Datasets:
Newton's Rings Simulation Dataset
A synthetic dataset for Newton's Rings interference pattern analysis, designed for machine learning and deep learning research in optical physics.
Dataset Overview
- Task: Predict curvature radius R and ring center coordinates (x₀, y₀) from interference images
- Image Size: 512 × 512 pixels
- Image Format: PNG (8-bit grayscale)
- Label Format: JSONL (each line contains complete physical/imaging/noise parameters)
Dataset Configurations
This dataset includes multiple illumination mode configurations:
| Configuration | Light Mode | Description |
|---|---|---|
vis512_monochrome |
Monochromatic | Fixed wavelength illumination |
vis512_narrowband |
Narrowband | Random narrowband wavelength |
vis512_white |
White light | Broadband illumination |
vis512_real_lambda |
Real wavelength | Common laser wavelengths |
vis512_ood |
OOD test | Out-of-distribution generalization test |
Label Description
Each sample label contains:
- Physical Parameters: Wavelength λ, curvature radius R, refractive index n, initial gap t₀, etc.
- Imaging Parameters: Ring center coordinates, PSF blur, vignetting, etc.
- Noise Parameters: Poisson-Gaussian noise, read noise, dark current offset, etc.
Evaluation Metrics
| Task | Metric |
|---|---|
| Curvature Radius Prediction (T1) | Relative Error |R̂ - R| / R |
| Center Localization (T2) | Euclidean Distance √[(x̂₀ - x₀)² + (ŷ₀ - y₀)²] |
Usage
from datasets import load_dataset
dataset = load_dataset("jack925/Newtons_rings")
License Apache License 2.0 Citation If you use this dataset, please cite the associated paper. Contact School of Science, TianJin University of Commerce, AIboat project
- Downloads last month
- 129