix and find its eigenvalues (the roots)
A = diag(NX.ones((N - 2,), p.dtype), -1)
A[0, :] = -p[1:] / p[0]
roots = eigvals(A)
else:
roots = NX.array([])
# tack any zeros onto the back of the array
roots = hstack((roots, NX.zeros(trailing_zeros, roots.dtype)))
return roots
|
Return the roots of a polynomial with coefficients given in p.
.. note::
This forms part of the old polynomial API. Since version 1.4, the
new polynomial API defined in `numpy.polynomial` is preferred.
A summary of the differences can be found in the
:doc:`transition guide </reference/routines.polynomials>`.
The values in the rank-1 array `p` are coefficients of a polynomial.
If the length of `p` is n+1 then the polynomial is described by::
p[0] * x**n + p[1] * x**(n-1) + ... + p[n-1]*x + p[n]
Parameters
----------
p : array_like
Rank-1 array of polynomial coefficients.
Returns
-------
out : ndarray
An array containing the roots of the polynomial.
Raises
------
ValueError
When `p` cannot be converted to a rank-1 array.
See also
--------
poly : Find the coefficients of a polynomial with a given sequence
of roots.
polyval : Compute polynomial values.
polyfit : Least squares polynomial fit.
poly1d : A one-dimensional polynomial class.
Notes
-----
The algorithm relies on computing the eigenvalues of the
companion matrix [1]_.
References
----------
.. [1] R. A. Horn & C. R. Johnson, *Matrix Analysis*. Cambridge, UK:
Cambridge University Press, 1999, pp. 146-7.
Examples
--------
>>> import numpy as np
>>> coeff = [3.2, 2, 1]
>>> np.roots(coeff)
array([-0.3125+0.46351241j, -0.3125-0.46351241j])
|
python
|
numpy/lib/_polynomial_impl.py
| 171
|
[
"p"
] | false
| 6
| 7.6
|
numpy/numpy
| 31,054
|
numpy
| false
|
|
removeAllOccurrences
|
public static int[] removeAllOccurrences(final int[] array, final int element) {
return (int[]) removeAt(array, indexesOf(array, element));
}
|
Removes the occurrences of the specified element from the specified int array.
<p>
All subsequent elements are shifted to the left (subtracts one from their indices).
If the array doesn't contain such an element, no elements are removed from the array.
{@code null} will be returned if the input array is {@code null}.
</p>
@param array the input array, will not be modified, and may be {@code null}.
@param element the element to remove.
@return A new array containing the existing elements except the occurrences of the specified element.
@since 3.10
|
java
|
src/main/java/org/apache/commons/lang3/ArrayUtils.java
| 5,521
|
[
"array",
"element"
] | true
| 1
| 6.96
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
erroneousCompletionException
|
private UnsupportedOperationException erroneousCompletionException() {
return new UnsupportedOperationException("User code should not complete futures returned from Kafka clients");
}
|
Completes this future exceptionally. For internal use by the Kafka clients, not by user code.
@param throwable the exception.
@return {@code true} if this invocation caused this CompletableFuture
to transition to a completed state, else {@code false}
|
java
|
clients/src/main/java/org/apache/kafka/common/internals/KafkaCompletableFuture.java
| 92
|
[] |
UnsupportedOperationException
| true
| 1
| 6.64
|
apache/kafka
| 31,560
|
javadoc
| false
|
enqueueCopyImage
|
inline cl_int enqueueCopyImage(
const Image& src,
const Image& dst,
const size_t<3>& src_origin,
const size_t<3>& dst_origin,
const size_t<3>& region,
const VECTOR_CLASS<Event>* events = NULL,
Event* event = NULL)
{
cl_int error;
CommandQueue queue = CommandQueue::getDefault(&error);
if (error != CL_SUCCESS) {
return error;
}
return queue.enqueueCopyImage(
src,
dst,
src_origin,
dst_origin,
region,
events,
event);
}
|
Blocking copy operation between iterators and a buffer.
|
cpp
|
3rdparty/include/opencl/1.2/CL/cl.hpp
| 6,456
|
[] | true
| 2
| 6.4
|
opencv/opencv
| 85,374
|
doxygen
| false
|
|
param_parse
|
def param_parse(d, params):
"""Recursively parse array dimensions.
Parses the declaration of an array variable or parameter
`dimension` keyword, and is called recursively if the
dimension for this array is a previously defined parameter
(found in `params`).
Parameters
----------
d : str
Fortran expression describing the dimension of an array.
params : dict
Previously parsed parameters declared in the Fortran source file.
Returns
-------
out : str
Parsed dimension expression.
Examples
--------
* If the line being analyzed is
`integer, parameter, dimension(2) :: pa = (/ 3, 5 /)`
then `d = 2` and we return immediately, with
>>> d = '2'
>>> param_parse(d, params)
2
* If the line being analyzed is
`integer, parameter, dimension(pa) :: pb = (/1, 2, 3/)`
then `d = 'pa'`; since `pa` is a previously parsed parameter,
and `pa = 3`, we call `param_parse` recursively, to obtain
>>> d = 'pa'
>>> params = {'pa': 3}
>>> param_parse(d, params)
3
* If the line being analyzed is
`integer, parameter, dimension(pa(1)) :: pb = (/1, 2, 3/)`
then `d = 'pa(1)'`; since `pa` is a previously parsed parameter,
and `pa(1) = 3`, we call `param_parse` recursively, to obtain
>>> d = 'pa(1)'
>>> params = dict(pa={1: 3, 2: 5})
>>> param_parse(d, params)
3
"""
if "(" in d:
# this dimension expression is an array
dname = d[:d.find("(")]
ddims = d[d.find("(") + 1:d.rfind(")")]
# this dimension expression is also a parameter;
# parse it recursively
index = int(param_parse(ddims, params))
return str(params[dname][index])
elif d in params:
return str(params[d])
else:
for p in params:
re_1 = re.compile(
r'(?P<before>.*?)\b' + p + r'\b(?P<after>.*)', re.I
)
m = re_1.match(d)
while m:
d = m.group('before') + \
str(params[p]) + m.group('after')
m = re_1.match(d)
return d
|
Recursively parse array dimensions.
Parses the declaration of an array variable or parameter
`dimension` keyword, and is called recursively if the
dimension for this array is a previously defined parameter
(found in `params`).
Parameters
----------
d : str
Fortran expression describing the dimension of an array.
params : dict
Previously parsed parameters declared in the Fortran source file.
Returns
-------
out : str
Parsed dimension expression.
Examples
--------
* If the line being analyzed is
`integer, parameter, dimension(2) :: pa = (/ 3, 5 /)`
then `d = 2` and we return immediately, with
>>> d = '2'
>>> param_parse(d, params)
2
* If the line being analyzed is
`integer, parameter, dimension(pa) :: pb = (/1, 2, 3/)`
then `d = 'pa'`; since `pa` is a previously parsed parameter,
and `pa = 3`, we call `param_parse` recursively, to obtain
>>> d = 'pa'
>>> params = {'pa': 3}
>>> param_parse(d, params)
3
* If the line being analyzed is
`integer, parameter, dimension(pa(1)) :: pb = (/1, 2, 3/)`
then `d = 'pa(1)'`; since `pa` is a previously parsed parameter,
and `pa(1) = 3`, we call `param_parse` recursively, to obtain
>>> d = 'pa(1)'
>>> params = dict(pa={1: 3, 2: 5})
>>> param_parse(d, params)
3
|
python
|
numpy/f2py/crackfortran.py
| 3,026
|
[
"d",
"params"
] | false
| 6
| 7.44
|
numpy/numpy
| 31,054
|
numpy
| false
|
|
getNanoTime
|
public long getNanoTime() {
switch (runningState) {
case STOPPED:
case SUSPENDED:
return stopTimeNanos - startTimeNanos;
case UNSTARTED:
return 0;
case RUNNING:
return System.nanoTime() - startTimeNanos;
default:
break;
}
throw new IllegalStateException("Illegal running state has occurred.");
}
|
Gets the <em>elapsed</em> time in nanoseconds.
<p>
This is either the time between the start and the moment this method is called, or the amount of time between start and stop.
</p>
@return the <em>elapsed</em> time in nanoseconds.
@see System#nanoTime()
@since 3.0
|
java
|
src/main/java/org/apache/commons/lang3/time/StopWatch.java
| 395
|
[] | true
| 1
| 6.88
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
removeAllOccurences
|
@Deprecated
public static boolean[] removeAllOccurences(final boolean[] array, final boolean element) {
return (boolean[]) removeAt(array, indexesOf(array, element));
}
|
Removes the occurrences of the specified element from the specified boolean array.
<p>
All subsequent elements are shifted to the left (subtracts one from their indices).
If the array doesn't contain such an element, no elements are removed from the array.
{@code null} will be returned if the input array is {@code null}.
</p>
@param array the input array, will not be modified, and may be {@code null}.
@param element the element to remove.
@return A new array containing the existing elements except the occurrences of the specified element.
@since 3.5
@deprecated Use {@link #removeAllOccurrences(boolean[], boolean)}.
|
java
|
src/main/java/org/apache/commons/lang3/ArrayUtils.java
| 5,265
|
[
"array",
"element"
] | true
| 1
| 6.64
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
all
|
public KafkaFuture<Void> all() {
final KafkaFutureImpl<Void> result = new KafkaFutureImpl<>();
this.future.whenComplete((topicResults, throwable) -> {
if (throwable != null) {
result.completeExceptionally(throwable);
} else {
for (String topic : topics) {
if (maybeCompleteExceptionally(topicResults, topic, result)) {
return;
}
}
result.complete(null);
}
});
return result;
}
|
Return a future which succeeds only if all the deletions succeed.
If not, the first topic error shall be returned.
|
java
|
clients/src/main/java/org/apache/kafka/clients/admin/DeleteShareGroupOffsetsResult.java
| 43
|
[] | true
| 3
| 7.04
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
maybeSetMetadataError
|
private void maybeSetMetadataError(Cluster cluster) {
clearRecoverableErrors();
checkInvalidTopics(cluster);
checkUnauthorizedTopics(cluster);
}
|
Updates the partition-leadership info in the metadata. Update is done by merging existing metadata with the input leader information and nodes.
This is called whenever partition-leadership updates are returned in a response from broker(ex - ProduceResponse & FetchResponse).
Note that the updates via Metadata RPC are handled separately in ({@link #update}).
Both partitionLeader and leaderNodes override the existing metadata. Non-overlapping metadata is kept as it is.
@param partitionLeaders map of new leadership information for partitions.
@param leaderNodes a list of nodes for leaders in the above map.
@return a set of partitions, for which leaders were updated.
|
java
|
clients/src/main/java/org/apache/kafka/clients/Metadata.java
| 463
|
[
"cluster"
] |
void
| true
| 1
| 6.56
|
apache/kafka
| 31,560
|
javadoc
| false
|
asof
|
def asof(self, label):
"""
Return the label from the index, or, if not present, the previous one.
Assuming that the index is sorted, return the passed index label if it
is in the index, or return the previous index label if the passed one
is not in the index.
Parameters
----------
label : object
The label up to which the method returns the latest index label.
Returns
-------
object
The passed label if it is in the index. The previous label if the
passed label is not in the sorted index or `NaN` if there is no
such label.
See Also
--------
Series.asof : Return the latest value in a Series up to the
passed index.
merge_asof : Perform an asof merge (similar to left join but it
matches on nearest key rather than equal key).
Index.get_loc : An `asof` is a thin wrapper around `get_loc`
with method='pad'.
Examples
--------
`Index.asof` returns the latest index label up to the passed label.
>>> idx = pd.Index(["2013-12-31", "2014-01-02", "2014-01-03"])
>>> idx.asof("2014-01-01")
'2013-12-31'
If the label is in the index, the method returns the passed label.
>>> idx.asof("2014-01-02")
'2014-01-02'
If all of the labels in the index are later than the passed label,
NaN is returned.
>>> idx.asof("1999-01-02")
nan
If the index is not sorted, an error is raised.
>>> idx_not_sorted = pd.Index(["2013-12-31", "2015-01-02", "2014-01-03"])
>>> idx_not_sorted.asof("2013-12-31")
Traceback (most recent call last):
ValueError: index must be monotonic increasing or decreasing
"""
self._searchsorted_monotonic(label) # validate sortedness
try:
loc = self.get_loc(label)
except (KeyError, TypeError) as err:
# KeyError -> No exact match, try for padded
# TypeError -> passed e.g. non-hashable, fall through to get
# the tested exception message
indexer = self.get_indexer([label], method="pad")
if indexer.ndim > 1 or indexer.size > 1:
raise TypeError("asof requires scalar valued input") from err
loc = indexer.item()
if loc == -1:
return self._na_value
else:
if isinstance(loc, slice):
return self[loc][-1]
return self[loc]
|
Return the label from the index, or, if not present, the previous one.
Assuming that the index is sorted, return the passed index label if it
is in the index, or return the previous index label if the passed one
is not in the index.
Parameters
----------
label : object
The label up to which the method returns the latest index label.
Returns
-------
object
The passed label if it is in the index. The previous label if the
passed label is not in the sorted index or `NaN` if there is no
such label.
See Also
--------
Series.asof : Return the latest value in a Series up to the
passed index.
merge_asof : Perform an asof merge (similar to left join but it
matches on nearest key rather than equal key).
Index.get_loc : An `asof` is a thin wrapper around `get_loc`
with method='pad'.
Examples
--------
`Index.asof` returns the latest index label up to the passed label.
>>> idx = pd.Index(["2013-12-31", "2014-01-02", "2014-01-03"])
>>> idx.asof("2014-01-01")
'2013-12-31'
If the label is in the index, the method returns the passed label.
>>> idx.asof("2014-01-02")
'2014-01-02'
If all of the labels in the index are later than the passed label,
NaN is returned.
>>> idx.asof("1999-01-02")
nan
If the index is not sorted, an error is raised.
>>> idx_not_sorted = pd.Index(["2013-12-31", "2015-01-02", "2014-01-03"])
>>> idx_not_sorted.asof("2013-12-31")
Traceback (most recent call last):
ValueError: index must be monotonic increasing or decreasing
|
python
|
pandas/core/indexes/base.py
| 5,640
|
[
"self",
"label"
] | false
| 6
| 7.76
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
|
toString
|
public static String toString(final Type type) {
Objects.requireNonNull(type, "type");
if (type instanceof Class<?>) {
return classToString((Class<?>) type);
}
if (type instanceof ParameterizedType) {
return parameterizedTypeToString((ParameterizedType) type);
}
if (type instanceof WildcardType) {
return wildcardTypeToString((WildcardType) type);
}
if (type instanceof TypeVariable<?>) {
return typeVariableToString((TypeVariable<?>) type);
}
if (type instanceof GenericArrayType) {
return genericArrayTypeToString((GenericArrayType) type);
}
throw new IllegalArgumentException(ObjectUtils.identityToString(type));
}
|
Formats a given type as a Java-esque String.
@param type the type to create a String representation for, not {@code null}.
@return String.
@throws NullPointerException if {@code type} is {@code null}.
@since 3.2
|
java
|
src/main/java/org/apache/commons/lang3/reflect/TypeUtils.java
| 1,537
|
[
"type"
] |
String
| true
| 6
| 7.92
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
splitWorker
|
private static String[] splitWorker(final String str, final char separatorChar, final boolean preserveAllTokens) {
// Performance tuned for 2.0 (JDK1.4)
if (str == null) {
return null;
}
final int len = str.length();
if (len == 0) {
return ArrayUtils.EMPTY_STRING_ARRAY;
}
final List<String> list = new ArrayList<>();
int i = 0;
int start = 0;
boolean match = false;
boolean lastMatch = false;
while (i < len) {
if (str.charAt(i) == separatorChar) {
if (match || preserveAllTokens) {
list.add(str.substring(start, i));
match = false;
lastMatch = true;
}
start = ++i;
continue;
}
lastMatch = false;
match = true;
i++;
}
if (match || preserveAllTokens && lastMatch) {
list.add(str.substring(start, i));
}
return list.toArray(ArrayUtils.EMPTY_STRING_ARRAY);
}
|
Performs the logic for the {@code split} and {@code splitPreserveAllTokens} methods that do not return a maximum array length.
@param str the String to parse, may be {@code null}.
@param separatorChar the separate character.
@param preserveAllTokens if {@code true}, adjacent separators are treated as empty token separators; if {@code false}, adjacent separators are treated as
one separator.
@return an array of parsed Strings, {@code null} if null String input.
|
java
|
src/main/java/org/apache/commons/lang3/StringUtils.java
| 7,562
|
[
"str",
"separatorChar",
"preserveAllTokens"
] | true
| 10
| 8.08
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
|
allByBrokerId
|
public KafkaFuture<Map<Integer, Collection<TransactionListing>>> allByBrokerId() {
KafkaFutureImpl<Map<Integer, Collection<TransactionListing>>> allFuture = new KafkaFutureImpl<>();
Map<Integer, Collection<TransactionListing>> allListingsMap = new HashMap<>();
future.whenComplete((map, topLevelException) -> {
if (topLevelException != null) {
allFuture.completeExceptionally(topLevelException);
return;
}
Set<Integer> remainingResponses = new HashSet<>(map.keySet());
map.forEach((brokerId, future) ->
future.whenComplete((listings, brokerException) -> {
if (brokerException != null) {
allFuture.completeExceptionally(brokerException);
} else if (!allFuture.isDone()) {
allListingsMap.put(brokerId, listings);
remainingResponses.remove(brokerId);
if (remainingResponses.isEmpty()) {
allFuture.complete(allListingsMap);
}
}
})
);
});
return allFuture;
}
|
Get all transaction listings in a map which is keyed by the ID of respective broker
that is currently managing them. If any of the underlying requests fail, then the future
returned from this method will also fail with the first encountered error.
@return A future containing a map from the broker ID to the transactions hosted by that
broker respectively. This future completes when all transaction listings are
available and fails after any non-retriable error.
|
java
|
clients/src/main/java/org/apache/kafka/clients/admin/ListTransactionsResult.java
| 92
|
[] | true
| 5
| 7.92
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
ediff1d
|
def ediff1d(arr, to_end=None, to_begin=None):
"""
Compute the differences between consecutive elements of an array.
This function is the equivalent of `numpy.ediff1d` that takes masked
values into account, see `numpy.ediff1d` for details.
See Also
--------
numpy.ediff1d : Equivalent function for ndarrays.
Examples
--------
>>> import numpy as np
>>> arr = np.ma.array([1, 2, 4, 7, 0])
>>> np.ma.ediff1d(arr)
masked_array(data=[ 1, 2, 3, -7],
mask=False,
fill_value=999999)
"""
arr = ma.asanyarray(arr).flat
ed = arr[1:] - arr[:-1]
arrays = [ed]
#
if to_begin is not None:
arrays.insert(0, to_begin)
if to_end is not None:
arrays.append(to_end)
#
if len(arrays) != 1:
# We'll save ourselves a copy of a potentially large array in the common
# case where neither to_begin or to_end was given.
ed = hstack(arrays)
#
return ed
|
Compute the differences between consecutive elements of an array.
This function is the equivalent of `numpy.ediff1d` that takes masked
values into account, see `numpy.ediff1d` for details.
See Also
--------
numpy.ediff1d : Equivalent function for ndarrays.
Examples
--------
>>> import numpy as np
>>> arr = np.ma.array([1, 2, 4, 7, 0])
>>> np.ma.ediff1d(arr)
masked_array(data=[ 1, 2, 3, -7],
mask=False,
fill_value=999999)
|
python
|
numpy/ma/extras.py
| 1,229
|
[
"arr",
"to_end",
"to_begin"
] | false
| 4
| 6.16
|
numpy/numpy
| 31,054
|
unknown
| false
|
|
__call__
|
def __call__(self, X, Y=None, eval_gradient=False):
"""Return the kernel k(X, Y) and optionally its gradient.
Parameters
----------
X : ndarray of shape (n_samples_X, n_features)
Left argument of the returned kernel k(X, Y)
Y : ndarray of shape (n_samples_Y, n_features), default=None
Right argument of the returned kernel k(X, Y). If None, k(X, X)
if evaluated instead.
eval_gradient : bool, default=False
Determines whether the gradient with respect to the log of
the kernel hyperparameter is computed.
Only supported when Y is None.
Returns
-------
K : ndarray of shape (n_samples_X, n_samples_Y)
Kernel k(X, Y)
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
optional
The gradient of the kernel k(X, X) with respect to the log of the
hyperparameter of the kernel. Only returned when `eval_gradient`
is True.
"""
pairwise_kernels_kwargs = self.pairwise_kernels_kwargs
if self.pairwise_kernels_kwargs is None:
pairwise_kernels_kwargs = {}
X = np.atleast_2d(X)
K = pairwise_kernels(
X,
Y,
metric=self.metric,
gamma=self.gamma,
filter_params=True,
**pairwise_kernels_kwargs,
)
if eval_gradient:
if self.hyperparameter_gamma.fixed:
return K, np.empty((X.shape[0], X.shape[0], 0))
else:
# approximate gradient numerically
def f(gamma): # helper function
return pairwise_kernels(
X,
Y,
metric=self.metric,
gamma=np.exp(gamma),
filter_params=True,
**pairwise_kernels_kwargs,
)
return K, _approx_fprime(self.theta, f, 1e-10)
else:
return K
|
Return the kernel k(X, Y) and optionally its gradient.
Parameters
----------
X : ndarray of shape (n_samples_X, n_features)
Left argument of the returned kernel k(X, Y)
Y : ndarray of shape (n_samples_Y, n_features), default=None
Right argument of the returned kernel k(X, Y). If None, k(X, X)
if evaluated instead.
eval_gradient : bool, default=False
Determines whether the gradient with respect to the log of
the kernel hyperparameter is computed.
Only supported when Y is None.
Returns
-------
K : ndarray of shape (n_samples_X, n_samples_Y)
Kernel k(X, Y)
K_gradient : ndarray of shape (n_samples_X, n_samples_X, n_dims),\
optional
The gradient of the kernel k(X, X) with respect to the log of the
hyperparameter of the kernel. Only returned when `eval_gradient`
is True.
|
python
|
sklearn/gaussian_process/kernels.py
| 2,321
|
[
"self",
"X",
"Y",
"eval_gradient"
] | false
| 6
| 6
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
password
|
@Nullable String password();
|
The password used when
{@link KeyStore#setKeyEntry(String, java.security.Key, char[], java.security.cert.Certificate[])
setting key entries} in the {@link KeyStore}.
@return the password
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/ssl/pem/PemSslStore.java
| 59
|
[] |
String
| true
| 1
| 6
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
forString
|
@CanIgnoreReturnValue // TODO(b/219820829): consider removing
public static InetAddress forString(String ipString) {
Scope scope = new Scope();
byte[] addr = ipStringToBytes(ipString, scope);
// The argument was malformed, i.e. not an IP string literal.
if (addr == null) {
throw formatIllegalArgumentException("'%s' is not an IP string literal.", ipString);
}
return bytesToInetAddress(addr, scope.scope);
}
|
Returns the {@link InetAddress} having the given string representation.
<p>This deliberately avoids all nameservice lookups (e.g. no DNS).
<p>This method accepts non-ASCII digits, for example {@code "192.168.0.1"} (those are fullwidth
characters). That is consistent with {@link InetAddress}, but not with various RFCs. If you
want to accept ASCII digits only, you can use something like {@code
CharMatcher.ascii().matchesAllOf(ipString)}.
<p>The scope ID is validated against the interfaces on the machine, which requires permissions
under Android.
<p><b>Android users on API >= 29:</b> Prefer {@code InetAddresses.parseNumericAddress}.
@param ipString {@code String} containing an IPv4 or IPv6 string literal, e.g. {@code
"192.168.0.1"} or {@code "2001:db8::1"} or with a scope ID, e.g. {@code "2001:db8::1%eth0"}
@return {@link InetAddress} representing the argument
@throws IllegalArgumentException if the argument is not a valid IP string literal or if the
address has a scope ID that fails validation against the interfaces on the machine (as
required by Java's {@link InetAddress})
|
java
|
android/guava/src/com/google/common/net/InetAddresses.java
| 156
|
[
"ipString"
] |
InetAddress
| true
| 2
| 7.76
|
google/guava
| 51,352
|
javadoc
| false
|
to_pickle
|
def to_pickle(
obj: Any,
filepath_or_buffer: FilePath | WriteBuffer[bytes],
compression: CompressionOptions = "infer",
protocol: int = pickle.HIGHEST_PROTOCOL,
storage_options: StorageOptions | None = None,
) -> None:
"""
Pickle (serialize) object to file.
Parameters
----------
obj : any object
Any python object.
filepath_or_buffer : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function.
Also accepts URL. URL has to be of S3 or GCS.
{compression_options}
protocol : int
Int which indicates which protocol should be used by the pickler,
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
values for this parameter depend on the version of Python. For Python
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
For Python >= 3.4, 4 is a valid value. A negative value for the
protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.
{storage_options}
.. [1] https://docs.python.org/3/library/pickle.html
See Also
--------
read_pickle : Load pickled pandas object (or any object) from file.
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_sql : Write DataFrame to a SQL database.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
Examples
--------
>>> original_df = pd.DataFrame(
... {{"foo": range(5), "bar": range(5, 10)}}
... ) # doctest: +SKIP
>>> original_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP
>>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP
>>> unpickled_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
"""
if protocol < 0:
protocol = pickle.HIGHEST_PROTOCOL
with get_handle(
filepath_or_buffer,
"wb",
compression=compression,
is_text=False,
storage_options=storage_options,
) as handles:
# letting pickle write directly to the buffer is more memory-efficient
pickle.dump(obj, handles.handle, protocol=protocol)
|
Pickle (serialize) object to file.
Parameters
----------
obj : any object
Any python object.
filepath_or_buffer : str, path object, or file-like object
String, path object (implementing ``os.PathLike[str]``), or file-like
object implementing a binary ``write()`` function.
Also accepts URL. URL has to be of S3 or GCS.
{compression_options}
protocol : int
Int which indicates which protocol should be used by the pickler,
default HIGHEST_PROTOCOL (see [1], paragraph 12.1.2). The possible
values for this parameter depend on the version of Python. For Python
2.x, possible values are 0, 1, 2. For Python>=3.0, 3 is a valid value.
For Python >= 3.4, 4 is a valid value. A negative value for the
protocol parameter is equivalent to setting its value to
HIGHEST_PROTOCOL.
{storage_options}
.. [1] https://docs.python.org/3/library/pickle.html
See Also
--------
read_pickle : Load pickled pandas object (or any object) from file.
DataFrame.to_hdf : Write DataFrame to an HDF5 file.
DataFrame.to_sql : Write DataFrame to a SQL database.
DataFrame.to_parquet : Write a DataFrame to the binary parquet format.
Examples
--------
>>> original_df = pd.DataFrame(
... {{"foo": range(5), "bar": range(5, 10)}}
... ) # doctest: +SKIP
>>> original_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
>>> pd.to_pickle(original_df, "./dummy.pkl") # doctest: +SKIP
>>> unpickled_df = pd.read_pickle("./dummy.pkl") # doctest: +SKIP
>>> unpickled_df # doctest: +SKIP
foo bar
0 0 5
1 1 6
2 2 7
3 3 8
4 4 9
|
python
|
pandas/io/pickle.py
| 42
|
[
"obj",
"filepath_or_buffer",
"compression",
"protocol",
"storage_options"
] |
None
| true
| 2
| 8.4
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
setupNetworkInspection
|
function setupNetworkInspection() {
if (internalBinding('config').hasInspector && getOptionValue('--experimental-network-inspection')) {
const {
enable,
disable,
} = require('internal/inspector_network_tracking');
internalBinding('inspector').setupNetworkTracking(enable, disable);
}
}
|
Patch the process object with legacy properties and normalizations.
Replace `process.argv[0]` with `process.execPath`, preserving the original `argv[0]` value as `process.argv0`.
Replace `process.argv[1]` with the resolved absolute file path of the entry point, if found.
@param {boolean} expandArgv1 - Whether to replace `process.argv[1]` with the resolved absolute file path of
the main entry point.
@returns {string}
|
javascript
|
lib/internal/process/pre_execution.js
| 505
|
[] | false
| 3
| 6.8
|
nodejs/node
| 114,839
|
jsdoc
| false
|
|
nunique
|
def nunique(self, axis: Axis = 0, dropna: bool = True) -> Series:
"""
Count number of distinct elements in specified axis.
Return Series with number of distinct elements. Can ignore NaN
values.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for
column-wise.
dropna : bool, default True
Don't include NaN in the counts.
Returns
-------
Series
Series with counts of unique values per row or column, depending on `axis`.
See Also
--------
Series.nunique: Method nunique for Series.
DataFrame.count: Count non-NA cells for each column or row.
Examples
--------
>>> df = pd.DataFrame({"A": [4, 5, 6], "B": [4, 1, 1]})
>>> df.nunique()
A 3
B 2
dtype: int64
>>> df.nunique(axis=1)
0 1
1 2
2 2
dtype: int64
"""
return self.apply(Series.nunique, axis=axis, dropna=dropna)
|
Count number of distinct elements in specified axis.
Return Series with number of distinct elements. Can ignore NaN
values.
Parameters
----------
axis : {0 or 'index', 1 or 'columns'}, default 0
The axis to use. 0 or 'index' for row-wise, 1 or 'columns' for
column-wise.
dropna : bool, default True
Don't include NaN in the counts.
Returns
-------
Series
Series with counts of unique values per row or column, depending on `axis`.
See Also
--------
Series.nunique: Method nunique for Series.
DataFrame.count: Count non-NA cells for each column or row.
Examples
--------
>>> df = pd.DataFrame({"A": [4, 5, 6], "B": [4, 1, 1]})
>>> df.nunique()
A 3
B 2
dtype: int64
>>> df.nunique(axis=1)
0 1
1 2
2 2
dtype: int64
|
python
|
pandas/core/frame.py
| 14,055
|
[
"self",
"axis",
"dropna"
] |
Series
| true
| 1
| 7.28
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
_from_inferred_categories
|
def _from_inferred_categories(
cls, inferred_categories, inferred_codes, dtype, true_values=None
) -> Self:
"""
Construct a Categorical from inferred values.
For inferred categories (`dtype` is None) the categories are sorted.
For explicit `dtype`, the `inferred_categories` are cast to the
appropriate type.
Parameters
----------
inferred_categories : Index
inferred_codes : Index
dtype : CategoricalDtype or 'category'
true_values : list, optional
If none are provided, the default ones are
"True", "TRUE", and "true."
Returns
-------
Categorical
"""
from pandas import (
Index,
to_datetime,
to_numeric,
to_timedelta,
)
cats = Index(inferred_categories)
known_categories = (
isinstance(dtype, CategoricalDtype) and dtype.categories is not None
)
if known_categories:
# Convert to a specialized type with `dtype` if specified.
if is_any_real_numeric_dtype(dtype.categories.dtype):
cats = to_numeric(inferred_categories, errors="coerce")
elif lib.is_np_dtype(dtype.categories.dtype, "M"):
cats = to_datetime(inferred_categories, errors="coerce")
elif lib.is_np_dtype(dtype.categories.dtype, "m"):
cats = to_timedelta(inferred_categories, errors="coerce")
elif is_bool_dtype(dtype.categories.dtype):
if true_values is None:
true_values = ["True", "TRUE", "true"]
# error: Incompatible types in assignment (expression has type
# "ndarray", variable has type "Index")
cats = cats.isin(true_values) # type: ignore[assignment]
if known_categories:
# Recode from observation order to dtype.categories order.
categories = dtype.categories
codes = recode_for_categories(
inferred_codes, cats, categories, copy=False, warn=True
)
elif not cats.is_monotonic_increasing:
# Sort categories and recode for unknown categories.
unsorted = cats.copy()
categories = cats.sort_values()
codes = recode_for_categories(
inferred_codes, unsorted, categories, copy=False, warn=True
)
dtype = CategoricalDtype(categories, ordered=False)
else:
dtype = CategoricalDtype(cats, ordered=False)
codes = inferred_codes
return cls._simple_new(codes, dtype=dtype)
|
Construct a Categorical from inferred values.
For inferred categories (`dtype` is None) the categories are sorted.
For explicit `dtype`, the `inferred_categories` are cast to the
appropriate type.
Parameters
----------
inferred_categories : Index
inferred_codes : Index
dtype : CategoricalDtype or 'category'
true_values : list, optional
If none are provided, the default ones are
"True", "TRUE", and "true."
Returns
-------
Categorical
|
python
|
pandas/core/arrays/categorical.py
| 643
|
[
"cls",
"inferred_categories",
"inferred_codes",
"dtype",
"true_values"
] |
Self
| true
| 11
| 6.32
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
getErrorReport
|
@Nullable String getErrorReport() {
Map<String, List<PropertyMigration>> content = getContent(LegacyProperties::getUnsupported);
if (content.isEmpty()) {
return null;
}
StringBuilder report = new StringBuilder();
report.append(String
.format("%nThe use of configuration keys that are no longer supported was found in the environment:%n%n"));
append(report, content);
report.append(String.format("%n"));
report.append("Please refer to the release notes or reference guide for potential alternatives.");
report.append(String.format("%n"));
return report.toString();
}
|
Return a report for all the properties that are no longer supported. If no such
properties were found, return {@code null}.
@return a report with the configurations keys that are no longer supported
|
java
|
core/spring-boot-properties-migrator/src/main/java/org/springframework/boot/context/properties/migrator/PropertiesMigrationReport.java
| 65
|
[] |
String
| true
| 2
| 8.24
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
generateCodeForConstructor
|
private CodeBlock generateCodeForConstructor(RegisteredBean registeredBean, Constructor<?> constructor) {
ConstructorDescriptor descriptor = new ConstructorDescriptor(
registeredBean.getBeanName(), constructor, registeredBean.getBeanClass());
Class<?> publicType = descriptor.publicType();
if (KOTLIN_REFLECT_PRESENT && KotlinDetector.isKotlinType(publicType) && KotlinDelegate.hasConstructorWithOptionalParameter(publicType)) {
return generateCodeForInaccessibleConstructor(descriptor,
hints -> hints.registerType(publicType, MemberCategory.INVOKE_DECLARED_CONSTRUCTORS));
}
if (!isVisible(constructor, constructor.getDeclaringClass()) ||
registeredBean.getMergedBeanDefinition().hasMethodOverrides()) {
return generateCodeForInaccessibleConstructor(descriptor,
hints -> hints.registerConstructor(constructor, ExecutableMode.INVOKE));
}
return generateCodeForAccessibleConstructor(descriptor);
}
|
Generate the instance supplier code.
@param registeredBean the bean to handle
@param instantiationDescriptor the executable to use to create the bean
@return the generated code
@since 6.1.7
|
java
|
spring-beans/src/main/java/org/springframework/beans/factory/aot/InstanceSupplierCodeGenerator.java
| 161
|
[
"registeredBean",
"constructor"
] |
CodeBlock
| true
| 6
| 7.44
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
compile
|
public static FilterPath[] compile(Set<String> filters) {
if (filters == null || filters.isEmpty()) {
return null;
}
FilterPathBuilder builder = new FilterPathBuilder();
for (String filter : filters) {
if (filter != null) {
filter = filter.trim();
if (filter.length() > 0) {
builder.insert(filter);
}
}
}
FilterPath filterPath = builder.build();
return Collections.singletonList(filterPath).toArray(new FilterPath[0]);
}
|
check if the name matches filter nodes
if the name equals the filter node name, the node will add to nextFilters.
if the filter node is a final node, it means the name matches the pattern, and return true
if the name don't equal a final node, then return false, continue to check the inner filter node
if current node is a double wildcard node, the node will also add to nextFilters.
@param name the xcontent property name
@param nextFilters nextFilters is a List, used to check the inner property of name
@param matchFieldNamesWithDots support dot in field name or not
@return true if the name equal a final node, otherwise return false
|
java
|
libs/x-content/src/main/java/org/elasticsearch/xcontent/support/filtering/FilterPath.java
| 208
|
[
"filters"
] | true
| 5
| 7.76
|
elastic/elasticsearch
| 75,680
|
javadoc
| false
|
|
apply
|
public final void apply() {
apply(null);
}
|
Returns the {@link Console} to use.
@return the {@link Console} to use
@since 3.5.0
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/logging/LoggingSystemProperties.java
| 107
|
[] |
void
| true
| 1
| 6.8
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
_raise_if_missing
|
def _raise_if_missing(self, key, indexer, axis_name: str_t) -> None:
"""
Check that indexer can be used to return a result.
e.g. at least one element was found,
unless the list of keys was actually empty.
Parameters
----------
key : list-like
Targeted labels (only used to show correct error message).
indexer: array-like of booleans
Indices corresponding to the key,
(with -1 indicating not found).
axis_name : str
Raises
------
KeyError
If at least one key was requested but none was found.
"""
if len(key) == 0:
return
# Count missing values
missing_mask = indexer < 0
nmissing = missing_mask.sum()
if nmissing:
if nmissing == len(indexer):
raise KeyError(f"None of [{key}] are in the [{axis_name}]")
not_found = list(ensure_index(key)[missing_mask.nonzero()[0]].unique())
raise KeyError(f"{not_found} not in index")
|
Check that indexer can be used to return a result.
e.g. at least one element was found,
unless the list of keys was actually empty.
Parameters
----------
key : list-like
Targeted labels (only used to show correct error message).
indexer: array-like of booleans
Indices corresponding to the key,
(with -1 indicating not found).
axis_name : str
Raises
------
KeyError
If at least one key was requested but none was found.
|
python
|
pandas/core/indexes/base.py
| 6,231
|
[
"self",
"key",
"indexer",
"axis_name"
] |
None
| true
| 4
| 6.88
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
toString
|
@Override
public String toString() {
if (toString == null) {
toString = getNumerator() + "/" + getDenominator();
}
return toString;
}
|
Gets the fraction as a {@link String}.
<p>
The format used is '<em>numerator</em>/<em>denominator</em>' always.
</p>
@return a {@link String} form of the fraction
|
java
|
src/main/java/org/apache/commons/lang3/math/Fraction.java
| 916
|
[] |
String
| true
| 2
| 7.76
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
concat
|
public static ByteSource concat(Iterable<? extends ByteSource> sources) {
return new ConcatenatedByteSource(sources);
}
|
Concatenates multiple {@link ByteSource} instances into a single source. Streams returned from
the source will contain the concatenated data from the streams of the underlying sources.
<p>Only one underlying stream will be open at a time. Closing the concatenated stream will
close the open underlying stream.
@param sources the sources to concatenate
@return a {@code ByteSource} containing the concatenated data
@since 15.0
|
java
|
android/guava/src/com/google/common/io/ByteSource.java
| 374
|
[
"sources"
] |
ByteSource
| true
| 1
| 6.64
|
google/guava
| 51,352
|
javadoc
| false
|
ledoit_wolf_shrinkage
|
def ledoit_wolf_shrinkage(X, assume_centered=False, block_size=1000):
"""Estimate the shrunk Ledoit-Wolf covariance matrix.
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the Ledoit-Wolf shrunk covariance shrinkage.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data will be centered before computation.
block_size : int, default=1000
Size of blocks into which the covariance matrix will be split.
Returns
-------
shrinkage : float
Coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularized (shrunk) covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import ledoit_wolf_shrinkage
>>> real_cov = np.array([[.4, .2], [.2, .8]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=50)
>>> shrinkage_coefficient = ledoit_wolf_shrinkage(X)
>>> shrinkage_coefficient
np.float64(0.23)
"""
X = check_array(X)
# for only one feature, the result is the same whatever the shrinkage
if len(X.shape) == 2 and X.shape[1] == 1:
return 0.0
if X.ndim == 1:
X = np.reshape(X, (1, -1))
if X.shape[0] == 1:
warnings.warn(
"Only one sample available. You may want to reshape your data array"
)
n_samples, n_features = X.shape
# optionally center data
if not assume_centered:
X = X - X.mean(0)
# A non-blocked version of the computation is present in the tests
# in tests/test_covariance.py
# number of blocks to split the covariance matrix into
n_splits = int(n_features / block_size)
X2 = X**2
emp_cov_trace = np.sum(X2, axis=0) / n_samples
mu = np.sum(emp_cov_trace) / n_features
beta_ = 0.0 # sum of the coefficients of <X2.T, X2>
delta_ = 0.0 # sum of the *squared* coefficients of <X.T, X>
# starting block computation
for i in range(n_splits):
for j in range(n_splits):
rows = slice(block_size * i, block_size * (i + 1))
cols = slice(block_size * j, block_size * (j + 1))
beta_ += np.sum(np.dot(X2.T[rows], X2[:, cols]))
delta_ += np.sum(np.dot(X.T[rows], X[:, cols]) ** 2)
rows = slice(block_size * i, block_size * (i + 1))
beta_ += np.sum(np.dot(X2.T[rows], X2[:, block_size * n_splits :]))
delta_ += np.sum(np.dot(X.T[rows], X[:, block_size * n_splits :]) ** 2)
for j in range(n_splits):
cols = slice(block_size * j, block_size * (j + 1))
beta_ += np.sum(np.dot(X2.T[block_size * n_splits :], X2[:, cols]))
delta_ += np.sum(np.dot(X.T[block_size * n_splits :], X[:, cols]) ** 2)
delta_ += np.sum(
np.dot(X.T[block_size * n_splits :], X[:, block_size * n_splits :]) ** 2
)
delta_ /= n_samples**2
beta_ += np.sum(
np.dot(X2.T[block_size * n_splits :], X2[:, block_size * n_splits :])
)
# use delta_ to compute beta
beta = 1.0 / (n_features * n_samples) * (beta_ / n_samples - delta_)
# delta is the sum of the squared coefficients of (<X.T,X> - mu*Id) / p
delta = delta_ - 2.0 * mu * emp_cov_trace.sum() + n_features * mu**2
delta /= n_features
# get final beta as the min between beta and delta
# We do this to prevent shrinking more than "1", which would invert
# the value of covariances
beta = min(beta, delta)
# finally get shrinkage
shrinkage = 0 if beta == 0 else beta / delta
return shrinkage
|
Estimate the shrunk Ledoit-Wolf covariance matrix.
Read more in the :ref:`User Guide <shrunk_covariance>`.
Parameters
----------
X : array-like of shape (n_samples, n_features)
Data from which to compute the Ledoit-Wolf shrunk covariance shrinkage.
assume_centered : bool, default=False
If True, data will not be centered before computation.
Useful to work with data whose mean is significantly equal to
zero but is not exactly zero.
If False, data will be centered before computation.
block_size : int, default=1000
Size of blocks into which the covariance matrix will be split.
Returns
-------
shrinkage : float
Coefficient in the convex combination used for the computation
of the shrunk estimate.
Notes
-----
The regularized (shrunk) covariance is:
(1 - shrinkage) * cov + shrinkage * mu * np.identity(n_features)
where mu = trace(cov) / n_features
Examples
--------
>>> import numpy as np
>>> from sklearn.covariance import ledoit_wolf_shrinkage
>>> real_cov = np.array([[.4, .2], [.2, .8]])
>>> rng = np.random.RandomState(0)
>>> X = rng.multivariate_normal(mean=[0, 0], cov=real_cov, size=50)
>>> shrinkage_coefficient = ledoit_wolf_shrinkage(X)
>>> shrinkage_coefficient
np.float64(0.23)
|
python
|
sklearn/covariance/_shrunk_covariance.py
| 297
|
[
"X",
"assume_centered",
"block_size"
] | false
| 10
| 7.12
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
errorCounts
|
@Override
public Map<Errors, Integer> errorCounts() {
return Collections.singletonMap(Errors.forCode(data.errorCode()), 1);
}
|
The number of each type of error in the response, including {@link Errors#NONE} and top-level errors as well as
more specifically scoped errors (such as topic or partition-level errors).
@return A count of errors.
|
java
|
clients/src/main/java/org/apache/kafka/common/requests/AllocateProducerIdsResponse.java
| 48
|
[] | true
| 1
| 6.8
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
skipFully
|
public static void skipFully(Reader reader, long n) throws IOException {
checkNotNull(reader);
while (n > 0) {
long amt = reader.skip(n);
if (amt == 0) {
throw new EOFException();
}
n -= amt;
}
}
|
Discards {@code n} characters of data from the reader. This method will block until the full
amount has been skipped. Does not close the reader.
@param reader the reader to read from
@param n the number of characters to skip
@throws EOFException if this stream reaches the end before skipping all the characters
@throws IOException if an I/O error occurs
|
java
|
android/guava/src/com/google/common/io/CharStreams.java
| 271
|
[
"reader",
"n"
] |
void
| true
| 3
| 7.04
|
google/guava
| 51,352
|
javadoc
| false
|
copyTo
|
void copyTo(DataBlock dataBlock, long pos, ZipEntry zipEntry) throws IOException {
int fileNameLength = Short.toUnsignedInt(fileNameLength());
int extraLength = Short.toUnsignedInt(extraFieldLength());
int commentLength = Short.toUnsignedInt(fileCommentLength());
zipEntry.setMethod(Short.toUnsignedInt(compressionMethod()));
zipEntry.setTime(decodeMsDosFormatDateTime(lastModFileDate(), lastModFileTime()));
zipEntry.setCrc(Integer.toUnsignedLong(crc32()));
zipEntry.setCompressedSize(Integer.toUnsignedLong(compressedSize()));
zipEntry.setSize(Integer.toUnsignedLong(uncompressedSize()));
if (extraLength > 0) {
long extraPos = pos + MINIMUM_SIZE + fileNameLength;
ByteBuffer buffer = ByteBuffer.allocate(extraLength);
dataBlock.readFully(buffer, extraPos);
zipEntry.setExtra(buffer.array());
}
if (commentLength > 0) {
long commentPos = pos + MINIMUM_SIZE + fileNameLength + extraLength;
zipEntry.setComment(ZipString.readString(dataBlock, commentPos, commentLength));
}
}
|
Copy values from this block to the given {@link ZipEntry}.
@param dataBlock the source data block
@param pos the position of this {@link ZipCentralDirectoryFileHeaderRecord}
@param zipEntry the destination zip entry
@throws IOException on I/O error
|
java
|
loader/spring-boot-loader/src/main/java/org/springframework/boot/loader/zip/ZipCentralDirectoryFileHeaderRecord.java
| 85
|
[
"dataBlock",
"pos",
"zipEntry"
] |
void
| true
| 3
| 6.24
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
compile
|
def compile(pattern: str, base_dir: Path, definition_file: Path) -> _IgnoreRule | None:
"""Build an ignore rule from the supplied glob pattern and log a useful warning if it is invalid."""
relative_to: Path | None = None
if pattern.strip() == "/":
# "/" doesn't match anything in gitignore
log.warning("Ignoring no-op glob pattern '/' from %s", definition_file)
return None
if pattern.startswith("/") or "/" in pattern.rstrip("/"):
# See https://git-scm.com/docs/gitignore
# > If there is a separator at the beginning or middle (or both) of the pattern, then the
# > pattern is relative to the directory level of the particular .gitignore file itself.
# > Otherwise the pattern may also match at any level below the .gitignore level.
relative_to = definition_file.parent
ignore_pattern = GitWildMatchPattern(pattern)
return _GlobIgnoreRule(wild_match_pattern=ignore_pattern, relative_to=relative_to)
|
Build an ignore rule from the supplied glob pattern and log a useful warning if it is invalid.
|
python
|
airflow-core/src/airflow/utils/file.py
| 90
|
[
"pattern",
"base_dir",
"definition_file"
] |
_IgnoreRule | None
| true
| 4
| 6
|
apache/airflow
| 43,597
|
unknown
| false
|
getMatchOutcome
|
@Override
public ConditionOutcome getMatchOutcome(ConditionContext context, AnnotatedTypeMetadata metadata) {
if (context.getEnvironment().containsProperty(this.property)) {
return ConditionOutcome.match(startConditionMessage().foundExactly("property " + this.property));
}
return getResourceOutcome(context, metadata);
}
|
Create a new condition.
@param name the name of the component
@param property the configuration property
@param resourceLocations default location(s) where the configuration file can be
found if the configuration key is not specified
@since 2.0.0
|
java
|
core/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/condition/ResourceCondition.java
| 60
|
[
"context",
"metadata"
] |
ConditionOutcome
| true
| 2
| 6.56
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
duration
|
public long duration() {
return duration;
}
|
@return the number of {@link #timeUnit()} units this value contains
|
java
|
libs/core/src/main/java/org/elasticsearch/core/TimeValue.java
| 110
|
[] | true
| 1
| 6
|
elastic/elasticsearch
| 75,680
|
javadoc
| false
|
|
awaitPendingRequests
|
public boolean awaitPendingRequests(Node node, Timer timer) {
while (hasPendingRequests(node) && timer.notExpired()) {
poll(timer);
}
return !hasPendingRequests(node);
}
|
Block until all pending requests from the given node have finished.
@param node The node to await requests from
@param timer Timer bounding how long this method can block
@return true If all requests finished, false if the timeout expired first
|
java
|
clients/src/main/java/org/apache/kafka/clients/consumer/internals/ConsumerNetworkClient.java
| 353
|
[
"node",
"timer"
] | true
| 3
| 8.24
|
apache/kafka
| 31,560
|
javadoc
| false
|
|
containsEntryImpl
|
static <K extends @Nullable Object, V extends @Nullable Object> boolean containsEntryImpl(
Collection<Entry<K, V>> c, @Nullable Object o) {
if (!(o instanceof Entry)) {
return false;
}
return c.contains(unmodifiableEntry((Entry<?, ?>) o));
}
|
Implements {@code Collection.contains} safely for forwarding collections of map entries. If
{@code o} is an instance of {@code Entry}, it is wrapped using {@link #unmodifiableEntry} to
protect against a possible nefarious equals method.
<p>Note that {@code c} is the backing (delegate) collection, rather than the forwarding
collection.
@param c the delegate (unwrapped) collection of map entries
@param o the object that might be contained in {@code c}
@return {@code true} if {@code c} contains {@code o}
|
java
|
android/guava/src/com/google/common/collect/Maps.java
| 3,644
|
[
"c",
"o"
] | true
| 2
| 7.92
|
google/guava
| 51,352
|
javadoc
| false
|
|
determineBrokerUrl
|
String determineBrokerUrl() {
if (this.brokerUrl != null) {
return this.brokerUrl;
}
if (this.embedded.isEnabled()) {
return DEFAULT_EMBEDDED_BROKER_URL;
}
return DEFAULT_NETWORK_BROKER_URL;
}
|
Time to wait on message sends for a response. Set it to 0 to wait forever.
|
java
|
module/spring-boot-activemq/src/main/java/org/springframework/boot/activemq/autoconfigure/ActiveMQProperties.java
| 144
|
[] |
String
| true
| 3
| 6.72
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
canShortcutWithSource
|
boolean canShortcutWithSource(ElementType requiredType) {
return canShortcutWithSource(requiredType, requiredType);
}
|
Returns if the element source can be used as a shortcut for an operation such
as {@code equals} or {@code toString}.
@param requiredType the required type
@return {@code true} if all elements match at least one of the types
|
java
|
core/spring-boot/src/main/java/org/springframework/boot/context/properties/source/ConfigurationPropertyName.java
| 951
|
[
"requiredType"
] | true
| 1
| 6.64
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
|
run
|
def run(
command: str,
command_args: tuple,
backend: str,
builder: str,
docker_host: str | None,
force_build: bool,
forward_credentials: bool,
github_repository: str,
mysql_version: str,
platform: str | None,
postgres_version: str,
project_name: str,
python: str,
skip_image_upgrade_check: bool,
tty: str,
use_uv: bool,
uv_http_timeout: int,
):
"""
Run a command in the Breeze environment without entering the interactive shell.
This is useful for automated testing, CI workflows, and one-off command execution.
The command will be executed in a fresh container that is automatically cleaned up.
Each run uses a unique project name to avoid conflicts with other instances.
Examples:
# Run a specific test
breeze run pytest providers/google/tests/unit/google/cloud/operators/test_dataflow.py -v
# Check version compatibility
breeze run python -c "from airflow.providers.google.version_compat import AIRFLOW_V_3_0_PLUS; print(AIRFLOW_V_3_0_PLUS)"
# Run bash commands
breeze run bash -c "cd /opt/airflow && python -m pytest providers/google/tests/"
# Run with different Python version
breeze run --python 3.11 pytest providers/standard/tests/unit/operators/test_bash.py
# Run with PostgreSQL backend
breeze run --backend postgres pytest providers/postgres/tests/
"""
import uuid
from airflow_breeze.commands.ci_image_commands import rebuild_or_pull_ci_image_if_needed
from airflow_breeze.params.shell_params import ShellParams
from airflow_breeze.utils.ci_group import ci_group
from airflow_breeze.utils.docker_command_utils import execute_command_in_shell
from airflow_breeze.utils.platforms import get_normalized_platform
# Generate a unique project name to avoid conflicts with other running instances
unique_project_name = f"{project_name}-run-{uuid.uuid4().hex[:8]}"
# Build the full command string with proper escaping
import shlex
if command_args:
# Use shlex.join to properly escape arguments
full_command = f"{command} {shlex.join(command_args)}"
else:
full_command = command
platform = get_normalized_platform(platform)
# Create shell parameters optimized for non-interactive command execution
shell_params = ShellParams(
backend=backend,
builder=builder,
docker_host=docker_host,
force_build=force_build,
forward_credentials=forward_credentials,
github_repository=github_repository,
mysql_version=mysql_version,
platform=platform,
postgres_version=postgres_version,
project_name=unique_project_name,
python=python,
skip_image_upgrade_check=skip_image_upgrade_check,
use_uv=use_uv,
uv_http_timeout=uv_http_timeout,
# Optimizations for non-interactive execution
quiet=True,
skip_environment_initialization=True,
tty=tty,
# Set extra_args to empty tuple since we'll pass the command directly
extra_args=(),
)
if get_verbose():
get_console().print(f"[info]Running command in Breeze: {full_command}[/]")
get_console().print(f"[info]Using project name: {unique_project_name}[/]")
# Build or pull the CI image if needed
rebuild_or_pull_ci_image_if_needed(command_params=shell_params)
# Execute the command in the shell
with ci_group(f"Running command: {command}"):
result = execute_command_in_shell(
shell_params=shell_params,
project_name=unique_project_name,
command=full_command,
# Always preserve the backend specified by user (or resolved from default)
preserve_backend=True,
)
# Clean up ownership
from airflow_breeze.utils.docker_command_utils import fix_ownership_using_docker
fix_ownership_using_docker()
# Exit with the same code as the command
sys.exit(result.returncode)
|
Run a command in the Breeze environment without entering the interactive shell.
This is useful for automated testing, CI workflows, and one-off command execution.
The command will be executed in a fresh container that is automatically cleaned up.
Each run uses a unique project name to avoid conflicts with other instances.
Examples:
# Run a specific test
breeze run pytest providers/google/tests/unit/google/cloud/operators/test_dataflow.py -v
# Check version compatibility
breeze run python -c "from airflow.providers.google.version_compat import AIRFLOW_V_3_0_PLUS; print(AIRFLOW_V_3_0_PLUS)"
# Run bash commands
breeze run bash -c "cd /opt/airflow && python -m pytest providers/google/tests/"
# Run with different Python version
breeze run --python 3.11 pytest providers/standard/tests/unit/operators/test_bash.py
# Run with PostgreSQL backend
breeze run --backend postgres pytest providers/postgres/tests/
|
python
|
dev/breeze/src/airflow_breeze/commands/developer_commands.py
| 1,072
|
[
"command",
"command_args",
"backend",
"builder",
"docker_host",
"force_build",
"forward_credentials",
"github_repository",
"mysql_version",
"platform",
"postgres_version",
"project_name",
"python",
"skip_image_upgrade_check",
"tty",
"use_uv",
"uv_http_timeout"
] | true
| 4
| 6.72
|
apache/airflow
| 43,597
|
unknown
| false
|
|
uncaughtExceptionHandler
|
public Builder uncaughtExceptionHandler(
final Thread.UncaughtExceptionHandler exceptionHandler) {
this.exceptionHandler = Objects.requireNonNull(exceptionHandler, "handler");
return this;
}
|
Sets the uncaught exception handler for the threads created by the
new {@link BasicThreadFactory}.
@param exceptionHandler the {@link UncaughtExceptionHandler} (must not be
<strong>null</strong>)
@return a reference to this {@link Builder}
@throws NullPointerException if the exception handler is <strong>null</strong>
|
java
|
src/main/java/org/apache/commons/lang3/concurrent/BasicThreadFactory.java
| 215
|
[
"exceptionHandler"
] |
Builder
| true
| 1
| 6.08
|
apache/commons-lang
| 2,896
|
javadoc
| false
|
render_log_filename
|
def render_log_filename(ti: TaskInstance, try_number, filename_template) -> str:
"""
Given task instance, try_number, filename_template, return the rendered log filename.
:param ti: task instance
:param try_number: try_number of the task
:param filename_template: filename template, which can be jinja template or
python string template
"""
filename_template, filename_jinja_template = parse_template_string(filename_template)
if filename_jinja_template:
jinja_context = ti.get_template_context()
jinja_context["try_number"] = try_number
return _render_template_to_string(filename_jinja_template, jinja_context)
return filename_template.format(
dag_id=ti.dag_id,
task_id=ti.task_id,
logical_date=ti.logical_date.isoformat(),
try_number=try_number,
)
|
Given task instance, try_number, filename_template, return the rendered log filename.
:param ti: task instance
:param try_number: try_number of the task
:param filename_template: filename template, which can be jinja template or
python string template
|
python
|
airflow-core/src/airflow/utils/helpers.py
| 173
|
[
"ti",
"try_number",
"filename_template"
] |
str
| true
| 2
| 6.24
|
apache/airflow
| 43,597
|
sphinx
| false
|
watch
|
void watch(Set<Path> paths, Runnable action) {
Assert.notNull(paths, "'paths' must not be null");
Assert.notNull(action, "'action' must not be null");
if (paths.isEmpty()) {
return;
}
synchronized (this.lock) {
try {
if (this.thread == null) {
this.thread = new WatcherThread();
this.thread.start();
}
this.thread.register(new Registration(getRegistrationPaths(paths), action));
}
catch (IOException ex) {
throw new UncheckedIOException("Failed to register paths for watching: " + paths, ex);
}
}
}
|
Watch the given files or directories for changes.
@param paths the files or directories to watch
@param action the action to take when changes are detected
|
java
|
core/spring-boot-autoconfigure/src/main/java/org/springframework/boot/autoconfigure/ssl/FileWatcher.java
| 78
|
[
"paths",
"action"
] |
void
| true
| 4
| 7.04
|
spring-projects/spring-boot
| 79,428
|
javadoc
| false
|
parseTypeParameters
|
function parseTypeParameters(): NodeArray<TypeParameterDeclaration> | undefined {
if (token() === SyntaxKind.LessThanToken) {
return parseBracketedList(ParsingContext.TypeParameters, parseTypeParameter, SyntaxKind.LessThanToken, SyntaxKind.GreaterThanToken);
}
}
|
Reports a diagnostic error for the current token being an invalid name.
@param blankDiagnostic Diagnostic to report for the case of the name being blank (matched tokenIfBlankName).
@param nameDiagnostic Diagnostic to report for all other cases.
@param tokenIfBlankName Current token if the name was invalid for being blank (not provided / skipped).
|
typescript
|
src/compiler/parser.ts
| 3,987
|
[] | true
| 2
| 6.72
|
microsoft/TypeScript
| 107,154
|
jsdoc
| false
|
|
generateSetBeanDefinitionPropertiesCode
|
CodeBlock generateSetBeanDefinitionPropertiesCode(
GenerationContext generationContext, BeanRegistrationCode beanRegistrationCode,
RootBeanDefinition beanDefinition, Predicate<String> attributeFilter);
|
Generate the code that sets the properties of the bean definition.
@param generationContext the generation context
@param beanRegistrationCode the bean registration code
@param attributeFilter any attribute filtering that should be applied
@return the generated code
|
java
|
spring-beans/src/main/java/org/springframework/beans/factory/aot/BeanRegistrationCodeFragments.java
| 91
|
[
"generationContext",
"beanRegistrationCode",
"beanDefinition",
"attributeFilter"
] |
CodeBlock
| true
| 1
| 6
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
getStringOrNull
|
protected @Nullable String getStringOrNull(ResourceBundle bundle, String key) {
if (bundle.containsKey(key)) {
try {
return bundle.getString(key);
}
catch (MissingResourceException ex) {
// Assume key not found for some other reason
// -> do NOT throw the exception to allow for checking parent message source.
}
}
return null;
}
|
Efficiently retrieve the String value for the specified key,
or return {@code null} if not found.
<p>As of 4.2, the default implementation checks {@code containsKey}
before it attempts to call {@code getString} (which would require
catching {@code MissingResourceException} for key not found).
<p>Can be overridden in subclasses.
@param bundle the ResourceBundle to perform the lookup in
@param key the key to look up
@return the associated value, or {@code null} if none
@since 4.2
@see ResourceBundle#getString(String)
@see ResourceBundle#containsKey(String)
|
java
|
spring-context/src/main/java/org/springframework/context/support/ResourceBundleMessageSource.java
| 353
|
[
"bundle",
"key"
] |
String
| true
| 3
| 7.76
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
appendArgumentTypes
|
private static void appendArgumentTypes(MethodInvocation methodInvocation, Matcher matcher, StringBuilder output) {
Class<?>[] argumentTypes = methodInvocation.getMethod().getParameterTypes();
String[] argumentTypeShortNames = new String[argumentTypes.length];
for (int i = 0; i < argumentTypeShortNames.length; i++) {
argumentTypeShortNames[i] = ClassUtils.getShortName(argumentTypes[i]);
}
matcher.appendReplacement(output,
Matcher.quoteReplacement(StringUtils.arrayToCommaDelimitedString(argumentTypeShortNames)));
}
|
Adds a comma-separated list of the short {@code Class} names of the
method argument types to the output. For example, if a method has signature
{@code put(java.lang.String, java.lang.Object)} then the value returned
will be {@code String, Object}.
@param methodInvocation the {@code MethodInvocation} being logged.
Arguments will be retrieved from the corresponding {@code Method}.
@param matcher the {@code Matcher} containing the state of the output
@param output the {@code StringBuilder} containing the output
|
java
|
spring-aop/src/main/java/org/springframework/aop/interceptor/CustomizableTraceInterceptor.java
| 377
|
[
"methodInvocation",
"matcher",
"output"
] |
void
| true
| 2
| 6.4
|
spring-projects/spring-framework
| 59,386
|
javadoc
| false
|
parseFunctionOrConstructorTypeToError
|
function parseFunctionOrConstructorTypeToError(
isInUnionType: boolean,
): TypeNode | undefined {
// the function type and constructor type shorthand notation
// are not allowed directly in unions and intersections, but we'll
// try to parse them gracefully and issue a helpful message.
if (isStartOfFunctionTypeOrConstructorType()) {
const type = parseFunctionOrConstructorType();
let diagnostic: DiagnosticMessage;
if (isFunctionTypeNode(type)) {
diagnostic = isInUnionType
? Diagnostics.Function_type_notation_must_be_parenthesized_when_used_in_a_union_type
: Diagnostics.Function_type_notation_must_be_parenthesized_when_used_in_an_intersection_type;
}
else {
diagnostic = isInUnionType
? Diagnostics.Constructor_type_notation_must_be_parenthesized_when_used_in_a_union_type
: Diagnostics.Constructor_type_notation_must_be_parenthesized_when_used_in_an_intersection_type;
}
parseErrorAtRange(type, diagnostic);
return type;
}
return undefined;
}
|
Reports a diagnostic error for the current token being an invalid name.
@param blankDiagnostic Diagnostic to report for the case of the name being blank (matched tokenIfBlankName).
@param nameDiagnostic Diagnostic to report for all other cases.
@param tokenIfBlankName Current token if the name was invalid for being blank (not provided / skipped).
|
typescript
|
src/compiler/parser.ts
| 4,794
|
[
"isInUnionType"
] | true
| 6
| 6.88
|
microsoft/TypeScript
| 107,154
|
jsdoc
| false
|
|
keySet
|
@Override
public Set<K> keySet() {
return (keySetView == null) ? keySetView = createKeySet() : keySetView;
}
|
Updates the index an iterator is pointing to after a call to remove: returns the index of the
entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the
index that *was* the next entry that would be looked at.
|
java
|
android/guava/src/com/google/common/collect/CompactHashMap.java
| 670
|
[] | true
| 2
| 6.32
|
google/guava
| 51,352
|
javadoc
| false
|
|
_nanaverage
|
def _nanaverage(a, weights=None):
"""Compute the weighted average, ignoring NaNs.
Parameters
----------
a : ndarray
Array containing data to be averaged.
weights : array-like, default=None
An array of weights associated with the values in a. Each value in a
contributes to the average according to its associated weight. The
weights array can either be 1-D of the same shape as a. If `weights=None`,
then all data in a are assumed to have a weight equal to one.
Returns
-------
weighted_average : float
The weighted average.
Notes
-----
This wrapper to combine :func:`numpy.average` and :func:`numpy.nanmean`, so
that :func:`np.nan` values are ignored from the average and weights can
be passed. Note that when possible, we delegate to the prime methods.
"""
xp, _ = get_namespace(a)
if a.shape[0] == 0:
return xp.nan
mask = xp.isnan(a)
if xp.all(mask):
return xp.nan
if weights is None:
return _nanmean(a, xp=xp)
weights = xp.asarray(weights)
a, weights = a[~mask], weights[~mask]
try:
return _average(a, weights=weights)
except ZeroDivisionError:
# this is when all weights are zero, then ignore them
return _average(a)
|
Compute the weighted average, ignoring NaNs.
Parameters
----------
a : ndarray
Array containing data to be averaged.
weights : array-like, default=None
An array of weights associated with the values in a. Each value in a
contributes to the average according to its associated weight. The
weights array can either be 1-D of the same shape as a. If `weights=None`,
then all data in a are assumed to have a weight equal to one.
Returns
-------
weighted_average : float
The weighted average.
Notes
-----
This wrapper to combine :func:`numpy.average` and :func:`numpy.nanmean`, so
that :func:`np.nan` values are ignored from the average and weights can
be passed. Note that when possible, we delegate to the prime methods.
|
python
|
sklearn/utils/extmath.py
| 1,333
|
[
"a",
"weights"
] | false
| 4
| 6.24
|
scikit-learn/scikit-learn
| 64,340
|
numpy
| false
|
|
describeReplicaLogDirs
|
default DescribeReplicaLogDirsResult describeReplicaLogDirs(Collection<TopicPartitionReplica> replicas) {
return describeReplicaLogDirs(replicas, new DescribeReplicaLogDirsOptions());
}
|
Query the replica log directory information for the specified replicas.
<p>
This is a convenience method for {@link #describeReplicaLogDirs(Collection, DescribeReplicaLogDirsOptions)}
with default options. See the overload for more details.
<p>
This operation is supported by brokers with version 1.0.0 or higher.
@param replicas The replicas to query
@return The DescribeReplicaLogDirsResult
|
java
|
clients/src/main/java/org/apache/kafka/clients/admin/Admin.java
| 607
|
[
"replicas"
] |
DescribeReplicaLogDirsResult
| true
| 1
| 6.32
|
apache/kafka
| 31,560
|
javadoc
| false
|
holidays
|
def holidays(
self, start=None, end=None, return_name: bool = False
) -> DatetimeIndex | Series:
"""
Returns a curve with holidays between start_date and end_date
Parameters
----------
start : starting date, datetime-like, optional
end : ending date, datetime-like, optional
return_name : bool, optional
If True, return a series that has dates and holiday names.
False will only return a DatetimeIndex of dates.
Returns
-------
DatetimeIndex of holidays
"""
if self.rules is None:
raise Exception(
f"Holiday Calendar {self.name} does not have any rules specified"
)
if start is None:
start = AbstractHolidayCalendar.start_date
if end is None:
end = AbstractHolidayCalendar.end_date
start = Timestamp(start)
end = Timestamp(end)
# If we don't have a cache or the dates are outside the prior cache, we
# get them again
if self._cache is None or start < self._cache[0] or end > self._cache[1]:
pre_holidays = [
rule.dates(start, end, return_name=True) for rule in self.rules
]
if pre_holidays:
holidays = concat(pre_holidays)
else:
holidays = Series(index=DatetimeIndex([]), dtype=object)
self._cache = (start, end, holidays.sort_index())
holidays = self._cache[2]
holidays = holidays[start:end]
if return_name:
return holidays
else:
return holidays.index
|
Returns a curve with holidays between start_date and end_date
Parameters
----------
start : starting date, datetime-like, optional
end : ending date, datetime-like, optional
return_name : bool, optional
If True, return a series that has dates and holiday names.
False will only return a DatetimeIndex of dates.
Returns
-------
DatetimeIndex of holidays
|
python
|
pandas/tseries/holiday.py
| 496
|
[
"self",
"start",
"end",
"return_name"
] |
DatetimeIndex | Series
| true
| 11
| 6.72
|
pandas-dev/pandas
| 47,362
|
numpy
| false
|
readFloat
|
@CanIgnoreReturnValue // to skip some bytes
@Override
public float readFloat() throws IOException {
return Float.intBitsToFloat(readInt());
}
|
Reads a {@code float} as specified by {@link DataInputStream#readFloat()}, except using
little-endian byte order.
@return the next four bytes of the input stream, interpreted as a {@code float} in
little-endian byte order
@throws IOException if an I/O error occurs
|
java
|
android/guava/src/com/google/common/io/LittleEndianDataInputStream.java
| 156
|
[] | true
| 1
| 6.56
|
google/guava
| 51,352
|
javadoc
| false
|
Subsets and Splits
No community queries yet
The top public SQL queries from the community will appear here once available.