You need to agree to share your contact information to access this dataset

This repository is publicly accessible, but you have to accept the conditions to access its files and content.

Log in or Sign Up to review the conditions and access this dataset content.

Newton's Rings Simulation Dataset

A synthetic dataset for Newton's Rings interference pattern analysis, designed for machine learning and deep learning research in optical physics.

Dataset Overview

  • Task: Predict curvature radius R and ring center coordinates (x₀, y₀) from interference images
  • Image Size: 512 × 512 pixels
  • Image Format: PNG (8-bit grayscale)
  • Label Format: JSONL (each line contains complete physical/imaging/noise parameters)

Dataset Configurations

This dataset includes multiple illumination mode configurations:

Configuration Light Mode Description
vis512_monochrome Monochromatic Fixed wavelength illumination
vis512_narrowband Narrowband Random narrowband wavelength
vis512_white White light Broadband illumination
vis512_real_lambda Real wavelength Common laser wavelengths
vis512_ood OOD test Out-of-distribution generalization test

Label Description

Each sample label contains:

  • Physical Parameters: Wavelength λ, curvature radius R, refractive index n, initial gap t₀, etc.
  • Imaging Parameters: Ring center coordinates, PSF blur, vignetting, etc.
  • Noise Parameters: Poisson-Gaussian noise, read noise, dark current offset, etc.

Evaluation Metrics

Task Metric
Curvature Radius Prediction (T1) Relative Error |R̂ - R| / R
Center Localization (T2) Euclidean Distance √[(x̂₀ - x₀)² + (ŷ₀ - y₀)²]

Usage

from datasets import load_dataset

dataset = load_dataset("jack925/Newtons_rings")

License Apache License 2.0 Citation If you use this dataset, please cite the associated paper. Contact School of Science, TianJin University of Commerce, AIboat project

Downloads last month
129