function_name
stringlengths
1
57
function_code
stringlengths
20
4.99k
documentation
stringlengths
50
2k
language
stringclasses
5 values
file_path
stringlengths
8
166
line_number
int32
4
16.7k
parameters
listlengths
0
20
return_type
stringlengths
0
131
has_type_hints
bool
2 classes
complexity
int32
1
51
quality_score
float32
6
9.68
repo_name
stringclasses
34 values
repo_stars
int32
2.9k
242k
docstring_style
stringclasses
7 values
is_async
bool
2 classes
load
List<PropertySource<?>> load(String name, Resource resource) throws IOException;
Load the resource into one or more property sources. Implementations may either return a list containing a single source, or in the case of a multi-document format such as yaml a source for each document in the resource. @param name the root name of the property source. If multiple documents are loaded an additional suffix should be added to the name for each source loaded. @param resource the resource to load @return a list property sources @throws IOException if the source cannot be loaded
java
core/spring-boot/src/main/java/org/springframework/boot/env/PropertySourceLoader.java
52
[ "name", "resource" ]
true
1
6.64
spring-projects/spring-boot
79,428
javadoc
false
asfreq
def asfreq(self, freq=None, how: str = "E") -> Self: """ Convert the {klass} to the specified frequency `freq`. Equivalent to applying :meth:`pandas.Period.asfreq` with the given arguments to each :class:`~pandas.Period` in this {klass}. Parameters ---------- freq : str A frequency. how : str {{'E', 'S'}}, default 'E' Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- {klass} The transformed {klass} with the new frequency. See Also -------- {other}.asfreq: Convert each Period in a {other_name} to the given frequency. Period.asfreq : Convert a :class:`~pandas.Period` object to the given frequency. Examples -------- >>> pidx = pd.period_range("2010-01-01", "2015-01-01", freq="Y") >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[Y-DEC]') >>> pidx.asfreq("M") PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]') >>> pidx.asfreq("M", how="S") PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]') """ how = libperiod.validate_end_alias(how) if isinstance(freq, BaseOffset) and hasattr(freq, "_period_dtype_code"): freq = PeriodDtype(freq)._freqstr freq = Period._maybe_convert_freq(freq) base1 = self._dtype._dtype_code base2 = freq._period_dtype_code asi8 = self.asi8 # self.freq.n can't be negative or 0 end = how == "E" if end: ordinal = asi8 + self.dtype._n - 1 else: ordinal = asi8 new_data = period_asfreq_arr(ordinal, base1, base2, end) if self._hasna: new_data[self._isnan] = iNaT dtype = PeriodDtype(freq) return type(self)(new_data, dtype=dtype)
Convert the {klass} to the specified frequency `freq`. Equivalent to applying :meth:`pandas.Period.asfreq` with the given arguments to each :class:`~pandas.Period` in this {klass}. Parameters ---------- freq : str A frequency. how : str {{'E', 'S'}}, default 'E' Whether the elements should be aligned to the end or start within pa period. * 'E', 'END', or 'FINISH' for end, * 'S', 'START', or 'BEGIN' for start. January 31st ('END') vs. January 1st ('START') for example. Returns ------- {klass} The transformed {klass} with the new frequency. See Also -------- {other}.asfreq: Convert each Period in a {other_name} to the given frequency. Period.asfreq : Convert a :class:`~pandas.Period` object to the given frequency. Examples -------- >>> pidx = pd.period_range("2010-01-01", "2015-01-01", freq="Y") >>> pidx PeriodIndex(['2010', '2011', '2012', '2013', '2014', '2015'], dtype='period[Y-DEC]') >>> pidx.asfreq("M") PeriodIndex(['2010-12', '2011-12', '2012-12', '2013-12', '2014-12', '2015-12'], dtype='period[M]') >>> pidx.asfreq("M", how="S") PeriodIndex(['2010-01', '2011-01', '2012-01', '2013-01', '2014-01', '2015-01'], dtype='period[M]')
python
pandas/core/arrays/period.py
866
[ "self", "freq", "how" ]
Self
true
6
8.08
pandas-dev/pandas
47,362
numpy
false
iat
def iat(self) -> _iAtIndexer: """ Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame( ... [[0, 2, 3], [0, 4, 1], [10, 20, 30]], columns=["A", "B", "C"] ... ) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] np.int64(1) Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] np.int64(10) Get value within a series >>> df.loc[0].iat[1] np.int64(2) """ return _iAtIndexer("iat", self)
Access a single value for a row/column pair by integer position. Similar to ``iloc``, in that both provide integer-based lookups. Use ``iat`` if you only need to get or set a single value in a DataFrame or Series. Raises ------ IndexError When integer position is out of bounds. See Also -------- DataFrame.at : Access a single value for a row/column label pair. DataFrame.loc : Access a group of rows and columns by label(s). DataFrame.iloc : Access a group of rows and columns by integer position(s). Examples -------- >>> df = pd.DataFrame( ... [[0, 2, 3], [0, 4, 1], [10, 20, 30]], columns=["A", "B", "C"] ... ) >>> df A B C 0 0 2 3 1 0 4 1 2 10 20 30 Get value at specified row/column pair >>> df.iat[1, 2] np.int64(1) Set value at specified row/column pair >>> df.iat[1, 2] = 10 >>> df.iat[1, 2] np.int64(10) Get value within a series >>> df.loc[0].iat[1] np.int64(2)
python
pandas/core/indexing.py
704
[ "self" ]
_iAtIndexer
true
1
6.08
pandas-dev/pandas
47,362
unknown
false
_get_dtype
def _get_dtype(arr_or_dtype) -> DtypeObj: """ Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like or dtype The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None. """ if arr_or_dtype is None: raise TypeError("Cannot deduce dtype from null object") # fastpath if isinstance(arr_or_dtype, np.dtype): return arr_or_dtype elif isinstance(arr_or_dtype, type): return np.dtype(arr_or_dtype) # if we have an array-like elif hasattr(arr_or_dtype, "dtype"): arr_or_dtype = arr_or_dtype.dtype return pandas_dtype(arr_or_dtype)
Get the dtype instance associated with an array or dtype object. Parameters ---------- arr_or_dtype : array-like or dtype The array-like or dtype object whose dtype we want to extract. Returns ------- obj_dtype : The extract dtype instance from the passed in array or dtype object. Raises ------ TypeError : The passed in object is None.
python
pandas/core/dtypes/common.py
1,624
[ "arr_or_dtype" ]
DtypeObj
true
5
6.88
pandas-dev/pandas
47,362
numpy
false
is_nonnegative_int
def is_nonnegative_int(value: object) -> None: """ Verify that value is None or a positive int. Parameters ---------- value : None or int The `value` to be checked. Raises ------ ValueError When the value is not None or is a negative integer """ if value is None: return elif isinstance(value, int): if value >= 0: return msg = "Value must be a nonnegative integer or None" raise ValueError(msg)
Verify that value is None or a positive int. Parameters ---------- value : None or int The `value` to be checked. Raises ------ ValueError When the value is not None or is a negative integer
python
pandas/_config/config.py
897
[ "value" ]
None
true
4
6.72
pandas-dev/pandas
47,362
numpy
false
getFormat
private Format getFormat(final String desc) { if (registry != null) { String name = desc; String args = null; final int i = desc.indexOf(START_FMT); if (i > 0) { name = desc.substring(0, i).trim(); args = desc.substring(i + 1).trim(); } final FormatFactory factory = registry.get(name); if (factory != null) { return factory.getFormat(name, args, getLocale()); } } return null; }
Gets a custom format from a format description. @param desc String @return Format
java
src/main/java/org/apache/commons/lang3/text/ExtendedMessageFormat.java
278
[ "desc" ]
Format
true
4
8.24
apache/commons-lang
2,896
javadoc
false
sort
public static void sort(List<?> source, SortDefinition sortDefinition) throws BeansException { if (StringUtils.hasText(sortDefinition.getProperty())) { source.sort(new PropertyComparator<>(sortDefinition)); } }
Sort the given List according to the given sort definition. <p>Note: Contained objects have to provide the given property in the form of a bean property, i.e. a getXXX method. @param source the input List @param sortDefinition the parameters to sort by @throws java.lang.IllegalArgumentException in case of a missing propertyName
java
spring-beans/src/main/java/org/springframework/beans/support/PropertyComparator.java
135
[ "source", "sortDefinition" ]
void
true
2
6.72
spring-projects/spring-framework
59,386
javadoc
false
ts_compile
def ts_compile(fx_g: fx.GraphModule, inps) -> Callable: """ Compiles the :attr:`fx_g` with Torchscript compiler. .. warning:: This API is experimental and likely to change. Args: fx_g(fx.GraphModule): The input Fx graph module to be compiled. Returns: Torch scripted model. """ with _disable_jit_autocast(): strip_overloads(fx_g) for node in fx_g.graph.find_nodes( op="call_function", target=torch.ops.aten._to_copy ): if len(node.args) == 1 and len(node.kwargs) == 1 and "dtype" in node.kwargs: node.target = torch.ops.aten.to for node in fx_g.graph.nodes: new_kwargs = {} for k, v in node.kwargs.items(): if isinstance(v, torch.device): v = v.type new_kwargs[k] = v node.kwargs = new_kwargs fx_g.graph.lint() fx_g.recompile() f = torch.jit.script(fx_g) torch._C._jit_pass_remove_mutation(f.graph) f = torch.jit.freeze(f.eval()) f = torch.jit.optimize_for_inference(f) if not any(isinstance(t, torch._subclasses.FakeTensor) for t in inps): f(*inps) return f
Compiles the :attr:`fx_g` with Torchscript compiler. .. warning:: This API is experimental and likely to change. Args: fx_g(fx.GraphModule): The input Fx graph module to be compiled. Returns: Torch scripted model.
python
torch/_functorch/compilers.py
56
[ "fx_g", "inps" ]
Callable
true
9
7.6
pytorch/pytorch
96,034
google
false
values
@Override public Collection<V> values() { return (valuesView == null) ? valuesView = createValues() : valuesView; }
Updates the index an iterator is pointing to after a call to remove: returns the index of the entry that should be looked at after a removal on indexRemoved, with indexBeforeRemove as the index that *was* the next entry that would be looked at.
java
android/guava/src/com/google/common/collect/CompactHashMap.java
905
[]
true
2
6.32
google/guava
51,352
javadoc
false
ifNotEmpty
public static void ifNotEmpty(@Nullable Map<String, Object> source, @Nullable Consumer<DefaultPropertiesPropertySource> action) { if (!CollectionUtils.isEmpty(source) && action != null) { action.accept(new DefaultPropertiesPropertySource(source)); } }
Create a new {@link DefaultPropertiesPropertySource} instance if the provided source is not empty. @param source the {@code Map} source @param action the action used to consume the {@link DefaultPropertiesPropertySource}
java
core/spring-boot/src/main/java/org/springframework/boot/env/DefaultPropertiesPropertySource.java
72
[ "source", "action" ]
void
true
3
6.24
spring-projects/spring-boot
79,428
javadoc
false
addBucketToResult
private void addBucketToResult(long index, long count, boolean isPositive) { if (resultAlreadyReturned) { // we cannot modify the result anymore, create a new one reallocateResultWithCapacity(result.getCapacity(), true); } assert resultAlreadyReturned == false; boolean sufficientCapacity = result.tryAddBucket(index, count, isPositive); if (sufficientCapacity == false) { int newCapacity = Math.max(result.getCapacity() * 2, DEFAULT_ESTIMATED_BUCKET_COUNT); reallocateResultWithCapacity(newCapacity, true); boolean bucketAdded = result.tryAddBucket(index, count, isPositive); assert bucketAdded : "Output histogram should have enough capacity"; } }
Sets the given bucket of the negative buckets. If the bucket already exists, it will be replaced. Buckets may be set in arbitrary order. However, for best performance and minimal allocations, buckets should be set in order of increasing index and all negative buckets should be set before positive buckets. @param index the index of the bucket @param count the count of the bucket, must be at least 1 @return the builder
java
libs/exponential-histogram/src/main/java/org/elasticsearch/exponentialhistogram/ExponentialHistogramBuilder.java
206
[ "index", "count", "isPositive" ]
void
true
3
8.4
elastic/elasticsearch
75,680
javadoc
false
_get_context_fn_cache_hash
def _get_context_fn_cache_hash(context_fn): """ Extract a cache hash from a context_fn used for selective activation checkpointing (SAC). The context_fn determines which ops are saved vs recomputed in the SAC region. Since context_fn can be an arbitrary Python function, we cannot reliably pickle it for cache key generation (pickle only captures the function name, not the code). Users must provide a stable hash by setting a `cache_hash` attribute on the context_fn. For functools.partial objects, set the cache_hash on the partial object itself, not on the underlying function. Returns: The cache hash if found None: If no hash is provided (caller should bypass caching) """ if hasattr(context_fn, "cache_hash"): return context_fn.cache_hash return None
Extract a cache hash from a context_fn used for selective activation checkpointing (SAC). The context_fn determines which ops are saved vs recomputed in the SAC region. Since context_fn can be an arbitrary Python function, we cannot reliably pickle it for cache key generation (pickle only captures the function name, not the code). Users must provide a stable hash by setting a `cache_hash` attribute on the context_fn. For functools.partial objects, set the cache_hash on the partial object itself, not on the underlying function. Returns: The cache hash if found None: If no hash is provided (caller should bypass caching)
python
torch/_functorch/_aot_autograd/autograd_cache.py
283
[ "context_fn" ]
false
2
7.12
pytorch/pytorch
96,034
unknown
false
getCircularDependencies
function getCircularDependencies(packages: Packages): string[][] { const circularDeps = [] as string[][] for (const pkg of Object.values(packages)) { const uses = [...pkg.uses, ...pkg.usesDev] const usedBy = [...pkg.usedBy, ...pkg.usedByDev] const circles = intersection(uses, usedBy) if (circles.length > 0) { circularDeps.push(circles) } } return circularDeps }
Runs a command and pipes the stdout & stderr to the current process. @param cwd cwd for running the command @param cmd command to run
typescript
scripts/ci/publish.ts
164
[ "packages" ]
true
2
6.56
prisma/prisma
44,834
jsdoc
false
getActualIndentationForListStartLine
function getActualIndentationForListStartLine(list: NodeArray<Node>, sourceFile: SourceFile, options: EditorSettings): number { if (!list) { return Value.Unknown; } return findColumnForFirstNonWhitespaceCharacterInLine(sourceFile.getLineAndCharacterOfPosition(list.pos), sourceFile, options); }
@param assumeNewLineBeforeCloseBrace `false` when called on text from a real source file. `true` when we need to assume `position` is on a newline. This is useful for codefixes. Consider ``` function f() { |} ``` with `position` at `|`. When inserting some text after an open brace, we would like to get indentation as if a newline was already there. By default indentation at `position` will be 0 so 'assumeNewLineBeforeCloseBrace' overrides this behavior.
typescript
src/services/formatting/smartIndenter.ts
545
[ "list", "sourceFile", "options" ]
true
2
8.32
microsoft/TypeScript
107,154
jsdoc
false
value
public XContentBuilder value(Double value) throws IOException { return (value == null) ? nullValue() : value(value.doubleValue()); }
@return the value of the "human readable" flag. When the value is equal to true, some types of values are written in a format easier to read for a human.
java
libs/x-content/src/main/java/org/elasticsearch/xcontent/XContentBuilder.java
494
[ "value" ]
XContentBuilder
true
2
6.96
elastic/elasticsearch
75,680
javadoc
false
all
public KafkaFuture<Collection<ConfigResource>> all() { final KafkaFutureImpl<Collection<ConfigResource>> result = new KafkaFutureImpl<>(); future.whenComplete((resources, throwable) -> { if (throwable != null) { result.completeExceptionally(throwable); } else { result.complete(resources); } }); return result; }
Returns a future that yields either an exception, or the full set of config resources. In the event of a failure, the future yields nothing but the first exception which occurred.
java
clients/src/main/java/org/apache/kafka/clients/admin/ListConfigResourcesResult.java
42
[]
true
2
7.04
apache/kafka
31,560
javadoc
false
filter
def filter(self, func, dropna: bool = True, *args, **kwargs): """ Filter elements from groups that don't satisfy a criterion. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. Parameters ---------- func : function Criterion to apply to each group. Should return True or False. dropna : bool, optional Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. *args : tuple Optional positional arguments to pass to `func`. **kwargs : dict Optional keyword arguments to pass to `func`. Returns ------- Series The filtered subset of the original Series. See Also -------- Series.filter: Filter elements of ungrouped Series. DataFrameGroupBy.filter : Filter elements from groups base on criterion. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame( ... { ... "A": ["foo", "bar", "foo", "bar", "foo", "bar"], ... "B": [1, 2, 3, 4, 5, 6], ... "C": [2.0, 5.0, 8.0, 1.0, 2.0, 9.0], ... } ... ) >>> grouped = df.groupby("A") >>> df.groupby("A").B.filter(lambda x: x.mean() > 3.0) 1 2 3 4 5 6 Name: B, dtype: int64 """ if isinstance(func, str): wrapper = lambda x: getattr(x, func)(*args, **kwargs) else: wrapper = lambda x: func(x, *args, **kwargs) # Interpret np.nan as False. def true_and_notna(x) -> bool: b = wrapper(x) return notna(b) and b try: indices = [ self._get_index(name) for name, group in self._grouper.get_iterator(self._obj_with_exclusions) if true_and_notna(group) ] except (ValueError, TypeError) as err: raise TypeError("the filter must return a boolean result") from err filtered = self._apply_filter(indices, dropna) return filtered
Filter elements from groups that don't satisfy a criterion. Elements from groups are filtered if they do not satisfy the boolean criterion specified by func. Parameters ---------- func : function Criterion to apply to each group. Should return True or False. dropna : bool, optional Drop groups that do not pass the filter. True by default; if False, groups that evaluate False are filled with NaNs. *args : tuple Optional positional arguments to pass to `func`. **kwargs : dict Optional keyword arguments to pass to `func`. Returns ------- Series The filtered subset of the original Series. See Also -------- Series.filter: Filter elements of ungrouped Series. DataFrameGroupBy.filter : Filter elements from groups base on criterion. Notes ----- Functions that mutate the passed object can produce unexpected behavior or errors and are not supported. See :ref:`gotchas.udf-mutation` for more details. Examples -------- >>> df = pd.DataFrame( ... { ... "A": ["foo", "bar", "foo", "bar", "foo", "bar"], ... "B": [1, 2, 3, 4, 5, 6], ... "C": [2.0, 5.0, 8.0, 1.0, 2.0, 9.0], ... } ... ) >>> grouped = df.groupby("A") >>> df.groupby("A").B.filter(lambda x: x.mean() > 3.0) 1 2 3 4 5 6 Name: B, dtype: int64
python
pandas/core/groupby/generic.py
889
[ "self", "func", "dropna" ]
true
4
8.4
pandas-dev/pandas
47,362
numpy
false
nextEscapeIndex
@Override protected final int nextEscapeIndex(CharSequence csq, int index, int end) { while (index < end) { char c = csq.charAt(index); if ((c < replacementsLength && replacements[c] != null) || c > safeMaxChar || c < safeMinChar) { break; } index++; } return index; }
Escapes a single Unicode code point using the replacement array and safe range values. If the given character does not have an explicit replacement and lies outside the safe range then {@link #escapeUnsafe} is called. @return the replacement characters, or {@code null} if no escaping was required
java
android/guava/src/com/google/common/escape/ArrayBasedUnicodeEscaper.java
178
[ "csq", "index", "end" ]
true
6
6.56
google/guava
51,352
javadoc
false
intCastExpression
static BindableMatcher<clang::Stmt> intCastExpression(bool IsSigned, StringRef CastBindName = {}) { // std::cmp_{} functions trigger a compile-time error if either LHS or RHS // is a non-integer type, char, enum or bool // (unsigned char/ signed char are Ok and can be used). auto IntTypeExpr = expr(hasType(hasCanonicalType(qualType( IsSigned ? isSignedInteger() : isUnsignedInteger(), unless(isActualChar()), unless(booleanType()), unless(enumType()))))); const auto ImplicitCastExpr = CastBindName.empty() ? implicitCastExpr(hasSourceExpression(IntTypeExpr)) : implicitCastExpr(hasSourceExpression(IntTypeExpr)) .bind(CastBindName); const auto CStyleCastExpr = cStyleCastExpr(has(ImplicitCastExpr)); const auto StaticCastExpr = cxxStaticCastExpr(has(ImplicitCastExpr)); const auto FunctionalCastExpr = cxxFunctionalCastExpr(has(ImplicitCastExpr)); return expr(anyOf(ImplicitCastExpr, CStyleCastExpr, StaticCastExpr, FunctionalCastExpr)); }
not applicable to explicit "signed char" or "unsigned char" types.
cpp
clang-tools-extra/clang-tidy/modernize/UseIntegerSignComparisonCheck.cpp
36
[ "IsSigned" ]
true
3
6
llvm/llvm-project
36,021
doxygen
false
removeAdvisor
boolean removeAdvisor(Advisor advisor);
Remove the given advisor. @param advisor the advisor to remove @return {@code true} if the advisor was removed; {@code false} if the advisor was not found and hence could not be removed
java
spring-aop/src/main/java/org/springframework/aop/framework/Advised.java
150
[ "advisor" ]
true
1
6.8
spring-projects/spring-framework
59,386
javadoc
false
start
public synchronized boolean start() { // Not yet started? if (!isStarted()) { // Determine the executor to use and whether a temporary one has to be created. final ExecutorService tempExec; executor = getExternalExecutor(); if (executor == null) { executor = tempExec = createExecutor(); } else { tempExec = null; } future = executor.submit(createTask(tempExec)); return true; } return false; }
Starts the background initialization. With this method the initializer becomes active and invokes the {@link #initialize()} method in a background task. A {@link BackgroundInitializer} can be started exactly once. The return value of this method determines whether the start was successful: only the first invocation of this method returns <strong>true</strong>, following invocations will return <strong>false</strong>. @return a flag whether the initializer could be started successfully.
java
src/main/java/org/apache/commons/lang3/concurrent/BackgroundInitializer.java
394
[]
true
3
7.6
apache/commons-lang
2,896
javadoc
false
read
private static String read(Path path) { try { return Files.readString(path); } catch (IOException e) { log.error("Could not read file {} for property {}", path, path.getFileName(), e); throw new ConfigException("Could not read file " + path + " for property " + path.getFileName()); } }
Retrieves the data contained in the regular files named by {@code keys} in the directory given by {@code path}. Non-regular files (such as directories) in the given directory are silently ignored. @param path the directory where data files reside. @param keys the keys whose values will be retrieved. @return the configuration data.
java
clients/src/main/java/org/apache/kafka/common/config/provider/DirectoryConfigProvider.java
117
[ "path" ]
String
true
2
8.24
apache/kafka
31,560
javadoc
false
findHomeDir
private File findHomeDir(@Nullable File source) { File homeDir = source; homeDir = (homeDir != null) ? homeDir : findDefaultHomeDir(); if (homeDir.isFile()) { homeDir = homeDir.getParentFile(); } homeDir = homeDir.exists() ? homeDir : new File("."); return homeDir.getAbsoluteFile(); }
Create a new {@link ApplicationHome} instance for the specified source class. @param sourceClass the source class or {@code null}
java
core/spring-boot/src/main/java/org/springframework/boot/system/ApplicationHome.java
141
[ "source" ]
File
true
4
6.72
spring-projects/spring-boot
79,428
javadoc
false
parseLeadingNumber
static size_t parseLeadingNumber(const std::string& line) { auto raw = line.c_str(); char* end; unsigned long val = strtoul(raw, &end, 10); if (end == raw || (*end != ',' && *end != '-' && *end != '\n' && *end != 0)) { throw std::runtime_error(fmt::format("error parsing list '{}'", line)); } return val; }
line does not start with a number terminated by ',', '-', '\n', or EOS.
cpp
folly/concurrency/CacheLocality.cpp
173
[]
true
6
7.04
facebook/folly
30,157
doxygen
false
lint_file
def lint_file( filename: str, line_remainders: list[str], allowlist_pattern: str, replace_pattern: str, error_name: str, ) -> None: """ Lint a file with one or more pattern matches, printing LintMessages as they're created. Args: filename: Path to the file being linted line_remainders: List of line remainders (format: "line:content" without filename prefix) allowlist_pattern: Pattern to check for allowlisting replace_pattern: Pattern for sed replacement error_name: Human-readable error name """ if not line_remainders: return should_skip = check_allowlist(filename, allowlist_pattern) if should_skip: return # Check if file is too large to compute replacement file_size = os.path.getsize(filename) compute_replacement = replace_pattern and file_size <= MAX_ORIGINAL_SIZE # Apply replacement to entire file if pattern is specified and file is not too large original = None replacement = None if compute_replacement: # When we have a replacement, report a single message with line=None try: with open(filename) as f: original = f.read() proc = run_command(["sed", "-r", replace_pattern, filename]) replacement = proc.stdout.decode("utf-8") except Exception as err: print_lint_message( name="command-failed", description=( f"Failed due to {err.__class__.__name__}:\n{err}" if not isinstance(err, subprocess.CalledProcessError) else ( "COMMAND (exit code {returncode})\n" "{command}\n\n" "STDERR\n{stderr}\n\n" "STDOUT\n{stdout}" ).format( returncode=err.returncode, command=" ".join(as_posix(x) for x in err.cmd), stderr=err.stderr.decode("utf-8").strip() or "(empty)", stdout=err.stdout.decode("utf-8").strip() or "(empty)", ) ), ) return print_lint_message( path=filename, name=error_name, original=original, replacement=replacement, ) else: # When no replacement, report each matching line (up to MAX_MATCHES_PER_FILE) total_matches = len(line_remainders) matches_to_report = min(total_matches, MAX_MATCHES_PER_FILE) for line_remainder in line_remainders[:matches_to_report]: # line_remainder format: "line_number:content" split = line_remainder.split(":", 1) line_number = int(split[0]) if split[0] else None print_lint_message( path=filename, line=line_number, name=error_name, ) # If there are more matches than the limit, print an error if total_matches > MAX_MATCHES_PER_FILE: print_lint_message( path=filename, name="too-many-matches", description=f"File has {total_matches} matches, only showing first {MAX_MATCHES_PER_FILE}", )
Lint a file with one or more pattern matches, printing LintMessages as they're created. Args: filename: Path to the file being linted line_remainders: List of line remainders (format: "line:content" without filename prefix) allowlist_pattern: Pattern to check for allowlisting replace_pattern: Pattern for sed replacement error_name: Human-readable error name
python
tools/linter/adapters/grep_linter.py
163
[ "filename", "line_remainders", "allowlist_pattern", "replace_pattern", "error_name" ]
None
true
12
6.16
pytorch/pytorch
96,034
google
false
type
public byte type() { return this.type; }
@return the type indicator for this SASL SCRAM mechanism
java
clients/src/main/java/org/apache/kafka/clients/admin/ScramMechanism.java
81
[]
true
1
6.32
apache/kafka
31,560
javadoc
false
assertBeanFactoryActive
protected void assertBeanFactoryActive() { if (!this.active.get()) { if (this.closed.get()) { throw new IllegalStateException(getDisplayName() + " has been closed already"); } else { throw new IllegalStateException(getDisplayName() + " has not been refreshed yet"); } } }
Assert that this context's BeanFactory is currently active, throwing an {@link IllegalStateException} if it isn't. <p>Invoked by all {@link BeanFactory} delegation methods that depend on an active context, i.e. in particular all bean accessor methods. <p>The default implementation checks the {@link #isActive() 'active'} status of this context overall. May be overridden for more specific checks, or for a no-op if {@link #getBeanFactory()} itself throws an exception in such a case.
java
spring-context/src/main/java/org/springframework/context/support/AbstractApplicationContext.java
1,259
[]
void
true
3
6.56
spring-projects/spring-framework
59,386
javadoc
false
getReferences
private Set<StandardConfigDataReference> getReferences(ConfigDataLocationResolverContext context, ConfigDataLocation configDataLocation) { String resourceLocation = getResourceLocation(context, configDataLocation); try { if (isDirectory(resourceLocation)) { return getReferencesForDirectory(configDataLocation, resourceLocation, NO_PROFILE); } return getReferencesForFile(configDataLocation, resourceLocation, NO_PROFILE); } catch (RuntimeException ex) { throw new IllegalStateException("Unable to load config data from '" + configDataLocation + "'", ex); } }
Create a new {@link StandardConfigDataLocationResolver} instance. @param logFactory the factory for loggers to use @param binder a binder backed by the initial {@link Environment} @param resourceLoader a {@link ResourceLoader} used to load resources
java
core/spring-boot/src/main/java/org/springframework/boot/context/config/StandardConfigDataLocationResolver.java
133
[ "context", "configDataLocation" ]
true
3
6.08
spring-projects/spring-boot
79,428
javadoc
false
_get_backward_memory_from_topologically_sorted_graph
def _get_backward_memory_from_topologically_sorted_graph( self, node_graph: nx.DiGraph, node_memories: dict[str, float], saved_nodes_set: set[str], peak_memory_after_forward_pass: float, ) -> list[tuple[float, str]]: """ Simulates the backward pass and keeps track of the peak memory usage. High Level Steps: 1. Set Initial Peak/Current Memory Allows you to set the peak memory after the forward pass, but typically this is the sum of the estimated memory of the saved nodes. 2. Perform a reverse topological sort of the node_graph. If full graph is defined then will sort the full graph and only process the subset of nodes in the node_graph. 3. Iterate through the sorted graph nodes. If the node is saved then just drop it's memory from current memory. If the node is not saved then add it's memory to current memory and then traverse it's predecessors to simulate recomuptation chain. Will check if new peak memory after all predecessors are processed. Args: node_graph (nx.DiGraph): A directed graph representing the recomputable forward nodes. saved_nodes_set (Set[str]): A set of node names that are saved. peak_memory_after_forward_pass (float): The peak memory usage after the forward pass. """ current_memory = [ (peak_memory_after_forward_pass, "Initial Peak/Current Memory") ] already_computed = set() sorted_nodes = list(reversed(list(nx.topological_sort(node_graph)))) dependencies_computed = set() for node in sorted_nodes: if node in saved_nodes_set or node in already_computed: current_memory.append( ( current_memory[-1][0] - node_memories[node], f"Dropping Node(already saved): {node}", ) ) continue already_computed.add(node) current_memory.append( ( current_memory[-1][0] + node_memories[node], f"Recomputing Node: {node}", ) ) # Create a queue of dependencies required for recomputation predecessor_queue = deque( [ dependency for dependency, v in node_graph.in_edges(node) if dependency not in already_computed ] ) while predecessor_queue: dep = predecessor_queue.popleft() already_computed.add(dep) dependencies_computed.add(dep) current_memory.append( ( current_memory[-1][0] + node_memories[dep], f"Recomputing Predecessor of {node}: {dep}", ) ) # Add predecessors of the predecessor to the queue if they haven't been recomputed yet for dependency_of_dependency, _ in node_graph.in_edges(dep): if ( dependency_of_dependency in already_computed or dependency_of_dependency in saved_nodes_set or dependency_of_dependency in predecessor_queue ): continue predecessor_queue.append(dependency_of_dependency) dependencies_computed.clear() current_memory.append( (current_memory[-1][0] - node_memories[node], f"Dropping Node: {node}") ) return current_memory
Simulates the backward pass and keeps track of the peak memory usage. High Level Steps: 1. Set Initial Peak/Current Memory Allows you to set the peak memory after the forward pass, but typically this is the sum of the estimated memory of the saved nodes. 2. Perform a reverse topological sort of the node_graph. If full graph is defined then will sort the full graph and only process the subset of nodes in the node_graph. 3. Iterate through the sorted graph nodes. If the node is saved then just drop it's memory from current memory. If the node is not saved then add it's memory to current memory and then traverse it's predecessors to simulate recomuptation chain. Will check if new peak memory after all predecessors are processed. Args: node_graph (nx.DiGraph): A directed graph representing the recomputable forward nodes. saved_nodes_set (Set[str]): A set of node names that are saved. peak_memory_after_forward_pass (float): The peak memory usage after the forward pass.
python
torch/_functorch/_activation_checkpointing/knapsack_evaluator.py
25
[ "self", "node_graph", "node_memories", "saved_nodes_set", "peak_memory_after_forward_pass" ]
list[tuple[float, str]]
true
9
6.96
pytorch/pytorch
96,034
google
false
hashCode
@Override public int hashCode() { int code = this.clazz.hashCode(); code = 37 * code + this.methodNamePatterns.hashCode(); return code; }
Determine if the given method name matches the method name pattern. <p>This method is invoked by {@link #isMatch(String, int)}. <p>The default implementation checks for direct equality as well as {@code xxx*}, {@code *xxx}, {@code *xxx*}, and {@code xxx*yyy} matches. <p>Can be overridden in subclasses &mdash; for example, to support a different style of simple pattern matching. @param methodName the method name to check @param methodNamePattern the method name pattern @return {@code true} if the method name matches the pattern @since 6.1 @see #isMatch(String, int) @see PatternMatchUtils#simpleMatch(String, String)
java
spring-aop/src/main/java/org/springframework/aop/support/ControlFlowPointcut.java
243
[]
true
1
6.4
spring-projects/spring-framework
59,386
javadoc
false
get_paused_dag_ids
def get_paused_dag_ids(dag_ids: list[str], session: Session = NEW_SESSION) -> set[str]: """ Given a list of dag_ids, get a set of Paused Dag Ids. :param dag_ids: List of Dag ids :param session: ORM Session :return: Paused Dag_ids """ paused_dag_ids = session.scalars( select(DagModel.dag_id) .where(DagModel.is_paused == expression.true()) .where(DagModel.dag_id.in_(dag_ids)) ) return set(paused_dag_ids)
Given a list of dag_ids, get a set of Paused Dag Ids. :param dag_ids: List of Dag ids :param session: ORM Session :return: Paused Dag_ids
python
airflow-core/src/airflow/models/dag.py
530
[ "dag_ids", "session" ]
set[str]
true
1
6.72
apache/airflow
43,597
sphinx
false
asList
public static List<Double> asList(double... backingArray) { if (backingArray.length == 0) { return Collections.emptyList(); } return new DoubleArrayAsList(backingArray); }
Returns a fixed-size list backed by the specified array, similar to {@link Arrays#asList(Object[])}. The list supports {@link List#set(int, Object)}, but any attempt to set a value to {@code null} will result in a {@link NullPointerException}. <p>The returned list maintains the values, but not the identities, of {@code Double} objects written to or read from it. For example, whether {@code list.get(0) == list.get(0)} is true for the returned list is unspecified. <p>The returned list may have unexpected behavior if it contains {@code NaN}, or if {@code NaN} is used as a parameter to any of its methods. <p>The returned list is serializable. <p><b>Note:</b> when possible, you should represent your data as an {@link ImmutableDoubleArray} instead, which has an {@link ImmutableDoubleArray#asList asList} view. @param backingArray the array to back the list @return a list view of the array
java
android/guava/src/com/google/common/primitives/Doubles.java
575
[]
true
2
7.92
google/guava
51,352
javadoc
false
getStackFrameList
static List<String> getStackFrameList(final Throwable throwable) { final String stackTrace = getStackTrace(throwable); final String linebreak = System.lineSeparator(); final StringTokenizer frames = new StringTokenizer(stackTrace, linebreak); final List<String> list = new ArrayList<>(); boolean traceStarted = false; while (frames.hasMoreTokens()) { final String token = frames.nextToken(); // Determine if the line starts with "<whitespace>at" final int at = token.indexOf("at"); if (at != NOT_FOUND && token.substring(0, at).trim().isEmpty()) { traceStarted = true; list.add(token); } else if (traceStarted) { break; } } return list; }
Gets a {@link List} of stack frames, the message is not included. Only the trace of the specified exception is returned, any caused by trace is stripped. <p>This works in most cases and will only fail if the exception message contains a line that starts with: {@code "<whitespace>at"}.</p> @param throwable is any throwable. @return List of stack frames.
java
src/main/java/org/apache/commons/lang3/exception/ExceptionUtils.java
401
[ "throwable" ]
true
5
8.4
apache/commons-lang
2,896
javadoc
false
mintypecode
def mintypecode(typechars, typeset='GDFgdf', default='d'): """ Return the character for the minimum-size type to which given types can be safely cast. The returned type character must represent the smallest size dtype such that an array of the returned type can handle the data from an array of all types in `typechars` (or if `typechars` is an array, then its dtype.char). Parameters ---------- typechars : list of str or array_like If a list of strings, each string should represent a dtype. If array_like, the character representation of the array dtype is used. typeset : str or list of str, optional The set of characters that the returned character is chosen from. The default set is 'GDFgdf'. default : str, optional The default character, this is returned if none of the characters in `typechars` matches a character in `typeset`. Returns ------- typechar : str The character representing the minimum-size type that was found. See Also -------- dtype Examples -------- >>> import numpy as np >>> np.mintypecode(['d', 'f', 'S']) 'd' >>> x = np.array([1.1, 2-3.j]) >>> np.mintypecode(x) 'D' >>> np.mintypecode('abceh', default='G') 'G' """ typecodes = ((isinstance(t, str) and t) or asarray(t).dtype.char for t in typechars) intersection = {t for t in typecodes if t in typeset} if not intersection: return default if 'F' in intersection and 'd' in intersection: return 'D' return min(intersection, key=_typecodes_by_elsize.index)
Return the character for the minimum-size type to which given types can be safely cast. The returned type character must represent the smallest size dtype such that an array of the returned type can handle the data from an array of all types in `typechars` (or if `typechars` is an array, then its dtype.char). Parameters ---------- typechars : list of str or array_like If a list of strings, each string should represent a dtype. If array_like, the character representation of the array dtype is used. typeset : str or list of str, optional The set of characters that the returned character is chosen from. The default set is 'GDFgdf'. default : str, optional The default character, this is returned if none of the characters in `typechars` matches a character in `typeset`. Returns ------- typechar : str The character representing the minimum-size type that was found. See Also -------- dtype Examples -------- >>> import numpy as np >>> np.mintypecode(['d', 'f', 'S']) 'd' >>> x = np.array([1.1, 2-3.j]) >>> np.mintypecode(x) 'D' >>> np.mintypecode('abceh', default='G') 'G'
python
numpy/lib/_type_check_impl.py
26
[ "typechars", "typeset", "default" ]
false
6
7.68
numpy/numpy
31,054
numpy
false
assert_run_python_script_without_output
def assert_run_python_script_without_output(source_code, pattern=".+", timeout=60): """Utility to check assertions in an independent Python subprocess. The script provided in the source code should return 0 and the stdtout + stderr should not match the pattern `pattern`. This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle Parameters ---------- source_code : str The Python source code to execute. pattern : str Pattern that the stdout + stderr should not match. By default, unless stdout + stderr are both empty, an error will be raised. timeout : int, default=60 Time in seconds before timeout. """ fd, source_file = tempfile.mkstemp(suffix="_src_test_sklearn.py") os.close(fd) try: with open(source_file, "wb") as f: f.write(source_code.encode("utf-8")) cmd = [sys.executable, source_file] cwd = op.normpath(op.join(op.dirname(sklearn_path), "..")) env = os.environ.copy() try: env["PYTHONPATH"] = os.pathsep.join([cwd, env["PYTHONPATH"]]) except KeyError: env["PYTHONPATH"] = cwd kwargs = {"cwd": cwd, "stderr": STDOUT, "env": env} # If coverage is running, pass the config file to the subprocess coverage_rc = os.environ.get("COVERAGE_PROCESS_START") if coverage_rc: kwargs["env"]["COVERAGE_PROCESS_START"] = coverage_rc kwargs["timeout"] = timeout try: try: out = check_output(cmd, **kwargs) except CalledProcessError as e: raise RuntimeError( "script errored with output:\n%s" % e.output.decode("utf-8") ) out = out.decode("utf-8") if re.search(pattern, out): if pattern == ".+": expectation = "Expected no output" else: expectation = f"The output was not supposed to match {pattern!r}" message = f"{expectation}, got the following output instead: {out!r}" raise AssertionError(message) except TimeoutExpired as e: raise RuntimeError( "script timeout, output so far:\n%s" % e.output.decode("utf-8") ) finally: os.unlink(source_file)
Utility to check assertions in an independent Python subprocess. The script provided in the source code should return 0 and the stdtout + stderr should not match the pattern `pattern`. This is a port from cloudpickle https://github.com/cloudpipe/cloudpickle Parameters ---------- source_code : str The Python source code to execute. pattern : str Pattern that the stdout + stderr should not match. By default, unless stdout + stderr are both empty, an error will be raised. timeout : int, default=60 Time in seconds before timeout.
python
sklearn/utils/_testing.py
902
[ "source_code", "pattern", "timeout" ]
false
5
6.16
scikit-learn/scikit-learn
64,340
numpy
false
scale
@Override public int scale() { return bucketScale; }
Attempts to add a bucket to the positive or negative range of this histogram. <br> Callers must adhere to the following rules: <ul> <li>All buckets for the negative values range must be provided before the first one from the positive values range.</li> <li>For both the negative and positive ranges, buckets must be provided with their indices in ascending order.</li> <li>It is not allowed to provide the same bucket more than once.</li> <li>It is not allowed to add empty buckets ({@code count <= 0}).</li> </ul> If any of these rules are violated, this call will fail with an exception. If the bucket cannot be added because the maximum capacity has been reached, the call will not modify the state of this histogram and will return {@code false}. @param index the index of the bucket to add @param count the count to associate with the given bucket @param isPositive {@code true} if the bucket belongs to the positive range, {@code false} if it belongs to the negative range @return {@code true} if the bucket was added, {@code false} if it could not be added due to insufficient capacity
java
libs/exponential-histogram/src/main/java/org/elasticsearch/exponentialhistogram/FixedCapacityExponentialHistogram.java
186
[]
true
1
6.64
elastic/elasticsearch
75,680
javadoc
false
renderKey
function renderKey(path, key, dots) { if (!path) return key; return path.concat(key).map(function each(token, i) { // eslint-disable-next-line no-param-reassign token = removeBrackets(token); return !dots && i ? '[' + token + ']' : token; }).join(dots ? '.' : ''); }
It takes a path, a key, and a boolean, and returns a string @param {string} path - The path to the current key. @param {string} key - The key of the current object being iterated over. @param {string} dots - If true, the key will be rendered with dots instead of brackets. @returns {string} The path to the current key.
javascript
lib/helpers/toFormData.js
39
[ "path", "key", "dots" ]
false
5
6.4
axios/axios
108,381
jsdoc
false
toCharacterObject
public static Character toCharacterObject(final String str) { return StringUtils.isEmpty(str) ? null : Character.valueOf(str.charAt(0)); }
Converts the String to a Character using the first character, returning null for empty Strings. <p>For ASCII 7 bit characters, this uses a cache that will return the same Character object each time.</p> <pre> CharUtils.toCharacterObject(null) = null CharUtils.toCharacterObject("") = null CharUtils.toCharacterObject("A") = 'A' CharUtils.toCharacterObject("BA") = 'B' </pre> @param str the character to convert @return the Character value of the first letter of the String
java
src/main/java/org/apache/commons/lang3/CharUtils.java
369
[ "str" ]
Character
true
2
7.52
apache/commons-lang
2,896
javadoc
false
APOS_UNESCAPE
public static String[][] APOS_UNESCAPE() { return APOS_UNESCAPE.clone(); }
Reverse of {@link #APOS_ESCAPE()} for unescaping purposes. @return the mapping table.
java
src/main/java/org/apache/commons/lang3/text/translate/EntityArrays.java
371
[]
true
1
6.48
apache/commons-lang
2,896
javadoc
false
onRestart
@Override public void onRestart() { this.stoppedBeans = null; if (this.running) { stopBeans(true); } startBeans(true); this.running = true; }
Stop all registered beans that implement {@link Lifecycle} and <i>are</i> currently running. Any bean that implements {@link SmartLifecycle} will be stopped within its 'phase', and all phases will be ordered from highest to lowest value. All beans that do not implement {@link SmartLifecycle} will be stopped in the default phase 0. A bean declared as dependent on another bean will be stopped before the dependency bean regardless of the declared phase.
java
spring-context/src/main/java/org/springframework/context/support/DefaultLifecycleProcessor.java
317
[]
void
true
2
6.88
spring-projects/spring-framework
59,386
javadoc
false
_build_candidate_buffer_map
def _build_candidate_buffer_map( buf_to_snode_last_use: dict, ) -> dict[BaseSchedulerNode, OrderedSet]: """ Build inverted index: node -> set of buffers where node appears in successors. This optimization reduces buffer iteration from O(total_buffers) to O(buffers_per_node). Since buffer successors are immutable during reordering, this map doesn't need updates. Returns: dict mapping each node to the set of buffers that have this node in their successors """ node_to_candidate_bufs: dict[BaseSchedulerNode, OrderedSet] = defaultdict( OrderedSet ) for buf in buf_to_snode_last_use: # Add to every successor node's buffer set for succ_node in buf.mpi_buffer.succ_nodes: node_to_candidate_bufs[succ_node].add(buf) return dict(node_to_candidate_bufs)
Build inverted index: node -> set of buffers where node appears in successors. This optimization reduces buffer iteration from O(total_buffers) to O(buffers_per_node). Since buffer successors are immutable during reordering, this map doesn't need updates. Returns: dict mapping each node to the set of buffers that have this node in their successors
python
torch/_inductor/comms.py
388
[ "buf_to_snode_last_use" ]
dict[BaseSchedulerNode, OrderedSet]
true
3
8.08
pytorch/pytorch
96,034
unknown
false
endsWith
private static boolean endsWith(CharSequence charSequence, char ch) { return !charSequence.isEmpty() && charSequence.charAt(charSequence.length() - 1) == ch; }
Returns if the bytes read from a {@link DataBlock} starts with the given {@link CharSequence}. @param buffer the buffer to use or {@code null} @param dataBlock the source data block @param pos the position in the data block where the string starts @param len the number of bytes to read from the block @param charSequence the required starting chars @return {@code -1} if the data block does not start with the char sequence, or a positive number indicating the number of bytes that contain the starting chars
java
loader/spring-boot-loader/src/main/java/org/springframework/boot/loader/zip/ZipString.java
246
[ "charSequence", "ch" ]
true
2
7.68
spring-projects/spring-boot
79,428
javadoc
false
getDocumentationComment
function getDocumentationComment(declarations: readonly Declaration[] | undefined, checker: TypeChecker | undefined): SymbolDisplayPart[] { if (!declarations) return emptyArray; let doc = JsDoc.getJsDocCommentsFromDeclarations(declarations, checker); if (checker && (doc.length === 0 || declarations.some(hasJSDocInheritDocTag))) { const seenSymbols = new Set<Symbol>(); for (const declaration of declarations) { const inheritedDocs = findBaseOfDeclaration(checker, declaration, symbol => { if (!seenSymbols.has(symbol)) { seenSymbols.add(symbol); if (declaration.kind === SyntaxKind.GetAccessor || declaration.kind === SyntaxKind.SetAccessor) { return symbol.getContextualDocumentationComment(declaration, checker); } return symbol.getDocumentationComment(checker); } }); // TODO: GH#16312 Return a ReadonlyArray, avoid copying inheritedDocs if (inheritedDocs) doc = doc.length === 0 ? inheritedDocs.slice() : inheritedDocs.concat(lineBreakPart(), doc); } } return doc; }
Returns whether or not the given node has a JSDoc "inheritDoc" tag on it. @param node the Node in question. @returns `true` if `node` has a JSDoc "inheritDoc" tag on it, otherwise `false`.
typescript
src/services/services.ts
1,028
[ "declarations", "checker" ]
true
10
8.24
microsoft/TypeScript
107,154
jsdoc
false
create
public static StopWatch create() { return new StopWatch(); }
Creates a StopWatch. @return StopWatch a StopWatch. @since 3.10
java
src/main/java/org/apache/commons/lang3/time/StopWatch.java
232
[]
StopWatch
true
1
6.48
apache/commons-lang
2,896
javadoc
false
cloneDataView
function cloneDataView(dataView, isDeep) { var buffer = isDeep ? cloneArrayBuffer(dataView.buffer) : dataView.buffer; return new dataView.constructor(buffer, dataView.byteOffset, dataView.byteLength); }
Creates a clone of `dataView`. @private @param {Object} dataView The data view to clone. @param {boolean} [isDeep] Specify a deep clone. @returns {Object} Returns the cloned data view.
javascript
lodash.js
4,639
[ "dataView", "isDeep" ]
false
2
6
lodash/lodash
61,490
jsdoc
false
deserialize_value
def deserialize_value(result: Any) -> Any: """ Deserialize XCom value from a database result. If deserialization fails, the raw value is returned, which must still be a valid Python JSON-compatible type (e.g., ``dict``, ``list``, ``str``, ``int``, ``float``, or ``bool``). XCom values are stored as JSON in the database, and SQLAlchemy automatically handles serialization (``json.dumps``) and deserialization (``json.loads``). However, we use a custom encoder for serialization (``serialize_value``) and deserialization to handle special cases, such as encoding tuples via the Airflow Serialization module. These must be decoded using ``XComDecoder`` to restore original types. Some XCom values, such as those set via the Task Execution API, bypass ``serialize_value`` and are stored directly in JSON format. Since these values are already deserialized by SQLAlchemy, they are returned as-is. **Example: Handling a tuple**: .. code-block:: python original_value = (1, 2, 3) serialized_value = XComModel.serialize_value(original_value) print(serialized_value) # '{"__classname__": "builtins.tuple", "__version__": 1, "__data__": [1, 2, 3]}' This serialized value is stored in the database. When deserialized, the value is restored to the original tuple. :param result: The XCom database row or object containing a ``value`` attribute. :return: The deserialized Python object. """ if result.value is None: return None try: return json.loads(result.value, cls=XComDecoder) except (ValueError, TypeError): # Already deserialized (e.g., set via Task Execution API) return result.value
Deserialize XCom value from a database result. If deserialization fails, the raw value is returned, which must still be a valid Python JSON-compatible type (e.g., ``dict``, ``list``, ``str``, ``int``, ``float``, or ``bool``). XCom values are stored as JSON in the database, and SQLAlchemy automatically handles serialization (``json.dumps``) and deserialization (``json.loads``). However, we use a custom encoder for serialization (``serialize_value``) and deserialization to handle special cases, such as encoding tuples via the Airflow Serialization module. These must be decoded using ``XComDecoder`` to restore original types. Some XCom values, such as those set via the Task Execution API, bypass ``serialize_value`` and are stored directly in JSON format. Since these values are already deserialized by SQLAlchemy, they are returned as-is. **Example: Handling a tuple**: .. code-block:: python original_value = (1, 2, 3) serialized_value = XComModel.serialize_value(original_value) print(serialized_value) # '{"__classname__": "builtins.tuple", "__version__": 1, "__data__": [1, 2, 3]}' This serialized value is stored in the database. When deserialized, the value is restored to the original tuple. :param result: The XCom database row or object containing a ``value`` attribute. :return: The deserialized Python object.
python
airflow-core/src/airflow/models/xcom.py
354
[ "result" ]
Any
true
2
7.6
apache/airflow
43,597
sphinx
false
replaceParameters
private String replaceParameters(String message, Locale locale, Set<String> visitedParameters) { StringBuilder buf = new StringBuilder(message); int parentheses = 0; int startIndex = -1; int endIndex = -1; for (int i = 0; i < buf.length(); i++) { if (buf.charAt(i) == ESCAPE) { i++; } else if (buf.charAt(i) == PREFIX) { if (startIndex == -1) { startIndex = i; } parentheses++; } else if (buf.charAt(i) == SUFFIX) { if (parentheses > 0) { parentheses--; } endIndex = i; } if (parentheses == 0 && startIndex < endIndex) { String parameter = buf.substring(startIndex + 1, endIndex); if (!visitedParameters.add(parameter)) { throw new IllegalArgumentException("Circular reference '{" + String.join(" -> ", visitedParameters) + " -> " + parameter + "}'"); } String value = replaceParameter(parameter, locale, visitedParameters); if (value != null) { buf.replace(startIndex, endIndex + 1, value); i = startIndex + value.length() - 1; } visitedParameters.remove(parameter); startIndex = -1; endIndex = -1; } } return buf.toString(); }
Recursively replaces all message parameters. <p> The message parameter prefix <code>&#123;</code> and suffix <code>&#125;</code> can be escaped using {@code \}, e.g. <code>\&#123;escaped\&#125;</code>. @param message the message containing the parameters to be replaced @param locale the locale to use when resolving replacements @return the message with parameters replaced
java
core/spring-boot/src/main/java/org/springframework/boot/validation/MessageSourceMessageInterpolator.java
79
[ "message", "locale", "visitedParameters" ]
String
true
11
7.76
spring-projects/spring-boot
79,428
javadoc
false
containsNone
public static boolean containsNone(final CharSequence cs, final String invalidChars) { if (invalidChars == null) { return true; } return containsNone(cs, invalidChars.toCharArray()); }
Tests that the CharSequence does not contain certain characters. <p> A {@code null} CharSequence will return {@code true}. A {@code null} invalid character array will return {@code true}. An empty String ("") always returns true. </p> <pre> StringUtils.containsNone(null, *) = true StringUtils.containsNone(*, null) = true StringUtils.containsNone("", *) = true StringUtils.containsNone("ab", "") = true StringUtils.containsNone("abab", "xyz") = true StringUtils.containsNone("ab1", "xyz") = true StringUtils.containsNone("abz", "xyz") = false </pre> @param cs the CharSequence to check, may be null. @param invalidChars a String of invalid chars, may be null. @return true if it contains none of the invalid chars, or is null. @since 2.0 @since 3.0 Changed signature from containsNone(String, String) to containsNone(CharSequence, String)
java
src/main/java/org/apache/commons/lang3/StringUtils.java
1,261
[ "cs", "invalidChars" ]
true
2
7.76
apache/commons-lang
2,896
javadoc
false
decorateCache
protected Cache decorateCache(Cache cache) { return cache; }
Decorate the given Cache object if necessary. @param cache the Cache object to be added to this CacheManager @return the decorated Cache object to be used instead, or simply the passed-in Cache object by default
java
spring-context/src/main/java/org/springframework/cache/support/AbstractCacheManager.java
164
[ "cache" ]
Cache
true
1
6.48
spring-projects/spring-framework
59,386
javadoc
false
validate_percentile
def validate_percentile(q: float | Iterable[float]) -> np.ndarray: """ Validate percentiles (used by describe and quantile). This function checks if the given float or iterable of floats is a valid percentile otherwise raises a ValueError. Parameters ---------- q: float or iterable of floats A single percentile or an iterable of percentiles. Returns ------- ndarray An ndarray of the percentiles if valid. Raises ------ ValueError if percentiles are not in given interval([0, 1]). """ q_arr = np.asarray(q) # Don't change this to an f-string. The string formatting # is too expensive for cases where we don't need it. msg = "percentiles should all be in the interval [0, 1]" if q_arr.ndim == 0: if not 0 <= q_arr <= 1: raise ValueError(msg) elif not all(0 <= qs <= 1 for qs in q_arr): raise ValueError(msg) return q_arr
Validate percentiles (used by describe and quantile). This function checks if the given float or iterable of floats is a valid percentile otherwise raises a ValueError. Parameters ---------- q: float or iterable of floats A single percentile or an iterable of percentiles. Returns ------- ndarray An ndarray of the percentiles if valid. Raises ------ ValueError if percentiles are not in given interval([0, 1]).
python
pandas/util/_validators.py
339
[ "q" ]
np.ndarray
true
4
6.88
pandas-dev/pandas
47,362
numpy
false
transform
def transform(self, X): """Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X : {array-like, sparse matrix}, shape (n_queries, n_features) If neighbors_algorithm='precomputed', X is assumed to be a distance matrix or a sparse graph of shape (n_queries, n_samples_fit). Returns ------- X_new : array-like, shape (n_queries, n_components) X transformed in the new space. """ check_is_fitted(self) if self.n_neighbors is not None: distances, indices = self.nbrs_.kneighbors(X, return_distance=True) else: distances, indices = self.nbrs_.radius_neighbors(X, return_distance=True) # Create the graph of shortest distances from X to # training data via the nearest neighbors of X. # This can be done as a single array operation, but it potentially # takes a lot of memory. To avoid that, use a loop: n_samples_fit = self.nbrs_.n_samples_fit_ n_queries = distances.shape[0] if hasattr(X, "dtype") and X.dtype == np.float32: dtype = np.float32 else: dtype = np.float64 G_X = np.zeros((n_queries, n_samples_fit), dtype) for i in range(n_queries): G_X[i] = np.min(self.dist_matrix_[indices[i]] + distances[i][:, None], 0) G_X **= 2 G_X *= -0.5 return self.kernel_pca_.transform(G_X)
Transform X. This is implemented by linking the points X into the graph of geodesic distances of the training data. First the `n_neighbors` nearest neighbors of X are found in the training data, and from these the shortest geodesic distances from each point in X to each point in the training data are computed in order to construct the kernel. The embedding of X is the projection of this kernel onto the embedding vectors of the training set. Parameters ---------- X : {array-like, sparse matrix}, shape (n_queries, n_features) If neighbors_algorithm='precomputed', X is assumed to be a distance matrix or a sparse graph of shape (n_queries, n_samples_fit). Returns ------- X_new : array-like, shape (n_queries, n_components) X transformed in the new space.
python
sklearn/manifold/_isomap.py
387
[ "self", "X" ]
false
7
6.08
scikit-learn/scikit-learn
64,340
numpy
false
nunique
def nunique(self): """ Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. See Also -------- core.groupby.SeriesGroupBy.nunique : Method nunique for SeriesGroupBy. Examples -------- >>> ser = pd.Series( ... [1, 2, 3, 3], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 3 dtype: int64 >>> ser.resample("MS").nunique() 2023-01-01 2 2023-02-01 1 Freq: MS, dtype: int64 """ return self._downsample("nunique")
Return number of unique elements in the group. Returns ------- Series Number of unique values within each group. See Also -------- core.groupby.SeriesGroupBy.nunique : Method nunique for SeriesGroupBy. Examples -------- >>> ser = pd.Series( ... [1, 2, 3, 3], ... index=pd.DatetimeIndex( ... ["2023-01-01", "2023-01-15", "2023-02-01", "2023-02-15"] ... ), ... ) >>> ser 2023-01-01 1 2023-01-15 2 2023-02-01 3 2023-02-15 3 dtype: int64 >>> ser.resample("MS").nunique() 2023-01-01 2 2023-02-01 1 Freq: MS, dtype: int64
python
pandas/core/resample.py
1,761
[ "self" ]
false
1
6.16
pandas-dev/pandas
47,362
unknown
false
getJsonParser
public static JsonParser getJsonParser() { if (ClassUtils.isPresent("tools.jackson.databind.ObjectMapper", null)) { return new JacksonJsonParser(); } if (ClassUtils.isPresent("com.google.gson.Gson", null)) { return new GsonJsonParser(); } return new BasicJsonParser(); }
Static factory for the "best" JSON parser available on the classpath. Tries Jackson, then Gson, and then falls back to the {@link BasicJsonParser}. @return a {@link JsonParser}
java
core/spring-boot/src/main/java/org/springframework/boot/json/JsonParserFactory.java
37
[]
JsonParser
true
3
7.92
spring-projects/spring-boot
79,428
javadoc
false
throwableOfThrowable
public static <T extends Throwable> T throwableOfThrowable(final Throwable throwable, final Class<T> clazz) { return throwableOf(throwable, clazz, 0, false); }
Returns the first {@link Throwable} that matches the specified class (exactly) in the exception chain. Subclasses of the specified class do not match - see {@link #throwableOfType(Throwable, Class)} for the opposite. <p>A {@code null} throwable returns {@code null}. A {@code null} type returns {@code null}. No match in the chain returns {@code null}.</p> @param <T> the type of Throwable you are searching. @param throwable the throwable to inspect, may be null. @param clazz the class to search for, subclasses do not match, null returns null. @return the first matching throwable from the throwable chain, null if no match or null input. @since 3.10
java
src/main/java/org/apache/commons/lang3/exception/ExceptionUtils.java
954
[ "throwable", "clazz" ]
T
true
1
6.64
apache/commons-lang
2,896
javadoc
false
padEnd
function padEnd(string, length, chars) { string = toString(string); length = toInteger(length); var strLength = length ? stringSize(string) : 0; return (length && strLength < length) ? (string + createPadding(length - strLength, chars)) : string; }
Pads `string` on the right side if it's shorter than `length`. Padding characters are truncated if they exceed `length`. @static @memberOf _ @since 4.0.0 @category String @param {string} [string=''] The string to pad. @param {number} [length=0] The padding length. @param {string} [chars=' '] The string used as padding. @returns {string} Returns the padded string. @example _.padEnd('abc', 6); // => 'abc ' _.padEnd('abc', 6, '_-'); // => 'abc_-_' _.padEnd('abc', 3); // => 'abc'
javascript
lodash.js
14,517
[ "string", "length", "chars" ]
false
4
7.52
lodash/lodash
61,490
jsdoc
false
getAdvisor
@Override public @Nullable Advisor getAdvisor(Method candidateAdviceMethod, MetadataAwareAspectInstanceFactory aspectInstanceFactory, int declarationOrderInAspect, String aspectName) { validate(aspectInstanceFactory.getAspectMetadata().getAspectClass()); AspectJExpressionPointcut expressionPointcut = getPointcut( candidateAdviceMethod, aspectInstanceFactory.getAspectMetadata().getAspectClass()); if (expressionPointcut == null) { return null; } try { return new InstantiationModelAwarePointcutAdvisorImpl(expressionPointcut, candidateAdviceMethod, this, aspectInstanceFactory, declarationOrderInAspect, aspectName); } catch (IllegalArgumentException | IllegalStateException ex) { if (logger.isDebugEnabled()) { logger.debug("Ignoring incompatible advice method: " + candidateAdviceMethod, ex); } return null; } }
Build a {@link org.springframework.aop.aspectj.DeclareParentsAdvisor} for the given introduction field. <p>Resulting Advisors will need to be evaluated for targets. @param introductionField the field to introspect @return the Advisor instance, or {@code null} if not an Advisor
java
spring-aop/src/main/java/org/springframework/aop/aspectj/annotation/ReflectiveAspectJAdvisorFactory.java
200
[ "candidateAdviceMethod", "aspectInstanceFactory", "declarationOrderInAspect", "aspectName" ]
Advisor
true
4
7.44
spring-projects/spring-framework
59,386
javadoc
false
diag_indices_from
def diag_indices_from(arr): """ Return the indices to access the main diagonal of an n-dimensional array. See `diag_indices` for full details. Parameters ---------- arr : array, at least 2-D See Also -------- diag_indices Examples -------- >>> import numpy as np Create a 4 by 4 array. >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Get the indices of the diagonal elements. >>> di = np.diag_indices_from(a) >>> di (array([0, 1, 2, 3]), array([0, 1, 2, 3])) >>> a[di] array([ 0, 5, 10, 15]) This is simply syntactic sugar for diag_indices. >>> np.diag_indices(a.shape[0]) (array([0, 1, 2, 3]), array([0, 1, 2, 3])) """ if not arr.ndim >= 2: raise ValueError("input array must be at least 2-d") # For more than d=2, the strided formula is only valid for arrays with # all dimensions equal, so we check first. if not np.all(diff(arr.shape) == 0): raise ValueError("All dimensions of input must be of equal length") return diag_indices(arr.shape[0], arr.ndim)
Return the indices to access the main diagonal of an n-dimensional array. See `diag_indices` for full details. Parameters ---------- arr : array, at least 2-D See Also -------- diag_indices Examples -------- >>> import numpy as np Create a 4 by 4 array. >>> a = np.arange(16).reshape(4, 4) >>> a array([[ 0, 1, 2, 3], [ 4, 5, 6, 7], [ 8, 9, 10, 11], [12, 13, 14, 15]]) Get the indices of the diagonal elements. >>> di = np.diag_indices_from(a) >>> di (array([0, 1, 2, 3]), array([0, 1, 2, 3])) >>> a[di] array([ 0, 5, 10, 15]) This is simply syntactic sugar for diag_indices. >>> np.diag_indices(a.shape[0]) (array([0, 1, 2, 3]), array([0, 1, 2, 3]))
python
numpy/lib/_index_tricks_impl.py
998
[ "arr" ]
false
3
7.84
numpy/numpy
31,054
numpy
false
stop
public void stop() { if (runningState != State.RUNNING && runningState != State.SUSPENDED) { throw new IllegalStateException("Stopwatch is not running."); } if (runningState == State.RUNNING) { stopTimeNanos = System.nanoTime(); stopInstant = Instant.now(); } runningState = State.STOPPED; }
Stops this StopWatch. <p> This method ends a new timing session, allowing the time to be retrieved. </p> @throws IllegalStateException if this StopWatch is not running.
java
src/main/java/org/apache/commons/lang3/time/StopWatch.java
759
[]
void
true
4
6.88
apache/commons-lang
2,896
javadoc
false
url
public final URL url() { URL url = loader.getResource(resourceName); if (url == null) { throw new NoSuchElementException(resourceName); } return url; }
Returns the url identifying the resource. <p>See {@link ClassLoader#getResource} @throws NoSuchElementException if the resource cannot be loaded through the class loader, despite physically existing in the class path.
java
android/guava/src/com/google/common/reflect/ClassPath.java
231
[]
URL
true
2
6.08
google/guava
51,352
javadoc
false
mark_unbacked
def mark_unbacked( t: Any, index: Union[int, list[Any], tuple[Any]], hint_override: Optional[int] = None, strict: bool = False, specialize_on: Optional[list[Any]] = None, ) -> None: """ Mark a tensor as having an unbacked dimension. This changes the semantics of operations: - The size of the specified dimension will always be reported as not equal to zero or one. - Assertions on this index will be turned into runtime asserts. - Attempting to get the real value of this dimension will raise an exception. - In effect, this dimension is treated as data-dependent (its value is unknown). Args: t (Any): The tensor to mark as having an unbacked dimension. index (int or list/tuple of int): The dimension(s) to mark as unbacked. Can be a single integer or a list/tuple of integers. hint_override (Optional[int], default=None): An optional integer to override the size hint for this dimension. This is only used by the inductor backend for size hint queries, such as during autotuning. strict (bool, default=False): If True, an error will be raised if the unbacked dimension is specialized. By default (strict=False), specialization is allowed and will proceed without error. specialize_on (Optional[list[Any]], default=None): A list of specialization criteria (e.g., lambdas) for this dimension. If provided, Dynamo will generate specialized compiled regions for each criterion in addition to a generic trace. """ if torch.distributed.is_available() and isinstance( t, torch.distributed.tensor.DTensor ): # apply on inner tensor sizes/strides mark_unbacked(t._local_tensor, index) else: # You could have copied the mark_dynamic behavior but I'm not convinced # it's what you want assert not is_traceable_wrapper_subclass(t), "not implemented yet" if isinstance(index, int): if strict: if not hasattr(t, "_dynamo_strict_unbacked_indices"): # pyrefly: ignore [missing-attribute] t._dynamo_strict_unbacked_indices = set() # pyrefly: ignore [missing-attribute] t._dynamo_strict_unbacked_indices.add(index) return if not hasattr(t, "_specialized_on"): # pyrefly: ignore [missing-attribute] t._specialize_on = {} if not hasattr(t, "_dynamo_unbacked_indices"): # pyrefly: ignore [missing-attribute] t._dynamo_unbacked_indices = set() if not hasattr(t, "_dynamo_hint_overrides"): # pyrefly: ignore [missing-attribute] t._dynamo_hint_overrides = {} if hint_override: # pyrefly: ignore [missing-attribute] t._dynamo_hint_overrides[index] = hint_override # FX tracers don't respect @forbid_in_graph and choke on the following error since it passes in proxies: # TypeError: 'Attribute' object does not support item assignment # pyrefly: ignore [missing-attribute] if isinstance(t._specialize_on, dict): # pyrefly: ignore [missing-attribute] t._specialize_on[index] = specialize_on if specialize_on is not None else [] # pyrefly: ignore [missing-attribute] t._dynamo_unbacked_indices.add(index) return assert isinstance(index, (list, tuple)) for i in index: mark_unbacked(t, i)
Mark a tensor as having an unbacked dimension. This changes the semantics of operations: - The size of the specified dimension will always be reported as not equal to zero or one. - Assertions on this index will be turned into runtime asserts. - Attempting to get the real value of this dimension will raise an exception. - In effect, this dimension is treated as data-dependent (its value is unknown). Args: t (Any): The tensor to mark as having an unbacked dimension. index (int or list/tuple of int): The dimension(s) to mark as unbacked. Can be a single integer or a list/tuple of integers. hint_override (Optional[int], default=None): An optional integer to override the size hint for this dimension. This is only used by the inductor backend for size hint queries, such as during autotuning. strict (bool, default=False): If True, an error will be raised if the unbacked dimension is specialized. By default (strict=False), specialization is allowed and will proceed without error. specialize_on (Optional[list[Any]], default=None): A list of specialization criteria (e.g., lambdas) for this dimension. If provided, Dynamo will generate specialized compiled regions for each criterion in addition to a generic trace.
python
torch/_dynamo/decorators.py
554
[ "t", "index", "hint_override", "strict", "specialize_on" ]
None
true
14
6.8
pytorch/pytorch
96,034
google
false
pluckHooks
function pluckHooks({ globalPreload, initialize, resolve, load, }) { const acceptedHooks = { __proto__: null }; if (resolve) { acceptedHooks.resolve = resolve; } if (load) { acceptedHooks.load = load; } if (initialize) { acceptedHooks.initialize = initialize; } else if (globalPreload && !globalPreloadWarningWasEmitted) { process.emitWarning( '`globalPreload` has been removed; use `initialize` instead.', 'UnsupportedWarning', ); globalPreloadWarningWasEmitted = true; } return acceptedHooks; }
A utility function to pluck the hooks from a user-defined loader. @param {import('./loader.js').ModuleExports} exports @returns {ExportedHooks}
javascript
lib/internal/modules/esm/hooks.js
678
[]
false
7
6.64
nodejs/node
114,839
jsdoc
false
createContributors
private ConfigDataEnvironmentContributors createContributors(Binder binder) { this.logger.trace("Building config data environment contributors"); MutablePropertySources propertySources = this.environment.getPropertySources(); List<ConfigDataEnvironmentContributor> contributors = new ArrayList<>(propertySources.size() + 10); PropertySource<?> defaultPropertySource = null; for (PropertySource<?> propertySource : propertySources) { if (DefaultPropertiesPropertySource.hasMatchingName(propertySource)) { defaultPropertySource = propertySource; } else { this.logger.trace(LogMessage.format("Creating wrapped config data contributor for '%s'", propertySource.getName())); contributors.add(ConfigDataEnvironmentContributor.ofExisting(propertySource, this.environment.getConversionService())); } } contributors.addAll(getInitialImportContributors(binder)); if (defaultPropertySource != null) { this.logger.trace("Creating wrapped config data contributor for default property source"); contributors.add(ConfigDataEnvironmentContributor.ofExisting(defaultPropertySource, this.environment.getConversionService())); } return createContributors(contributors); }
Create a new {@link ConfigDataEnvironment} instance. @param logFactory the deferred log factory @param bootstrapContext the bootstrap context @param environment the Spring {@link Environment}. @param resourceLoader {@link ResourceLoader} to load resource locations @param additionalProfiles any additional profiles to activate @param environmentUpdateListener optional {@link ConfigDataEnvironmentUpdateListener} that can be used to track {@link Environment} updates.
java
core/spring-boot/src/main/java/org/springframework/boot/context/config/ConfigDataEnvironment.java
165
[ "binder" ]
ConfigDataEnvironmentContributors
true
3
6.08
spring-projects/spring-boot
79,428
javadoc
false
convertToString
public static String convertToString(Object parsedValue, Type type) { if (parsedValue == null) { return null; } if (type == null) { return parsedValue.toString(); } switch (type) { case BOOLEAN: case SHORT: case INT: case LONG: case DOUBLE: case STRING: case PASSWORD: return parsedValue.toString(); case LIST: List<?> valueList = (List<?>) parsedValue; return valueList.stream().map(Object::toString).collect(Collectors.joining(",")); case CLASS: Class<?> clazz = (Class<?>) parsedValue; return clazz.getName(); default: throw new IllegalStateException("Unknown type."); } }
Parse a value according to its expected type. @param name The config name @param value The config value @param type The expected type @return The parsed object
java
clients/src/main/java/org/apache/kafka/common/config/ConfigDef.java
793
[ "parsedValue", "type" ]
String
true
3
8.24
apache/kafka
31,560
javadoc
false
requiresKnownMemberId
public static boolean requiresKnownMemberId(int apiVersion) { return apiVersion >= 4; }
Since JoinGroupRequest version 4, a client that sends a join group request with {@link #UNKNOWN_MEMBER_ID} needs to rejoin with a new member id generated by the server. Once the second join group request is complete, the client is added as a new member of the group. Prior to version 4, a client is immediately added as a new member if it sends a join group request with UNKNOWN_MEMBER_ID. @param apiVersion The JoinGroupRequest api version. @return whether a known member id is required or not.
java
clients/src/main/java/org/apache/kafka/common/requests/JoinGroupRequest.java
99
[ "apiVersion" ]
true
1
6.8
apache/kafka
31,560
javadoc
false
right
public static <L, R> Pair<L, R> right(final R right) { return of(null, right); }
Creates an immutable pair of two objects inferring the generic types. @param <L> the left element type. @param <R> the right element type. @param right the right element, may be null. @return an immutable formed from the two parameters, not null. @since 3.11
java
src/main/java/org/apache/commons/lang3/tuple/ImmutablePair.java
146
[ "right" ]
true
1
6.96
apache/commons-lang
2,896
javadoc
false
lint_config
def lint_config(args) -> None: """ Lint the airflow.cfg file for removed, or renamed configurations. This function scans the Airflow configuration file for parameters that are removed or renamed in Airflow 3.0. It provides suggestions for alternative parameters or settings where applicable. CLI Arguments: --section: str (optional) The specific section of the configuration to lint. Example: --section core --option: str (optional) The specific option within a section to lint. Example: --option check_slas --ignore-section: str (optional) A section to ignore during linting. Example: --ignore-section webserver --ignore-option: str (optional) An option to ignore during linting. Example: --ignore-option smtp_user --verbose: flag (optional) Enables detailed output, including the list of ignored sections and options. Example: --verbose Examples: 1. Lint all sections and options: airflow config lint 2. Lint a specific section: airflow config lint --section core,webserver 3. Lint specific sections and options: airflow config lint --section smtp --option smtp_user 4. Ignore a section: airflow config lint --ignore-section webserver,api 5. Ignore an options: airflow config lint --ignore-option smtp_user,session_lifetime_days 6. Enable verbose output: airflow config lint --verbose :param args: The CLI arguments for linting configurations. """ console = AirflowConsole() lint_issues = [] section_to_check_if_provided = args.section or [] option_to_check_if_provided = args.option or [] ignore_sections = args.ignore_section or [] ignore_options = args.ignore_option or [] for configuration in CONFIGS_CHANGES: if section_to_check_if_provided and configuration.config.section not in section_to_check_if_provided: continue if option_to_check_if_provided and configuration.config.option not in option_to_check_if_provided: continue if configuration.config.section in ignore_sections or configuration.config.option in ignore_options: continue if conf.has_option( configuration.config.section, configuration.config.option, lookup_from_deprecated=False ): if configuration.message is not None: lint_issues.append(configuration.message) if lint_issues: console.print("[red]Found issues in your airflow.cfg:[/red]") for issue in lint_issues: console.print(f" - [yellow]{issue}[/yellow]") if args.verbose: console.print("\n[blue]Detailed Information:[/blue]") console.print(f"Ignored sections: [green]{', '.join(ignore_sections)}[/green]") console.print(f"Ignored options: [green]{', '.join(ignore_options)}[/green]") console.print("\n[red]Please update your configuration file accordingly.[/red]") else: console.print("[green]No issues found in your airflow.cfg. It is ready for Airflow 3![/green]")
Lint the airflow.cfg file for removed, or renamed configurations. This function scans the Airflow configuration file for parameters that are removed or renamed in Airflow 3.0. It provides suggestions for alternative parameters or settings where applicable. CLI Arguments: --section: str (optional) The specific section of the configuration to lint. Example: --section core --option: str (optional) The specific option within a section to lint. Example: --option check_slas --ignore-section: str (optional) A section to ignore during linting. Example: --ignore-section webserver --ignore-option: str (optional) An option to ignore during linting. Example: --ignore-option smtp_user --verbose: flag (optional) Enables detailed output, including the list of ignored sections and options. Example: --verbose Examples: 1. Lint all sections and options: airflow config lint 2. Lint a specific section: airflow config lint --section core,webserver 3. Lint specific sections and options: airflow config lint --section smtp --option smtp_user 4. Ignore a section: airflow config lint --ignore-section webserver,api 5. Ignore an options: airflow config lint --ignore-option smtp_user,session_lifetime_days 6. Enable verbose output: airflow config lint --verbose :param args: The CLI arguments for linting configurations.
python
airflow-core/src/airflow/cli/commands/config_command.py
825
[ "args" ]
None
true
18
6.56
apache/airflow
43,597
sphinx
false
generate_run_id
def generate_run_id( *, run_type: DagRunType, logical_date: datetime | None = None, run_after: datetime ) -> str: """ Generate Run ID based on Run Type, run_after and logical Date. :param run_type: type of DagRun :param logical_date: the logical date :param run_after: the date before which dag run won't start. """ # _Ensure_ run_type is a DagRunType, not just a string from user code if logical_date: return DagRunType(run_type).generate_run_id(suffix=run_after.isoformat()) return DagRunType(run_type).generate_run_id(suffix=f"{run_after.isoformat()}_{get_random_string()}")
Generate Run ID based on Run Type, run_after and logical Date. :param run_type: type of DagRun :param logical_date: the logical date :param run_after: the date before which dag run won't start.
python
airflow-core/src/airflow/models/dagrun.py
774
[ "run_type", "logical_date", "run_after" ]
str
true
2
6.88
apache/airflow
43,597
sphinx
false
assertContainsAlias
default void assertContainsAlias(@Nullable KeyStore keyStore) { String alias = getAlias(); if (StringUtils.hasLength(alias) && keyStore != null) { try { Assert.state(keyStore.containsAlias(alias), () -> String.format("Keystore does not contain alias '%s'", alias)); } catch (KeyStoreException ex) { throw new IllegalStateException( String.format("Could not determine if keystore contains alias '%s'", alias), ex); } } }
Assert that the alias is contained in the given keystore. @param keyStore the keystore to check
java
core/spring-boot/src/main/java/org/springframework/boot/ssl/SslBundleKey.java
58
[ "keyStore" ]
void
true
4
6.72
spring-projects/spring-boot
79,428
javadoc
false
rawValuesAggregates
private Aggregates rawValuesAggregates() { if (valueCount == 0) { return new Aggregates(0, Double.NaN, Double.NaN); } double sum = 0; double min = Double.MAX_VALUE; double max = -Double.MAX_VALUE; for (int i = 0; i < valueCount; i++) { sum += rawValueBuffer[i]; min = Math.min(min, rawValueBuffer[i]); max = Math.max(max, rawValueBuffer[i]); } return new Aggregates(sum, min, max); }
Returns the histogram representing the distribution of all accumulated values. @return the histogram representing the distribution of all accumulated values
java
libs/exponential-histogram/src/main/java/org/elasticsearch/exponentialhistogram/ExponentialHistogramGenerator.java
168
[]
Aggregates
true
3
7.44
elastic/elasticsearch
75,680
javadoc
false
_excel2num
def _excel2num(x: str) -> int: """ Convert Excel column name like 'AB' to 0-based column index. Parameters ---------- x : str The Excel column name to convert to a 0-based column index. Returns ------- num : int The column index corresponding to the name. Raises ------ ValueError Part of the Excel column name was invalid. """ index = 0 for c in x.upper().strip(): cp = ord(c) if cp < ord("A") or cp > ord("Z"): raise ValueError(f"Invalid column name: {x}") index = index * 26 + cp - ord("A") + 1 return index - 1
Convert Excel column name like 'AB' to 0-based column index. Parameters ---------- x : str The Excel column name to convert to a 0-based column index. Returns ------- num : int The column index corresponding to the name. Raises ------ ValueError Part of the Excel column name was invalid.
python
pandas/io/excel/_util.py
98
[ "x" ]
int
true
4
6.88
pandas-dev/pandas
47,362
numpy
false
mean
def mean(self, axis=None, dtype=None, out=None, keepdims=np._NoValue): """ Returns the average of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.mean` for full documentation. See Also -------- numpy.ndarray.mean : corresponding function for ndarrays numpy.mean : Equivalent function numpy.ma.average : Weighted average. Examples -------- >>> import numpy as np >>> a = np.ma.array([1,2,3], mask=[False, False, True]) >>> a masked_array(data=[1, 2, --], mask=[False, False, True], fill_value=999999) >>> a.mean() 1.5 """ kwargs = {} if keepdims is np._NoValue else {'keepdims': keepdims} if self._mask is nomask: result = super().mean(axis=axis, dtype=dtype, **kwargs)[()] else: is_float16_result = False if dtype is None: if issubclass(self.dtype.type, (ntypes.integer, ntypes.bool)): dtype = mu.dtype('f8') elif issubclass(self.dtype.type, ntypes.float16): dtype = mu.dtype('f4') is_float16_result = True dsum = self.sum(axis=axis, dtype=dtype, **kwargs) cnt = self.count(axis=axis, **kwargs) if cnt.shape == () and (cnt == 0): result = masked elif is_float16_result: result = self.dtype.type(dsum * 1. / cnt) else: result = dsum * 1. / cnt if out is not None: out.flat = result if isinstance(out, MaskedArray): outmask = getmask(out) if outmask is nomask: outmask = out._mask = make_mask_none(out.shape) outmask.flat = getmask(result) return out return result
Returns the average of the array elements along given axis. Masked entries are ignored, and result elements which are not finite will be masked. Refer to `numpy.mean` for full documentation. See Also -------- numpy.ndarray.mean : corresponding function for ndarrays numpy.mean : Equivalent function numpy.ma.average : Weighted average. Examples -------- >>> import numpy as np >>> a = np.ma.array([1,2,3], mask=[False, False, True]) >>> a masked_array(data=[1, 2, --], mask=[False, False, True], fill_value=999999) >>> a.mean() 1.5
python
numpy/ma/core.py
5,374
[ "self", "axis", "dtype", "out", "keepdims" ]
false
14
6
numpy/numpy
31,054
unknown
false
beanOfTypeIncludingAncestors
public static <T> T beanOfTypeIncludingAncestors( ListableBeanFactory lbf, Class<T> type, boolean includeNonSingletons, boolean allowEagerInit) throws BeansException { Map<String, T> beansOfType = beansOfTypeIncludingAncestors(lbf, type, includeNonSingletons, allowEagerInit); return uniqueBean(type, beansOfType); }
Return a single bean of the given type or subtypes, also picking up beans defined in ancestor bean factories if the current bean factory is a HierarchicalBeanFactory. Useful convenience method when we expect a single bean and don't care about the bean name. <p>Does consider objects created by FactoryBeans if the "allowEagerInit" flag is set, which means that FactoryBeans will get initialized. If the object created by the FactoryBean doesn't match, the raw FactoryBean itself will be matched against the type. If "allowEagerInit" is not set, only raw FactoryBeans will be checked (which doesn't require initialization of each FactoryBean). <p><b>Note: Beans of the same name will take precedence at the 'lowest' factory level, i.e. such beans will be returned from the lowest factory that they are being found in, hiding corresponding beans in ancestor factories.</b> This feature allows for 'replacing' beans by explicitly choosing the same bean name in a child factory; the bean in the ancestor factory won't be visible then, not even for by-type lookups. @param lbf the bean factory @param type the type of bean to match @param includeNonSingletons whether to include prototype or scoped beans too or just singletons (also applies to FactoryBeans) @param allowEagerInit whether to initialize <i>lazy-init singletons</i> and <i>objects created by FactoryBeans</i> (or by factory methods with a "factory-bean" reference) for the type check. Note that FactoryBeans need to be eagerly initialized to determine their type: So be aware that passing in "true" for this flag will initialize FactoryBeans and "factory-bean" references. @return the matching bean instance @throws NoSuchBeanDefinitionException if no bean of the given type was found @throws NoUniqueBeanDefinitionException if more than one bean of the given type was found @throws BeansException if the bean could not be created @see #beansOfTypeIncludingAncestors(ListableBeanFactory, Class, boolean, boolean)
java
spring-beans/src/main/java/org/springframework/beans/factory/BeanFactoryUtils.java
447
[ "lbf", "type", "includeNonSingletons", "allowEagerInit" ]
T
true
1
6.56
spring-projects/spring-framework
59,386
javadoc
false
deleteAll
public StrBuilder deleteAll(final String str) { final int len = StringUtils.length(str); if (len > 0) { int index = indexOf(str, 0); while (index >= 0) { deleteImpl(index, index + len, len); index = indexOf(str, index); } } return this; }
Deletes the string wherever it occurs in the builder. @param str the string to delete, null causes no action @return {@code this} instance.
java
src/main/java/org/apache/commons/lang3/text/StrBuilder.java
1,701
[ "str" ]
StrBuilder
true
3
8.24
apache/commons-lang
2,896
javadoc
false
_maybe_mask_results
def _maybe_mask_results( self, result: np.ndarray, fill_value=iNaT, convert=None ) -> np.ndarray: """ Parameters ---------- result : np.ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine. """ if self._hasna: if convert: result = result.astype(convert) if fill_value is None: fill_value = np.nan np.putmask(result, self._isnan, fill_value) return result
Parameters ---------- result : np.ndarray fill_value : object, default iNaT convert : str, dtype or None Returns ------- result : ndarray with values replace by the fill_value mask the result if needed, convert to the provided dtype if its not None This is an internal routine.
python
pandas/core/arrays/datetimelike.py
839
[ "self", "result", "fill_value", "convert" ]
np.ndarray
true
4
6.56
pandas-dev/pandas
47,362
numpy
false
visitSourceFile
function visitSourceFile(node: SourceFile): SourceFile { const ancestorFacts = enterSubtree(HierarchyFacts.SourceFileExcludes, HierarchyFacts.SourceFileIncludes); const prologue: Statement[] = []; const statements: Statement[] = []; startLexicalEnvironment(); const statementOffset = factory.copyPrologue(node.statements, prologue, /*ensureUseStrict*/ false, visitor); addRange(statements, visitNodes(node.statements, visitor, isStatement, statementOffset)); if (taggedTemplateStringDeclarations) { statements.push( factory.createVariableStatement(/*modifiers*/ undefined, factory.createVariableDeclarationList(taggedTemplateStringDeclarations)), ); } factory.mergeLexicalEnvironment(prologue, endLexicalEnvironment()); insertCaptureThisForNodeIfNeeded(prologue, node); exitSubtree(ancestorFacts, HierarchyFacts.None, HierarchyFacts.None); return factory.updateSourceFile( node, setTextRange(factory.createNodeArray(concatenate(prologue, statements)), node.statements), ); }
Restores the `HierarchyFacts` for this node's ancestor after visiting this node's subtree, propagating specific facts from the subtree. @param ancestorFacts The `HierarchyFacts` of the ancestor to restore after visiting the subtree. @param excludeFacts The existing `HierarchyFacts` of the subtree that should not be propagated. @param includeFacts The new `HierarchyFacts` of the subtree that should be propagated.
typescript
src/compiler/transformers/es2015.ts
781
[ "node" ]
true
2
6.24
microsoft/TypeScript
107,154
jsdoc
false
get
def get(self, key: str): """ Retrieve pandas object stored in file. Parameters ---------- key : str Object to retrieve from file. Raises KeyError if not found. Returns ------- object Same type as object stored in file. See Also -------- HDFStore.get_node : Returns the node with the key. HDFStore.get_storer : Returns the storer object for a key. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) >>> store = pd.HDFStore("store.h5", "w") # doctest: +SKIP >>> store.put("data", df) # doctest: +SKIP >>> store.get("data") # doctest: +SKIP >>> store.close() # doctest: +SKIP """ with patch_pickle(): # GH#31167 Without this patch, pickle doesn't know how to unpickle # old DateOffset objects now that they are cdef classes. group = self.get_node(key) if group is None: raise KeyError(f"No object named {key} in the file") return self._read_group(group)
Retrieve pandas object stored in file. Parameters ---------- key : str Object to retrieve from file. Raises KeyError if not found. Returns ------- object Same type as object stored in file. See Also -------- HDFStore.get_node : Returns the node with the key. HDFStore.get_storer : Returns the storer object for a key. Examples -------- >>> df = pd.DataFrame([[1, 2], [3, 4]], columns=["A", "B"]) >>> store = pd.HDFStore("store.h5", "w") # doctest: +SKIP >>> store.put("data", df) # doctest: +SKIP >>> store.get("data") # doctest: +SKIP >>> store.close() # doctest: +SKIP
python
pandas/io/pytables.py
804
[ "self", "key" ]
true
2
8.64
pandas-dev/pandas
47,362
numpy
false
_compute_gram
def _compute_gram(self, X, sqrt_sw): """Computes the Gram matrix XX^T with possible centering. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- gram : ndarray of shape (n_samples, n_samples) The Gram matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- When X is dense the centering has been done in preprocessing so the mean is 0 and we just compute XX^T. When X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X. """ xp, _ = get_namespace(X) center = self.fit_intercept and sparse.issparse(X) if not center: # in this case centering has been done in preprocessing # or we are not fitting an intercept. X_mean = xp.zeros(X.shape[1], dtype=X.dtype) return safe_sparse_dot(X, X.T, dense_output=True), X_mean # X is sparse n_samples = X.shape[0] sample_weight_matrix = sparse.dia_matrix( (sqrt_sw, 0), shape=(n_samples, n_samples) ) X_weighted = sample_weight_matrix.dot(X) X_mean, _ = mean_variance_axis(X_weighted, axis=0) X_mean *= n_samples / sqrt_sw.dot(sqrt_sw) X_mX = sqrt_sw[:, None] * safe_sparse_dot(X_mean, X.T, dense_output=True) X_mX_m = np.outer(sqrt_sw, sqrt_sw) * np.dot(X_mean, X_mean) return ( safe_sparse_dot(X, X.T, dense_output=True) + X_mX_m - X_mX - X_mX.T, X_mean, )
Computes the Gram matrix XX^T with possible centering. Parameters ---------- X : {ndarray, sparse matrix} of shape (n_samples, n_features) The preprocessed design matrix. sqrt_sw : ndarray of shape (n_samples,) square roots of sample weights Returns ------- gram : ndarray of shape (n_samples, n_samples) The Gram matrix. X_mean : ndarray of shape (n_feature,) The weighted mean of ``X`` for each feature. Notes ----- When X is dense the centering has been done in preprocessing so the mean is 0 and we just compute XX^T. When X is sparse it has not been centered in preprocessing, but it has been scaled by sqrt(sample weights). When self.fit_intercept is False no centering is done. The centered X is never actually computed because centering would break the sparsity of X.
python
sklearn/linear_model/_ridge.py
1,831
[ "self", "X", "sqrt_sw" ]
false
3
6.24
scikit-learn/scikit-learn
64,340
numpy
false
communityId
public static String communityId( String sourceIpAddrString, String destIpAddrString, Object ianaNumber, Object transport, Object sourcePort, Object destinationPort, Object icmpType, Object icmpCode, int seed ) { return CommunityIdProcessor.apply( sourceIpAddrString, destIpAddrString, ianaNumber, transport, sourcePort, destinationPort, icmpType, icmpCode, seed ); }
Uses {@link CommunityIdProcessor} to compute community ID for network flow data. @param sourceIpAddrString source IP address @param destIpAddrString destination IP address @param ianaNumber IANA number @param transport transport protocol @param sourcePort source port @param destinationPort destination port @param icmpType ICMP type @param icmpCode ICMP code @param seed hash seed (must be between 0 and 65535) @return Community ID
java
modules/ingest-common/src/main/java/org/elasticsearch/ingest/common/Processors.java
130
[ "sourceIpAddrString", "destIpAddrString", "ianaNumber", "transport", "sourcePort", "destinationPort", "icmpType", "icmpCode", "seed" ]
String
true
1
6.08
elastic/elasticsearch
75,680
javadoc
false
getLogLevelConfigurer
private BiConsumer<String, @Nullable LogLevel> getLogLevelConfigurer(LoggingSystem system) { return (name, level) -> { try { name = name.equalsIgnoreCase(LoggingSystem.ROOT_LOGGER_NAME) ? null : name; system.setLogLevel(name, level); } catch (RuntimeException ex) { this.logger.error(LogMessage.format("Cannot set level '%s' for '%s'", level, name)); } }; }
Set logging levels based on relevant {@link Environment} properties. @param system the logging system @param environment the environment @since 2.2.0
java
core/spring-boot/src/main/java/org/springframework/boot/context/logging/LoggingApplicationListener.java
413
[ "system" ]
true
3
6.56
spring-projects/spring-boot
79,428
javadoc
false
chebder
def chebder(c, m=1, scl=1, axis=0): """ Differentiate a Chebyshev series. Returns the Chebyshev series coefficients `c` differentiated `m` times along `axis`. At each iteration the result is multiplied by `scl` (the scaling factor is for use in a linear change of variable). The argument `c` is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. Parameters ---------- c : array_like Array of Chebyshev series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by `scl`. The end result is multiplication by ``scl**m``. This is for use in a linear change of variable. (Default: 1) axis : int, optional Axis over which the derivative is taken. (Default: 0). Returns ------- der : ndarray Chebyshev series of the derivative. See Also -------- chebint Notes ----- In general, the result of differentiating a C-series needs to be "reprojected" onto the C-series basis set. Thus, typically, the result of this function is "unintuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c = (1,2,3,4) >>> C.chebder(c) array([14., 12., 24.]) >>> C.chebder(c,3) array([96.]) >>> C.chebder(c,scl=-1) array([-14., -12., -24.]) >>> C.chebder(c,2,-1) array([12., 96.]) """ c = np.array(c, ndmin=1, copy=True) if c.dtype.char in '?bBhHiIlLqQpP': c = c.astype(np.double) cnt = pu._as_int(m, "the order of derivation") iaxis = pu._as_int(axis, "the axis") if cnt < 0: raise ValueError("The order of derivation must be non-negative") iaxis = np.lib.array_utils.normalize_axis_index(iaxis, c.ndim) if cnt == 0: return c c = np.moveaxis(c, iaxis, 0) n = len(c) if cnt >= n: c = c[:1] * 0 else: for i in range(cnt): n = n - 1 c *= scl der = np.empty((n,) + c.shape[1:], dtype=c.dtype) for j in range(n, 2, -1): der[j - 1] = (2 * j) * c[j] c[j - 2] += (j * c[j]) / (j - 2) if n > 1: der[1] = 4 * c[2] der[0] = c[1] c = der c = np.moveaxis(c, 0, iaxis) return c
Differentiate a Chebyshev series. Returns the Chebyshev series coefficients `c` differentiated `m` times along `axis`. At each iteration the result is multiplied by `scl` (the scaling factor is for use in a linear change of variable). The argument `c` is an array of coefficients from low to high degree along each axis, e.g., [1,2,3] represents the series ``1*T_0 + 2*T_1 + 3*T_2`` while [[1,2],[1,2]] represents ``1*T_0(x)*T_0(y) + 1*T_1(x)*T_0(y) + 2*T_0(x)*T_1(y) + 2*T_1(x)*T_1(y)`` if axis=0 is ``x`` and axis=1 is ``y``. Parameters ---------- c : array_like Array of Chebyshev series coefficients. If c is multidimensional the different axis correspond to different variables with the degree in each axis given by the corresponding index. m : int, optional Number of derivatives taken, must be non-negative. (Default: 1) scl : scalar, optional Each differentiation is multiplied by `scl`. The end result is multiplication by ``scl**m``. This is for use in a linear change of variable. (Default: 1) axis : int, optional Axis over which the derivative is taken. (Default: 0). Returns ------- der : ndarray Chebyshev series of the derivative. See Also -------- chebint Notes ----- In general, the result of differentiating a C-series needs to be "reprojected" onto the C-series basis set. Thus, typically, the result of this function is "unintuitive," albeit correct; see Examples section below. Examples -------- >>> from numpy.polynomial import chebyshev as C >>> c = (1,2,3,4) >>> C.chebder(c) array([14., 12., 24.]) >>> C.chebder(c,3) array([96.]) >>> C.chebder(c,scl=-1) array([-14., -12., -24.]) >>> C.chebder(c,2,-1) array([12., 96.])
python
numpy/polynomial/chebyshev.py
872
[ "c", "m", "scl", "axis" ]
false
9
7.44
numpy/numpy
31,054
numpy
false
postProcessReconnectBackoffConfigs
public static Map<String, Object> postProcessReconnectBackoffConfigs(AbstractConfig config, Map<String, Object> parsedValues) { HashMap<String, Object> rval = new HashMap<>(); Map<String, Object> originalConfig = config.originals(); if ((!originalConfig.containsKey(RECONNECT_BACKOFF_MAX_MS_CONFIG)) && originalConfig.containsKey(RECONNECT_BACKOFF_MS_CONFIG)) { log.warn("Disabling exponential reconnect backoff because {} is set, but {} is not.", RECONNECT_BACKOFF_MS_CONFIG, RECONNECT_BACKOFF_MAX_MS_CONFIG); rval.put(RECONNECT_BACKOFF_MAX_MS_CONFIG, parsedValues.get(RECONNECT_BACKOFF_MS_CONFIG)); } return rval; }
Postprocess the configuration so that exponential backoff is disabled when reconnect backoff is explicitly configured but the maximum reconnect backoff is not explicitly configured. @param config The config object. @param parsedValues The parsedValues as provided to postProcessParsedConfig. @return The new values which have been set as described in postProcessParsedConfig.
java
clients/src/main/java/org/apache/kafka/clients/CommonClientConfigs.java
259
[ "config", "parsedValues" ]
true
3
7.44
apache/kafka
31,560
javadoc
false
flag
static Option flag(String name, String description) { return new Option(name, null, description, false); }
Factory method to create a flag/switch option. @param name the name of the option @param description a description of the option @return a new {@link Option} instance
java
loader/spring-boot-jarmode-tools/src/main/java/org/springframework/boot/jarmode/tools/Command.java
358
[ "name", "description" ]
Option
true
1
6.96
spring-projects/spring-boot
79,428
javadoc
false
stringToArray
function stringToArray(string) { return hasUnicode(string) ? unicodeToArray(string) : asciiToArray(string); }
Converts `string` to an array. @private @param {string} string The string to convert. @returns {Array} Returns the converted array.
javascript
lodash.js
1,350
[ "string" ]
false
2
6.24
lodash/lodash
61,490
jsdoc
false
getLast
@ParametricNullness public static <T extends @Nullable Object> T getLast(Iterator<T> iterator) { while (true) { T current = iterator.next(); if (!iterator.hasNext()) { return current; } } }
Advances {@code iterator} to the end, returning the last element. @return the last element of {@code iterator} @throws NoSuchElementException if the iterator is empty
java
android/guava/src/com/google/common/collect/Iterators.java
903
[ "iterator" ]
T
true
3
6.4
google/guava
51,352
javadoc
false
truePredicate
@SuppressWarnings("unchecked") // method name cannot be "true". public static <T> Predicate<T> truePredicate() { return (Predicate<T>) TRUE; }
Gets the Predicate singleton that always returns true. @param <T> the type of the input to the predicate. @return the Predicate singleton.
java
src/main/java/org/apache/commons/lang3/function/Predicates.java
50
[]
true
1
7.2
apache/commons-lang
2,896
javadoc
false
getPropertyResolver
private PropertyResolver getPropertyResolver() { if (this.environment instanceof ConfigurableEnvironment configurableEnvironment) { PropertySourcesPropertyResolver resolver = new PropertySourcesPropertyResolver( configurableEnvironment.getPropertySources()); resolver.setConversionService(configurableEnvironment.getConversionService()); resolver.setIgnoreUnresolvableNestedPlaceholders(true); return resolver; } return this.environment; }
Returns the {@link Console} to use. @return the {@link Console} to use @since 3.5.0
java
core/spring-boot/src/main/java/org/springframework/boot/logging/LoggingSystemProperties.java
116
[]
PropertyResolver
true
2
8.08
spring-projects/spring-boot
79,428
javadoc
false
generateValueCode
private CodeBlock generateValueCode() { if (this.warnings.size() == 1) { return CodeBlock.of("$S", this.warnings.iterator().next()); } CodeBlock values = CodeBlock.join(this.warnings.stream() .map(warning -> CodeBlock.of("$S", warning)).toList(), ", "); return CodeBlock.of("{ $L }", values); }
Return the currently registered warnings. @return the warnings
java
spring-beans/src/main/java/org/springframework/beans/factory/aot/CodeWarnings.java
163
[]
CodeBlock
true
2
7.6
spring-projects/spring-framework
59,386
javadoc
false
registrySuffix
public @Nullable InternetDomainName registrySuffix() { return hasRegistrySuffix() ? ancestor(registrySuffixIndex()) : null; }
Returns the {@linkplain #isRegistrySuffix() registry suffix} portion of the domain name, or {@code null} if no registry suffix is present. @since 23.3
java
android/guava/src/com/google/common/net/InternetDomainName.java
516
[]
InternetDomainName
true
2
6.48
google/guava
51,352
javadoc
false
_get_intervals
def _get_intervals( self, event: PGEvent ) -> tuple[Optional[tuple[int, int]], list[tuple[int, int]]]: """Get (execution_interval, hiding_intervals) for a collective event. Returns: (execution_interval, hiding_intervals) where: - execution_interval is (start_pos, wait_pos) or None - hiding_intervals is a list of (start_pos, compute_pos) tuples, one for each hiding node Works for both start and wait events by looking up the collective info. """ # For start events, directly use the node if event.is_start: coll = event.node # For wait events, look up the start node from the event's args elif event.is_wait: wait_input = event.node.args[0] if not isinstance(wait_input, fx.Node): return None, [] coll = wait_input else: return None, [] if coll not in self.collective_info: return None, [] info = self.collective_info[coll] start_event = self.node_to_event[coll] wait_event = self.node_to_event[info.wait_node] execution_interval = (start_event.position, wait_event.position) hiding_intervals = [] if info.hiding_nodes: for hiding_node in info.hiding_nodes: hiding_intervals.append( ( start_event.position, self.node_to_event[hiding_node].position, ) ) return execution_interval, hiding_intervals
Get (execution_interval, hiding_intervals) for a collective event. Returns: (execution_interval, hiding_intervals) where: - execution_interval is (start_pos, wait_pos) or None - hiding_intervals is a list of (start_pos, compute_pos) tuples, one for each hiding node Works for both start and wait events by looking up the collective info.
python
torch/_inductor/fx_passes/overlap_preserving_bucketer.py
475
[ "self", "event" ]
tuple[Optional[tuple[int, int]], list[tuple[int, int]]]
true
8
6.24
pytorch/pytorch
96,034
unknown
false
pollOnClose
@Override public PollResult pollOnClose(long currentTimeMs) { if (membershipManager().isLeavingGroup()) { NetworkClientDelegate.UnsentRequest request = makeHeartbeatRequest(currentTimeMs, true); return new NetworkClientDelegate.PollResult(heartbeatRequestState.heartbeatIntervalMs(), Collections.singletonList(request)); } return EMPTY; }
Generate a heartbeat request to leave the group if the state is still LEAVING when this is called to close the consumer. <p/> Note that when closing the consumer, even though an event to Unsubscribe is generated (triggers callbacks and sends leave group), it could be the case that the Unsubscribe event processing does not complete in time and moves on to close the managers (ex. calls to close with zero timeout). So we could end up on this pollOnClose with the member in {@link MemberState#PREPARE_LEAVING} (ex. app thread did not have the time to process the event to execute callbacks), or {@link MemberState#LEAVING} (ex. the leave request could not be sent due to coordinator not available at that time). In all cases, the pollOnClose will be triggered right before sending the final requests, so we ensure that we generate the request to leave if needed. @param currentTimeMs The current system time in milliseconds at which the method was called @return PollResult containing the request to send
java
clients/src/main/java/org/apache/kafka/clients/consumer/internals/AbstractHeartbeatRequestManager.java
230
[ "currentTimeMs" ]
PollResult
true
2
8.08
apache/kafka
31,560
javadoc
false
findAutowiringMetadata
private InjectionMetadata findAutowiringMetadata(String beanName, Class<?> clazz, @Nullable PropertyValues pvs) { // Fall back to class name as cache key, for backwards compatibility with custom callers. String cacheKey = (StringUtils.hasLength(beanName) ? beanName : clazz.getName()); // Quick check on the concurrent map first, with minimal locking. InjectionMetadata metadata = this.injectionMetadataCache.get(cacheKey); if (InjectionMetadata.needsRefresh(metadata, clazz)) { synchronized (this.injectionMetadataCache) { metadata = this.injectionMetadataCache.get(cacheKey); if (InjectionMetadata.needsRefresh(metadata, clazz)) { if (metadata != null) { metadata.clear(pvs); } metadata = buildAutowiringMetadata(clazz); this.injectionMetadataCache.put(cacheKey, metadata); } } } return metadata; }
<em>Native</em> processing method for direct calls with an arbitrary target instance, resolving all of its fields and methods which are annotated with one of the configured 'autowired' annotation types. @param bean the target instance to process @throws BeanCreationException if autowiring failed @see #setAutowiredAnnotationTypes(Set)
java
spring-beans/src/main/java/org/springframework/beans/factory/annotation/AutowiredAnnotationBeanPostProcessor.java
526
[ "beanName", "clazz", "pvs" ]
InjectionMetadata
true
5
6.24
spring-projects/spring-framework
59,386
javadoc
false
transform
def transform(self, X, copy=None): """Binarize each element of X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. copy : bool Copy the input X or not. Returns ------- X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features) Transformed array. """ copy = copy if copy is not None else self.copy # TODO: This should be refactored because binarize also calls # check_array X = validate_data( self, X, accept_sparse=["csr", "csc"], force_writeable=True, copy=copy, reset=False, ) return binarize(X, threshold=self.threshold, copy=False)
Binarize each element of X. Parameters ---------- X : {array-like, sparse matrix} of shape (n_samples, n_features) The data to binarize, element by element. scipy.sparse matrices should be in CSR format to avoid an un-necessary copy. copy : bool Copy the input X or not. Returns ------- X_tr : {ndarray, sparse matrix} of shape (n_samples, n_features) Transformed array.
python
sklearn/preprocessing/_data.py
2,381
[ "self", "X", "copy" ]
false
2
6.08
scikit-learn/scikit-learn
64,340
numpy
false
decodeMsDosFormatDateTime
private long decodeMsDosFormatDateTime(short date, short time) { int year = getChronoValue(((date >> 9) & 0x7f) + 1980, ChronoField.YEAR); int month = getChronoValue((date >> 5) & 0x0f, ChronoField.MONTH_OF_YEAR); int day = getChronoValue(date & 0x1f, ChronoField.DAY_OF_MONTH); int hour = getChronoValue((time >> 11) & 0x1f, ChronoField.HOUR_OF_DAY); int minute = getChronoValue((time >> 5) & 0x3f, ChronoField.MINUTE_OF_HOUR); int second = getChronoValue((time << 1) & 0x3e, ChronoField.SECOND_OF_MINUTE); return ZonedDateTime.of(year, month, day, hour, minute, second, 0, ZoneId.systemDefault()) .toInstant() .truncatedTo(ChronoUnit.SECONDS) .toEpochMilli(); }
Decode MS-DOS Date Time details. See <a href= "https://docs.microsoft.com/en-gb/windows/desktop/api/winbase/nf-winbase-dosdatetimetofiletime"> Microsoft's documentation</a> for more details of the format. @param date the date @param time the time @return the date and time as milliseconds since the epoch
java
loader/spring-boot-loader/src/main/java/org/springframework/boot/loader/zip/ZipCentralDirectoryFileHeaderRecord.java
114
[ "date", "time" ]
true
1
6.56
spring-projects/spring-boot
79,428
javadoc
false
_block_check_depths_match
def _block_check_depths_match(arrays, parent_index=[]): """ Recursive function checking that the depths of nested lists in `arrays` all match. Mismatch raises a ValueError as described in the block docstring below. The entire index (rather than just the depth) needs to be calculated for each innermost list, in case an error needs to be raised, so that the index of the offending list can be printed as part of the error. Parameters ---------- arrays : nested list of arrays The arrays to check parent_index : list of int The full index of `arrays` within the nested lists passed to `_block_check_depths_match` at the top of the recursion. Returns ------- first_index : list of int The full index of an element from the bottom of the nesting in `arrays`. If any element at the bottom is an empty list, this will refer to it, and the last index along the empty axis will be None. max_arr_ndim : int The maximum of the ndims of the arrays nested in `arrays`. final_size: int The number of elements in the final array. This is used the motivate the choice of algorithm used using benchmarking wisdom. """ if isinstance(arrays, tuple): # not strictly necessary, but saves us from: # - more than one way to do things - no point treating tuples like # lists # - horribly confusing behaviour that results when tuples are # treated like ndarray raise TypeError( f'{_block_format_index(parent_index)} is a tuple. ' 'Only lists can be used to arrange blocks, and np.block does ' 'not allow implicit conversion from tuple to ndarray.' ) elif isinstance(arrays, list) and len(arrays) > 0: idxs_ndims = (_block_check_depths_match(arr, parent_index + [i]) for i, arr in enumerate(arrays)) first_index, max_arr_ndim, final_size = next(idxs_ndims) for index, ndim, size in idxs_ndims: final_size += size if ndim > max_arr_ndim: max_arr_ndim = ndim if len(index) != len(first_index): raise ValueError( "List depths are mismatched. First element was at " f"depth {len(first_index)}, but there is an element at " f"depth {len(index)} ({_block_format_index(index)})" ) # propagate our flag that indicates an empty list at the bottom if index[-1] is None: first_index = index return first_index, max_arr_ndim, final_size elif isinstance(arrays, list) and len(arrays) == 0: # We've 'bottomed out' on an empty list return parent_index + [None], 0, 0 else: # We've 'bottomed out' - arrays is either a scalar or an array size = _size(arrays) return parent_index, _ndim(arrays), size
Recursive function checking that the depths of nested lists in `arrays` all match. Mismatch raises a ValueError as described in the block docstring below. The entire index (rather than just the depth) needs to be calculated for each innermost list, in case an error needs to be raised, so that the index of the offending list can be printed as part of the error. Parameters ---------- arrays : nested list of arrays The arrays to check parent_index : list of int The full index of `arrays` within the nested lists passed to `_block_check_depths_match` at the top of the recursion. Returns ------- first_index : list of int The full index of an element from the bottom of the nesting in `arrays`. If any element at the bottom is an empty list, this will refer to it, and the last index along the empty axis will be None. max_arr_ndim : int The maximum of the ndims of the arrays nested in `arrays`. final_size: int The number of elements in the final array. This is used the motivate the choice of algorithm used using benchmarking wisdom.
python
numpy/_core/shape_base.py
557
[ "arrays", "parent_index" ]
false
11
6.16
numpy/numpy
31,054
numpy
false
appendUncheckedWithOffset
public void appendUncheckedWithOffset(long offset, LegacyRecord record) { ensureOpenForRecordAppend(); try { int size = record.sizeInBytes(); AbstractLegacyRecordBatch.writeHeader(appendStream, toInnerOffset(offset), size); ByteBuffer buffer = record.buffer().duplicate(); appendStream.write(buffer.array(), buffer.arrayOffset(), buffer.limit()); recordWritten(offset, record.timestamp(), size + Records.LOG_OVERHEAD); } catch (IOException e) { throw new KafkaException("I/O exception when writing to the append stream, closing", e); } }
Add a legacy record without doing offset/magic validation (this should only be used in testing). @param offset The offset of the record @param record The record to add
java
clients/src/main/java/org/apache/kafka/common/record/MemoryRecordsBuilder.java
678
[ "offset", "record" ]
void
true
2
6.88
apache/kafka
31,560
javadoc
false
bindJSDocImportTag
function bindJSDocImportTag(node: JSDocImportTag) { // don't bind the importClause yet; that's delayed until bindJSDocImports bind(node.tagName); bind(node.moduleSpecifier); bind(node.attributes); if (typeof node.comment !== "string") { bindEach(node.comment); } }
Declares a Symbol for the node and adds it to symbols. Reports errors for conflicting identifier names. @param symbolTable - The symbol table which node will be added to. @param parent - node's parent declaration. @param node - The declaration to be added to the symbol table @param includes - The SymbolFlags that node has in addition to its declaration type (eg: export, ambient, etc.) @param excludes - The flags which node cannot be declared alongside in a symbol table. Used to report forbidden declarations.
typescript
src/compiler/binder.ts
2,133
[ "node" ]
false
2
6.08
microsoft/TypeScript
107,154
jsdoc
false
masked_greater
def masked_greater(x, value, copy=True): """ Mask an array where greater than a given value. This function is a shortcut to ``masked_where``, with `condition` = (x > value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy as np >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater(a, 2) masked_array(data=[0, 1, 2, --], mask=[False, False, False, True], fill_value=999999) """ return masked_where(greater(x, value), x, copy=copy)
Mask an array where greater than a given value. This function is a shortcut to ``masked_where``, with `condition` = (x > value). See Also -------- masked_where : Mask where a condition is met. Examples -------- >>> import numpy as np >>> import numpy.ma as ma >>> a = np.arange(4) >>> a array([0, 1, 2, 3]) >>> ma.masked_greater(a, 2) masked_array(data=[0, 1, 2, --], mask=[False, False, False, True], fill_value=999999)
python
numpy/ma/core.py
1,997
[ "x", "value", "copy" ]
false
1
6.48
numpy/numpy
31,054
unknown
false
isReusableClassMember
function isReusableClassMember(node: Node) { if (node) { switch (node.kind) { case SyntaxKind.Constructor: case SyntaxKind.IndexSignature: case SyntaxKind.GetAccessor: case SyntaxKind.SetAccessor: case SyntaxKind.PropertyDeclaration: case SyntaxKind.SemicolonClassElement: return true; case SyntaxKind.MethodDeclaration: // Method declarations are not necessarily reusable. An object-literal // may have a method calls "constructor(...)" and we must reparse that // into an actual .ConstructorDeclaration. const methodDeclaration = node as MethodDeclaration; const nameIsConstructor = methodDeclaration.name.kind === SyntaxKind.Identifier && methodDeclaration.name.escapedText === "constructor"; return !nameIsConstructor; } } return false; }
Reports a diagnostic error for the current token being an invalid name. @param blankDiagnostic Diagnostic to report for the case of the name being blank (matched tokenIfBlankName). @param nameDiagnostic Diagnostic to report for all other cases. @param tokenIfBlankName Current token if the name was invalid for being blank (not provided / skipped).
typescript
src/compiler/parser.ts
3,281
[ "node" ]
false
3
6.08
microsoft/TypeScript
107,154
jsdoc
false
print
@Override public String print(Duration object, Locale locale) { if (this.defaultUnit == null) { //delegate the ultimate of the default unit to the style return DurationFormatterUtils.print(object, this.style); } return DurationFormatterUtils.print(object, this.style, this.defaultUnit); }
Create a {@code DurationFormatter} in a specific {@link DurationFormat.Style} with an optional {@code DurationFormat.Unit}. <p>If a {@code defaultUnit} is specified, it may be used in parsing cases when no unit is present in the string (provided the style allows for such a case). It will also be used as the representation's resolution when printing in the {@link DurationFormat.Style#SIMPLE} style. Otherwise, the style defines its default unit. @param style the {@code DurationStyle} to use @param defaultUnit the {@code DurationFormat.Unit} to fall back to when parsing and printing
java
spring-context/src/main/java/org/springframework/format/datetime/standard/DurationFormatter.java
87
[ "object", "locale" ]
String
true
2
6.88
spring-projects/spring-framework
59,386
javadoc
false
is_float_dtype
def is_float_dtype(arr_or_dtype) -> bool: """ Check whether the provided array or dtype is of a float dtype. The function checks for floating-point data types, which represent real numbers that may have fractional components. Parameters ---------- arr_or_dtype : array-like or dtype The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of a float dtype. See Also -------- api.types.is_numeric_dtype : Check whether the provided array or dtype is of a numeric dtype. api.types.is_integer_dtype : Check whether the provided array or dtype is of an integer dtype. api.types.is_object_dtype : Check whether an array-like or dtype is of the object dtype. Examples -------- >>> from pandas.api.types import is_float_dtype >>> is_float_dtype(str) False >>> is_float_dtype(int) False >>> is_float_dtype(float) True >>> is_float_dtype(np.array(["a", "b"])) False >>> is_float_dtype(pd.Series([1, 2])) False >>> is_float_dtype(pd.Index([1, 2.0])) True """ return _is_dtype_type(arr_or_dtype, classes(np.floating)) or _is_dtype( arr_or_dtype, lambda typ: isinstance(typ, ExtensionDtype) and typ.kind in "f" )
Check whether the provided array or dtype is of a float dtype. The function checks for floating-point data types, which represent real numbers that may have fractional components. Parameters ---------- arr_or_dtype : array-like or dtype The array or dtype to check. Returns ------- boolean Whether or not the array or dtype is of a float dtype. See Also -------- api.types.is_numeric_dtype : Check whether the provided array or dtype is of a numeric dtype. api.types.is_integer_dtype : Check whether the provided array or dtype is of an integer dtype. api.types.is_object_dtype : Check whether an array-like or dtype is of the object dtype. Examples -------- >>> from pandas.api.types import is_float_dtype >>> is_float_dtype(str) False >>> is_float_dtype(int) False >>> is_float_dtype(float) True >>> is_float_dtype(np.array(["a", "b"])) False >>> is_float_dtype(pd.Series([1, 2])) False >>> is_float_dtype(pd.Index([1, 2.0])) True
python
pandas/core/dtypes/common.py
1,345
[ "arr_or_dtype" ]
bool
true
3
8
pandas-dev/pandas
47,362
numpy
false