Datasets:
license: cc-by-4.0
task_categories:
- text-generation
- summarization
language:
- code
tags:
- code
- documentation
- docstring
- code-to-text
- python
- java
- javascript
- typescript
- cpp
size_categories:
- 10K<n<100K
Code2Doc: Function-Documentation Pairs Dataset
A curated dataset of 13,358 high-quality function-documentation pairs extracted from popular open-source repositories on GitHub. Designed for training models to generate documentation from code.
Dataset Description
This dataset contains functions paired with their docstrings/documentation comments from 5 programming languages, extracted from well-maintained, highly-starred GitHub repositories.
Languages Distribution
| Language | Train | Val | Test | Total |
|---|---|---|---|---|
| Java | 6,560 (61.4%) | 820 | 820 | 8,200 |
| Python | 2,885 (27.0%) | 360 | 362 | 3,607 |
| TypeScript | 681 (6.4%) | 85 | 86 | 852 |
| JavaScript | 428 (4.0%) | 53 | 55 | 536 |
| C++ | 130 (1.2%) | 16 | 17 | 163 |
| Total | 10,684 | 1,334 | 1,340 | 13,358 |
Source Repositories
The data was extracted from high-quality open-source projects including:
Python: Django, PyTorch, Pandas, NumPy, scikit-learn, FastAPI, Flask, Celery, Airflow, Requests
Java: Guava, Elasticsearch, Spring Framework, Spring Boot, Apache Kafka, Commons-Lang
TypeScript: TypeScript, VS Code, Angular, Prisma, Grafana, Storybook, NestJS
JavaScript: React, Node.js, Lodash, Axios, Express
C++: OpenCV, Protobuf, Folly, gRPC, LLVM, TensorFlow
Dataset Structure
Data Fields
| Field | Type | Description |
|---|---|---|
function_name |
string | Name of the function/method |
function_code |
string | Complete source code of the function |
documentation |
string | Extracted docstring/documentation |
language |
string | Programming language |
file_path |
string | Original file path in repository |
line_number |
int | Line number where function starts |
parameters |
list[string] | List of parameter names |
return_type |
string | Return type annotation (if available) |
has_type_hints |
bool | Whether function has type annotations |
complexity |
int | Cyclomatic complexity score |
quality_score |
float | Documentation quality score (0-10) |
repo_name |
string | Source repository (owner/repo) |
repo_stars |
int | Repository star count at extraction time |
docstring_style |
string | Documentation style (google, numpy, sphinx, jsdoc, javadoc, doxygen) |
is_async |
bool | Whether function is async |
Data Splits
- Train: 10,684 samples (80%)
- Validation: 1,334 samples (10%)
- Test: 1,340 samples (10%)
Splits are stratified by language to maintain consistent distribution across sets.
Data Processing Pipeline
The dataset was created through a multi-stage pipeline:
- Extraction: Used tree-sitter parsers to accurately extract functions with documentation
- Basic Filtering: Removed test functions, trivial functions, and applied length constraints
- Quality Scoring: Scored documentation completeness (parameters, returns, examples)
- Deduplication: Removed exact and near-duplicates using MinHash LSH
- AI Detection: Filtered potentially AI-generated documentation
Quality Criteria
- Minimum documentation length: 20 characters
- Maximum documentation length: 10,000 characters
- Minimum code length: 50 characters
- Excluded test functions and trivial getters/setters
- Required meaningful documentation structure
Usage
from datasets import load_dataset
dataset = load_dataset("kaanrkaraman/code2doc")
# Access splits
train_data = dataset["train"]
val_data = dataset["val"]
test_data = dataset["test"]
# Example: Get a Python function
python_samples = train_data.filter(lambda x: x["language"] == "python")
sample = python_samples[0]
print(f"Function: {sample['function_name']}")
print(f"Code:\n{sample['function_code']}")
print(f"Documentation:\n{sample['documentation']}")
For Fine-tuning
def format_for_training(example):
return {
"input": f"Generate documentation for the following {example['language']} function:\n\n{example['function_code']}",
"output": example["documentation"]
}
formatted_dataset = dataset.map(format_for_training)
Intended Use
- Training code documentation generation models
- Fine-tuning LLMs for code-to-text tasks
- Evaluating documentation quality metrics
- Research on code understanding and generation
Limitations
- Heavily weighted towards Java due to verbose documentation practices
- C++ representation is small due to different documentation conventions
- Documentation quality varies by repository coding standards
- Extracted from a specific snapshot in time (December 2025)
Citation
@misc{recep_kaan_karaman_2025,
author = {Recep Kaan Karaman and Meftun Akarsu},
title = {code2doc (Revision cadd4e4)},
year = 2025,
url = {https://huggingface.co/datasets/kaanrkaraman/code2doc},
doi = {10.57967/hf/7310},
publisher = {Hugging Face}
}
License
This dataset is released under the CC BY 4.0 License. The source code comes from repositories with permissive licenses (MIT, Apache 2.0, BSD).